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Preface to the Third Edition 

Some activities command more interest, devotion, and enthusiasm than do others. So it 

seems to be with science and with art. Why this is so is an interesting and significant psy¬ 

chological question to which there is no unequivocal answer. All that seems to be clear is 

that once we become immersed in scientific research or artistic expression we devote most 

of our thoughts, energies, and emotions to these activities. It seems a far cry from science to 

art. But in one respect at least they are similar: we make passionate commitments to them.1 

This is a book on scientific behavioral research. Above everything else, it aims to convey 

the exciting quality of research in general, and in the behavioral sciences and education in 

particular. A large portion of the book is focused on abstract conceptual and technical mat¬ 

ters, but behind the discussion is the conviction that research is a deeply absorbing and vi¬ 

tally interesting business. 

It may seem strange in a book on research that I talk about interest, enthusiasm, and 

passionate commitment. Shouldn’t we be objective? Shouldn’t we develop a hardheaded at¬ 

titude toward psychological, sociological, and educational phenomena? Yes, of course. But 

more important is somehow to catch the essential quality of the excitement of discovery that 

comes from research well done. Then the difficulties and frustrations of the research enter¬ 

prise, while they never vanish, are much less significant. What I am trying to say is that 

strong subjective involvement is a powerful motivator for acquiring an objective approach to 

the study of phenomena. It is doubtful that any significant work is ever done without great 

personal involvement. It is doubtful that students can learn much about science, research 

design, and research methods without considerable personal involvement. Thus I would en¬ 

courage students to discuss, argue, debate, and even fight about research. Take a stand. Be 

opinionated. Later try to soften the opinionation into intelligent conviction and controlled 

emotional commitment. 

The writing of this book has been strongly influenced by the book’s major purpose: to 

help students understand the fundamental nature of the scientific approach to problem solu¬ 

tion. Technical and methodological problems have been considered at length. One cannot un¬ 

derstand any complex human activity, especially scientific research activity, without some tech¬ 

nological and methodological competence. But technical competence is empty without an 

understanding of the basic intent and nature of scientific research: the controlled and objec¬ 

tive study of the relations among phenomena. All else is subordinate to this. Thus the book, as 

its name indicates, strongly emphasizes the. fundamentals or foundations of behavioral research. 

To accomplish the major purpose indicated above, the book has four distinctive general 

features. First, it is a treatise on scientific research; it is limited to what is generally accepted 

as the scientific approach. It does not discuss historical research, legal research, library re¬ 

search, philosophical inquiry, and so on.2 It emphasizes, in short, understanding scientific 

research problem solutions. 

The term “passionate commitment” is Polanyi’s. M. Polanyi, Personal Knowledge. Chicago: University of 

Chicago Press, 1958. 

2Historical inquiry and methodological research are briefly discussed in Appendix A. 

Ill 
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Second, the student is led to grasp the intimate and often difficult relations between a 

research problem and the design and methodology of its solution. While methodological 

problems are treated at length, the book is not a “methods” book. Stress is always on the re¬ 

search problem, the design of research, and relation between the two. The student is en¬ 

couraged to think relationally and structurally. 

Third, the content of much of the book is tied together with the notions of set, relation, 

and variance. These ideas, together with those of probability theory, statistics, and measure¬ 

ment, are used to integrate the diverse content of research activity into a unified and coher¬ 

ent whole. 

Fourth, a good bit of the book’s discussion is slanted toward psychological, sociological, 

and educational research problems. It seemed to me that a foundation research book was 

needed in education. But there is little scientific research in education that is uniquely edu¬ 

cational; for the most part it is behavioral research, research basically psychological and 

sociological in nature. In sum, while this is a book on the intellectual and technical foun¬ 

dations of scientific behavioral research in general, it emphasizes psychological, sociological, 

and educational problems and examples, while not ignoring other behavioral disciplines. 

Some word of the book’s level and audience is in order. The book is a behavioral science 

text intended for graduated students who have elementary backgrounds in psychology, 

statistics, and measurement. While many terms and ideas used in educational and psycho¬ 

logical problems are defined, some familiarity with terms like intelligence, aptitude, socio¬ 

economics status, authoritarianism, and the like is assumed. All technical terms are defined, 
though many students will probably need instructor help with some of them. 

As usual, statistical terms and ideas may hinder the student’s progress. While it is possi¬ 

ble to study the book and master its contents without statistical background, the student 

who has had an elementary statistics course will probably find the going easier. Suggestions 

are given in Part Four to help the student conquer certain statistical difficulties. 

Foundations of Behavioral Research can be used in courses of either one or two semesters. 

WTien used in one-semester courses, it should be selectively studied. Although individual in¬ 

structors will, of course, make their own selection decisions, the following parts and chap¬ 

ters are suggested for a single-semester course: Parts 1 and 2 and Chapters 8-12, 17, 19, 23, 

and 25-29. (Chapters 25, 26, and 27 can also be omitted.) For a two-semester course, all or 

most of the chapters may well be studied. Whatever selection is made, it should be borne in 

mind that later discussions often presuppose understanding of earlier discussions. 

To aid students study and understanding and to help surmount some of the inherent 

difficulties of the subject, several devices have been used. One, many topics have been dis¬ 

cussed at length. If a choice had to be made between repetition and possible lack of student 

understanding, material was repeated, though in different words with different examples. 

Two, many examples from actual research as well as many hypothetical examples have been 

used. The student who reads the book through will have been exposed to a large number 

and a wide variety of problems, hypotheses, designs, and data and to many actual research 
studies in the social sciences and education. 

Three, an important feature of the book is the frequent use of simple numerical exam¬ 

ples in which the numbers are only those between 0 and 9. The fundamental ideas of statis- 
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tics, measurement, and design can be conveyed as well with small numbers as with large 

numbers, without the additional burden of tedious arithmetic computations. It is suggested 

that the reader work through each example at least once. Intelligent handling of data is in¬ 

dispensable to understanding research design and methodology. 

Four, most chapters have study suggestions that include readings as well as problems 

designed to help integrate and consolidate the material presented in the chapters. Many of 

them arose from practical use with graduated students. Answers to most of the computa¬ 

tional problems have been given immediately after the problems. An answer, if checked 

against a supplied answer and found to be correct, reassures students about computational 

details. They should not have to waste time wondering about the right answers. Under¬ 

standing the procedures is what is important and not the calculations as such. 

All books are cooperative enterprises. Though one person may undertake the actual 

writing, he is dependent on many others for ideas, criticism, and support. Among the many 

persons who contributed to this book, I am most indebted to those mentioned below. I here 

express my sincere thanks to them. 

Three individuals read the entire original manuscript of the first edition and made 

many valuable and constructive suggestions for improvement: Professors T. Newcomb, D. 

Harris, and J. Nunnally. Professor Newcomb also furnished the early prodding and encour¬ 

agement needed to get the book going. Professor Harris contributed from his wide research 

experience insights whose worth cannot be weighed. The late Professor Nunnally’s tren¬ 

chant and penetrating analysis was invaluable, especially with a number of difficult technical 

matters. 
I am grateful to the many teachers and students who have corresponded with me about 

aspects of the book (especially the errors). All suggested corrections and changes have been 

given careful consideration. I owe a large debt in the writing of both revisions to my col¬ 

league and friend, Professor E. Pedhazur, and to Professor E. Page. They have ferreted out 

weaknesses and made many suggestions for improvement. I also want to express my grati¬ 

tude to my former colleagues of the Psychology Laboratory, University of Amsterdam, who 

pointed out errors and ambiguities in the text, some of which I have been able to correct. 

The price a family pays for an author’s book is high. Its members put up with his obses¬ 

sion and his unpredictable writing ups and downs. I express my gratitude and indebtedness 

to my wife and sons by dedication the book to them. I must say more than this, however. 

My wife has had to cope with two overseas moves and one transcontinental move, two re¬ 

tirements, and innumerable logistical and temperamental problems. To express thanks and 

gratitude in the face of this extraordinary example of coping seems pale and inadequate. 

Nevertheless, I here express both. 

Fred N. Kerlinger 

Eugene, Oregon 

June 1985 
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I first read Foundations of Behavioral Research when I was a first year graduate student, and I 

was impressed with the lucid explanations of topics that I had previously classified as com¬ 

plex. It later served as an invaluable reference book, one of those books which I would al¬ 

ways consult first when encountering a logical or design problem. 

Professor Kerlinger’s death raised the possibility that his significant contributions to the 

field might be forgotten and this valuable tool allowed to go out of print. I am grateful to 

Kerlinger’s estate and the publisher to have the opportunity to revise to such a fine text. 

Without knowing what Kerlinger would have written for this edition, I hope that my efforts 

have enhanced his classic work and will inspire future generations of students to do research 

properly. Following this prologue is Kerlinger’s preface from the third edition; he so well 

described his intent and purpose for this text, that I felt it only appropriate that his words 

and rationale remain. 

In keeping with Kerlinger’s original intent, the fourth edition was written to continue 

the emphasis on the fundamentals or foundations of research. As a comprehensive text in re¬ 

search methodology, Foundations of Behavioral Research would be applicable for use in ad¬ 

vanced undergraduate and first year graduate courses in psychology, education, sociology, 

political science, and health sciences. It is intended as a broad treatment of research prob¬ 

lems that arise in these areas. 

Major changes to this edition include the following: (a) the development of an instruc¬ 

tor’s manual which contains essay and multiple choice questions; (b) the replacement of 

approximately 75% of the older references with newer studies; (c) the addition of several 

pedagogical features, such as a brief outline at the beginning of each chapter and a chapter 

summary at the end of each chapter; and (d) the addition of current topics of importance to 

today’s researchers, with some regrettable but necessary elimination of other topics. 

The most significant advancement in research methodology since the publication of the 

third edition is the widespread availability of computer technology. In the fourth edition, 

this availability is reflected in the treatment of computer applications within individual 

chapters, as well as in the addition of several topics made possible by these advances. In the 

previous edition, Kerlinger discussed the use of computers in behavioral and social science 

research in an appendix. That appendix has been removed in favor of integrating computer 

applications into the appropriate chapters, using SPSS for most examples and more special¬ 

ized tools (EQS and ILOG) where necessary. 

Several new chapters and appendices have been included in the fourth edition, includ¬ 

ing the following: 

• A new chapter (Chapter 17) focuses on ethical issues in research. 

• Chapter 22 (Quasi-Experimental Design) is an expansion and update of 

Kerlinger’s original material on “compromise research designs.” 

• Appendix A provides a useful introduction to APA style in writing research reports. 

• Appendix B consists of common statistical tables, making the book more com¬ 

plete as a reference tool. 

vn 
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In addition to the new chapters and appendices, the fourth edition also boasts a large 

number of new topics and revisions: 

• Chapter 7 (Probability) includes a discussion of Bayes’ Theorem and Keynes’ 

probability notion. 

• Chapter 8 (Sampling and Randomness) now includes discussion of alternative 

sampling procedures. 

• Chapter 10 (The Analysis of Frequencies) addresses the use of the current term 

“crosstabs,” as well as information about computing odds ratios. 

• Chapter 12 (Testing Hypotheses and the Standard Error) introduces the five steps 

of hypothesis testing and added variation of computer approach to the Monte 
Carlo method. 

• Chapter 15 (Analysis of Variance: Correlated Groups) classifies all ANOVA de¬ 
signs into five major types of models. 

• Chapter 20 (General Designs of Research) presents material on matching pairs of 
participants. 

• Chapters 20 and 21 were combined into one chapter entitled “Research Design 

Applications: Randomized Groups and Correlated Groups.” 

• Chapter 24 (Laboratory Experiments, Field Experiments, and Field Studies) 

notes the addition of information about qualitative research. 

• Chapter 25 (Survey Research) provides additional information on meta-analysis. 

• Chapters 26-28 (Foundations of Measurement, Reliability, Validity) includes the 

addition of discussions on specific reliability coefficients such as the Kuder- 

Richardson and coefficient alpha and examines Taylor-Russell tables in the dis¬ 
cussion of validity issues. 

• Chapter 29 (Interviews and Interview Schedules) addresses focus groups as a 
method of interviewing. 

• Chapter 33 (Multiple Regression, Analysis of Variance, and Other Multivariate 

Methods) provides a more detailed treatment of discriminant function analysis, 
logistic regression, ridge regression and canonical correlation. 

• Chapter 34 (Factor Analysis) includes new material on confirmatory factor analysis. 

• Chapter 35 (Analysis of Covariance Structures) sees the substitution of EQS sys¬ 
tem for LISREL system for studying covariance structures. 

With so much new material, it was necessary to abridge or eliminate other information 

where appropriate. The former chapters 31 and 33 (covering projective methods, content 

analysis, and q-methodology) were eliminated, and presentation of several other topics was 
streamlined. 
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Chapter l 

Science and 
the Scientific Approach 

■ Science and Common Sense 

■ Four Methods of Knowing 

■ Science and Its Functions 

■ The Aims of Science, Scientific Explanation, and Theory 

■ Scientific Research: A Definition 

■ The Scientific Approach 

Problem - Obstacle - Idea 

Hypothesis 

Reasoning - Deduction 

Observation - Test - Experiment 

To understand any complex human activity one must grasp the language and ap¬ 

proach of the individuals who pursue it. So it is with understanding science and sci¬ 

entific research. One must know and understand, at least in part, scientific language 

and the scientific approach to problem-solving. 
One of the most confusing things to the student of science is the special way sci¬ 

entists use ordinary words and, to complicate matters, they even invent new words. 

There are good reasons for this specialized use of language, which will become evi¬ 

dent later. For now, suffice it to say that we must understand and learn the language 

of social scientists. When investigators tell us about their independent and depen¬ 

dent variables, we must know what they mean. When they tell us that they have ran¬ 

domized their experimental procedures, we must not only know what they mean— 

we must understand why they do as they do. 

3 



4 Part One ■ The Language and Approach of Science 

Similarly, the scientist’s approach to problems must be clearly understood. It is 

not so much that this approach is different from the layperson’s. It is different, of 

course, but it is neither strange nor esoteric. This is quite the contrary. When under¬ 

stood, it will seem natural and almost inevitable what the scientist does. Indeed, we 

will probably wonder why much more human thinking and problem-solving are not 

consciously structured along such lines. 

The purpose of chapters 1 and 2 of this book is to help the student learn and un¬ 

derstand the language and approach of science and research. In these chapters many 

of the basic constructs of the social, behavioral, and educational scientist will be stud¬ 

ied. In some cases it will not be possible to give complete and satisfactory definitions 

due to lack of background at this early point in the reader’s development. In such 

cases an attempt will be made to formulate and use reasonably accurate first approxi¬ 

mations and to progress to more satisfactory definitions. Let us begin our study by 

considering how the scientist approaches problems and how this approach differs 

from what might be called a common-sense approach. 

Science and Common Sense 

Whitehead (1911/1992, p. 157) at the beginning of the twentieth century pointed 

out that in creative thought common sense is a poor master. “Its sole criterion for 

judgment is that the new ideas shall look like the old ones.” This is well said. Com¬ 

mon sense may often be a bad master for the evaluation of knowledge. But how are 

science and common sense alike and how are they different? From one viewpoint, 

science and common sense are alike. This view would say that science is a systematic 

and controlled extension of common sense. James Bryant Conant (1951) states that 

common sense is a series of concepts and conceptual schemes1 satisfactory for the 

practical uses of humanity. However, these concepts and conceptual schemes may be 

seriously misleading in modern science —and particularly in psychology and educa¬ 

tion. To many educators in the 1800s, it was common sense to use punishment as a 

basic tool of pedagogy. However, in the mid-1900s evidence emerged to show that 

this older commonsense view of motivation may be quite erroneous. Reward appears 

to be more effective than punishment in aiding learning. However, recent findings 

suggest that different forms of punishment are useful in classroom learning (Marlow, 

et ah, 1997; Tingstrom, et ah, 1997). Science and common sense differ sharply in five 

ways. These disagreements revolve around the words systematic and controlled. 

1 A concept is a word that expresses an abstraction formed by generalization from particulars “Ag¬ 
gression” is a concept, an abstraction that expresses a number of particular actions having the similar 
characteristic of harming people or objects. A conceptual scheme is a set of concepts interrelated by 
hypothetical and theoretical propositions. A construct is a concept with the additional meaning of 
having been created or appropriated for special scientific purposes. “Mass,” “energy,” “hostility” 
“introversion,” and “achievement” are constructs. They might more accurately be’called “con¬ 
structed types” or “constructed classes”; classes or sets of objects or events bound together by the 
possession of common characteristics defined by the scientist. The term “variable” will be defined in 
a later chapter. For now let it represent a symbol or name of a characteristic that takes on different 
numerical values. 
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First, the uses of conceptual schemes and theoretical structures are strikingly dif¬ 

ferent. The common person may use “theories” and concepts, but usually does so in 

a loose fashion. This person often blandly accepts fanciful explanations of natural 

and human phenomena. An illness, for instance, may be thought to be a punishment 

for sinfulness (Klonoff & Landrine, 1994). Jolliness is due to being overweight. Sci¬ 

entists, on the other hand, systematically build theoretical structures, test them for 

internal consistency, and put aspects of them to empirical test. Further, they realize 

that the concepts they use are man-made terms that may or may not exhibit a close 

relationship to reality. 

Second, scientists systematically and empirically test their theories and hypothe¬ 

ses. Non-scientists test “hypotheses,” too, but they test them in a selective fashion. 

They often “select” evidence simply because it is consistent with the hypotheses. 

Take the stereotype: Asians are science and math oriented. If people believe this, they 

can easily “verify” their beliefs by noting that many Asians are engineers and scien¬ 

tists (see Tang, 1993). Exceptions to the stereotype are not perceived: the non-sci¬ 

ence Asian or the mathematically challenged Asian. Sophisticated social and behav¬ 

ioral scientists knowing this “selection tendency” to be a common psychological 

phenomenon, carefully guard their research against their own preconceptions and 

predilections and against selective support of hypotheses. For one thing, they are not 

content with armchair or fiat exploration of relations; they must test the relations in 

the laboratory or in the field. They are not content, for example, with the presumed 

relationships between methods of teaching and achievement, between intelligence 

and creativity, between values and administrative decisions. They insist on system¬ 

atic, controlled, and empirical testing of these relations. 

A third difference lies in the notion of control. In scientific research, control 

means several things. For the present, let it mean that the scientist tries to systemati¬ 

cally rule out variables that are possible “causes” of the effects under study other than 

the variables hypothesized to be the “causes.” Laypeople seldom bother to control 

their explanations of observed phenomena systematically. They ordinarily make little 

effort to control extraneous sources of influence. They tend to accept those explana¬ 

tions that are in accord with their preconceptions and biases. If they believe that 

slum conditions produce delinquency, they tend to disregard delinquency in nonslum 

neighborhoods. The scientist, on the other hand, seeks out and “controls” delin¬ 

quency incidence in different kinds of neighborhoods. The difference, of course, is 

profound. 
Another difference between science and common sense is perhaps not so de¬ 

fined. It was said earlier that the scientist is constantly preoccupied with relationships 

among phenomena. The layperson also does this by using common sense for expla¬ 

nations of phenomena. But the scientist consciously and systematically pursues rela¬ 

tionships. The layperson’s preoccupation with relationships is loose, unsystematic, 

and uncontrolled. The layperson often seizes, for example, on the fortuitous occur¬ 

rence of two phenomena and immediately links them indissolubly as cause and effect. 

Take the relation tested in the classic study done many years ago by Hurlock 

(1925). In more recent terminology, this relation may be expressed: Positive rein¬ 

forcement (reward) produces greater increments of learning than does punishment. 

The relation is between reinforcement (or reward and punishment) and learning. 
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Educators and parents of the nineteenth century often assumed that punishment was 

the more effective agent in learning. Educators and parents of the present often as¬ 

sume that positive reinforcement (reward) is more effective. Both may say that their 

viewpoint is “only common sense.” It is obvious, they may say, that if you reward (or 

punish) a child, he or she will learn better. The scientist, on the other hand, while 

personally espousing one or the other or neither of these viewpoints, would probably 

insist on systematic and controlled testing of both (and other) relationships, as Hur- 

lock did. Using the scientific method, Elurlock found incentive to be substantially re¬ 

lated to arithmetic achievement. The group receiving praise scored higher than the 

reproofed or ignored groups. 

A final difference between common sense and science lies in different explana¬ 

tions of observed phenomena. The scientist, when attempting to explain the relations 

among observed phenomena, carefully rules out what have been called “metaphysical 

explanations.” A metaphysical explanation is simply a proposition that cannot be 

tested. To say, for example, that people are poor and starving because God wills it, or 

that it is wrong to be authoritarian, is to talk metaphysically. 

None of these propositions can be tested; thus they are metaphysical. As such, 

science is not concerned with them. This does not mean that scientists would neces¬ 

sarily spurn such statements, say they are not true, or claim they are meaningless. It 

simply means that as scientists they are not concerned with them. In short, science is 

concerned with things that can be publicly observed and tested. If propositions or 

questions do not contain implications for such public observation and testing, they 
are not scientific propositions or questions. 

Four Methods of Knowing 

Charles Sanders Peirce as reported in Buchler (1955) said that there are four general 

ways of knowing or, as he put it, fixing belief. In the ensuing discussion, the authors 

are taking some liberties with Peirce’s original formulation in an attempt to clarify 

the ideas and to make them more germane to the present discussion. The first is the 

method of tenacity. Here people hold firmly to the truth, the truth that they know to 

be true because they hold firmly to it, because they have always known it to be true. 

Frequent repetition of such “truths” seems to enhance their validity. People often 

cling to their beliefs in the face of clearly conflicting facts. And they will also infer 
“new” knowledge from propositions that may be false. 

A second method of knowing or fixing belief is the method of authority. This is the 

method of established belief. If the Bible says it, it is so. If a noted physicist says there 

is a God, it is so. If an idea has the weight of tradition and public sanction behind it, 

it is so. As Peirce points out, this method is superior to the method of tenacity be¬ 

cause human progress, although slow, can be achieved using this method. Actually, 

life could not go on without the method of authority. Dawes (1994) states that as in¬ 

dividuals, we cannot know everything. We accept the authority of the U.S. Food and 

Drug Administration in determining that what we eat and drink is safe. Dawes states 

that the completely open mind that questions all authority does not exist. We must 
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take a large body of facts and information on the basis of authority. Thus, it should 

not be concluded that the method of authority is unsound; it is unsound only under 

certain circumstances. 

The a priori method is the third way of knowing or fixing belief. Graziano and 

Raulin (1993) call it the method of intuition. It rests its case for superiority on the as¬ 

sumption that the propositions accepted by the “a priorist” are self-evident. Note 

that a priori propositions “agree with reason” and not necessarily with experience. 

The idea seems to be that people, through free communication and intercourse, can 

reach the truth because their natural inclinations tend toward truth. The difficulty 

with this position lies in the expression “agree with reason.” Whose reason? Suppose 

two honest and well-meaning individuals, using rational processes, reach different 

conclusions. Who is right? Is it a matter of taste, as Peirce puts it? If something is 

self-evident to many people—for instance, that learning difficult subjects trains the 

mind and builds moral character, that American education is inferior to Asian and 

European education — does this mean it is so? According to the a priori method, it 

does — it just “stands to reason.” 

The fourth method is the method of science. Peirce says: 

To satisfy our doubts, . . . therefore, it is necessary that a method should be 

found by which our beliefs may be determined by nothing human, but by some 

external permanency—by something upon which our thinking has no effect. . . . 

The method must be such that the ultimate conclusion of every man shall be the 

same. Such is the method of science. Its fundamental hypothesis ... is this: 

“There are real things, whose characters are entirely independent of our opin¬ 

ions about them . . .” (Buchler, 1955, p. 18). 

The scientific approach has a characteristic that no other method of attaining 

knowledge has: self-correction. There are built-in checks all along the way to scien¬ 

tific knowledge. These checks are so conceived and used that they control and verify 

scientific activities and conclusions to the end of attaining dependable knowledge. 

Even if a hypothesis seems to be supported in an experiment, the scientist will test al¬ 

ternative plausible hypotheses that, if also supported, may cast doubt on the first hy¬ 

pothesis. Scientists do not accept statements as true, even though evidence may at first 

look promising. They insist on testing them. They also insist that any testing proce¬ 

dure be open to public scrutiny. One interpretation of scientific method is that there is 

no one specific scientific method. Rather, there are a number of methods that scien¬ 

tists can and do use, but it probably can be said that there is one scientific approach. 

As Peirce says, the checks used in scientific research are anchored as much as 

possible in reality lying outside the scientist’s personal beliefs, perceptions, biases, 

values, attitudes, and emotions. Perhaps the best single word to express this is objec¬ 

tivity. Objectivity is agreement among “expert” judges on what is observed or what is 

to be done or has been done in research (see Kerlinger, 1979 for a discussion of ob¬ 

jectivity, its meaning and its controversial character). According to Sampson (1991, p. 

12) objectivity “refers to those statements about the world that we currently can jus¬ 

tify and defend using the standards of argument and proof employed within the 
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community to which we belong—for example, the community of scientists.” But, as 

we shall see later, the scientific approach involves more than both of these state¬ 

ments. The point is that more dependable knowledge is attained because science ulti¬ 

mately appeals to evidence: propositions are subjected to empirical testing. An objec¬ 

tion may be raised: Theory, which scientists use and exalt, comes from people, the 

scientists themselves. But, as Polanyi (1958/1974, p. 4) points out, “A theory is some¬ 

thing other than myself.” Thus a theory helps the scientist to attain greater objectiv¬ 

ity. In short, scientists systematically and consciously use the self-corrective aspect of 

the scientific approach. 

Science and Its Functions 

What is science? This question is not easy to answer. Indeed, no definition of science 

will be directly attempted. We shall instead talk about notions and views of science 

and then try to explain the functions of science. 

Science is a misunderstood word. There seem to be three popular stereotypes that 

impede understanding of scientific activity. One is the white coat-stethoscope-labo¬ 

ratory stereotype. Scientists are perceived as individuals who work with facts in labo¬ 

ratories. They use complicated equipment, do innumerable experiments, and pile up 

facts for the ultimate purpose of improving the lot of humanity. Thus, while some¬ 

what unimaginative grubbers after facts, they are redeemed by noble motives. You 

can believe them when, for example, they tell you that such-and-such toothpaste is 

good for you or that you, should not smoke cigarettes. 

The second stereotype of scientists is that they are brilliant individuals who 

think, spin complex theories, and spend their time in ivory towers aloof from the 

world and its problems. They are impractical theorists, even though their thinking 

and theories occasionally lead to results of practical significance, like atomic energy. 

The third stereotype erroneously equates science with engineering and technol¬ 

ogy: the building of bridges, the improvement of automobiles and missiles, the au¬ 

tomation of industry, the invention of teaching machines. The scientist’s job, in this 

stereotype, is to work at the improvement of inventions and artifacts. The scientist is 

perceived to be some sort of highly skilled engineer working to make life smooth and 

efficient. 

These stereotypical notions impede student understanding of science, the activi¬ 

ties and thinking of the scientist, and scientific research in general. In short, they 

make the student’s task harder than it would otherwise be. Thus they should be 

cleared away to make room for more adequate notions. 

There are two broad views of science: the static and the dynamic. According to 

Conant (1951, pp. 23-27) the static view, the view that seems to influence most 

laypeople and students, is that science is an activity that contributes systematized in¬ 

formation to the world. The scientist’s job is to discover new facts and to add them to 

the already existing body of information. Science is even conceived to be a body 

of facts. In this view, science is also a way of explaining observed phenomena. The 
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emphasis, then, is on the present state of knowledge and adding to it and on the present 
set of laws, theories, hypotheses, and principles. 

The dynamic view, on the other hand, regards science more as an activity, what 

scientists do. The present state of knowledge is important, of course. But it is impor¬ 

tant mainly because it is a base for further scientific theory and research. This has 

been called a heuristic view. The word heuristic, meaning “serving to discover or re¬ 

veal,” now has the connotation of self-discovery. A heuristic method of teaching, for 

instance, emphasizes students’ discovering things for themselves. The heuristic view 

in science emphasizes theory and interconnected conceptual schemata that are fruit¬ 

ful for further research. A heuristic emphasis is a discovery emphasis. 

It is the heuristic aspect of science that distinguishes it in good part from engi¬ 

neering and technology. On the basis of a heuristic hunch, the scientist takes a risky 

leap. As Polanyi (1958/1974, p. 123) says, “It is the plunge by which we gain a 

foothold at another shore of reality. On such plunges the scientist has to stake bit by 

bit his entire professional life.” Michel (1991, p. 23) adds “anyone who fears being 

mistaken and for this reason studies a ‘safe’ or ‘certain’ scientific method, should 

never enter upon any scientific enquiry.” Heuristic may also be called problem-solv¬ 

ing, but the emphasis is on imaginative and not routine problem-solving. The 

heuristic view in science stresses problem-solving rather than facts and bodies of in¬ 

formation. Alleged established facts and bodies of information are important to the 

heuristic scientist because they help lead to further theory, further discovery, and fur¬ 
ther investigation. 

Still avoiding a direct definition of science — but certainly implying one—we 

now look at the function of science. Here we find two distinct views. The practical 

person, generally the non-scientist, thinks of science as a discipline or activity aimed 

at improving things, at making progress. Some scientists, too, take this position. The 

function of science, in this view is to make discoveries, to learn facts, to advance 

knowledge in order to improve things. Branches of science that are clearly of this 

genre receive wide and strong support. Witness the continuing generous support of 

medical and meteorological research. The criteria of practicality and “payoff” are 

preeminent in this view, especially in educational research (see Kerlinger, 1977; 

Bruno, 1972). 

A very different view of the function of science is well expressed by Braithwaite 

(1953/1996, p. 1): 

The function of science ... is to establish general laws covering the behaviors of 

the empirical events or objects with which the science in question is concerned, 

and thereby to enable us to connect together our knowledge of the separately 

known events, and to make reliable predictions of events as yet unknown. 

The connection between this view of the function of science and the 

dynamic-heuristic view discussed earlier is obvious, except that an important ele¬ 

ment is added: the establishment of general laws — or theory, if you will. If we are to 

understand modern behavioral research and its strengths and weaknesses, we must 
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[H Table 1.1 Sampson's Two Views of the Science of Social Psychology 

Traditional 

(Quantatative) 

Nontraditional 

(Sociohistorical) 

(Quantatative) 

Primary Goal Describing the reality of 

human social interactions and 

functions. 

Describing the variety of 

human social experience 

and activity through social 

and historical information 

and the roles they play in 

human life. 

Philosophical Position Reality can be discovered 

independently by 

nonpositioned observers. 

Reality can be grasped 

without occupying any 

particular biasing standpoint. 

Reality can be discovered 

only from some standpoint; 

thus, the observer is always 

a positioned observer. 

Metaphoric Statement Science can be perceived to 

be like a mirror. It is designed 

to reflect things as they 

really are. 

Science is perceived to be a 

storyteller. It gives different 

or personal accounts and 

versions of reality. 

Methodological 

Considerations 

Methods created and used to 

control or eliminate factors 

that would weaken the 

researcher’s ability to 

discover the true shape 

of reality. 

The researcher’s 

understanding of reality is 

shaped by broad social and 

historical factors. The 

methods can yield a richer 

and deeper understanding 

of reality based on 

encountering the diverse 

accounts used by people 

in making sense of their 

lives. 

explore the elements of Braithwaite’s statement. We do so by considering the aims of 

science, scientific explanation, and the role and importance of theory. 

Sampson (1991) discusses two opposing views of science. There is the conven¬ 

tional or traditional perspective and then there is the sociohistorical perspective. The 

conventional view perceives science as a mirror of nature or a windowpane of clear 

glass that presents nature without bias or distortion. The goal here is to describe 

with the highest degree of accuracy what the world really looks like. Here Sampson 

states that science is an objective referee. Its job is to “resolve disagreements and dis- 



CHAPTER 1 ■ Science and the Scientific Approach 11 

tinguish what is true and correct from what is not.” When the conventional view of 

science is unable to resolve the dispute, it only means that there is insufficient data or 

information to do so. Conventionalists, however, feel it is only a matter of time be¬ 
fore the truth is apparent. 

The sociohistorical view sees science as a story. The scientists are storytellers. 

Here the idea is that reality can only be discovered by the stories that can be told 

about it. Here, this approach is unlike the traditional-conventional view in that 

there is no neutral arbitrator. Every story will be flavored by the storyteller’s orien¬ 

tation. As a result there is no single true story. The author’s interpretation of 

Sampson’s table comparing these two is shown in Table 1.1. 

Even though Sampson gives these two views of science in light of social psychol¬ 

ogy, his presentation has applicability in all areas of the behavioral sciences. 

Th e Aims of Science, Scientific Explanation, 
and Theory 

The basic aim of science is theory. Perhaps less cryptically, the basic aim of science is 

to explain natural phenomena. Such explanations are called “theories.” Instead of 

trying to explain each and every separate behavior of children, the scientific psychol¬ 

ogist seeks general explanations that encompass and link together many differing be¬ 

haviors. Rather than try to explain children’s methods of solving arithmetic prob¬ 

lems, for example, the scientist seeks general explanations of all kinds of 

problem-solving. It might be called a general theory of problem-solving. 

This discussion of the basic aim of science as theory may seem strange to the stu¬ 

dent who has probably been inculcated with the notion that human activities have to 

pay off in practical ways. If we said that the aim of science is the betterment of hu¬ 

manity, most readers would quickly read the words and accept them. But the basic aim 

of science is not the betterment of humanity. It is theory. Unfortunately, this sweeping 

and really complex statement is not easily understood. Still, we must try to grasp it 

because it is important. More on this point is given in Chapter 16 of Kerlinger (1979). 

Other aims of science that have been stated are: explanation, understanding, pre¬ 

diction, and control. If we accept theory as the ultimate aim of science, however, ex¬ 

planation and understanding become subaims of the ultimate aim. This is because of 

the definition and nature of theory: A theory is a set of interrelated constructs (concepts), 

definitions, and propositions that present a systematic view of phenomena by specifying rela¬ 

tions among variables, with the purpose of explaining and predicting the phenomena. 

This definition says three things: (1) a theory is a set of propositions consisting 

of defined and interrelated constructs, (2) a theory sets out the interrelations among 

a set of variables (constructs), and in so doing, presents a systematic view of the phe¬ 

nomena described by the variables, and (3) a theory explains phenomena; it does so 

by specifying which variables are related to which variables and how they are related, 

thus enabling the researcher to predict from certain variables to certain other vari¬ 

ables. One might, for example, have a theory of school failure. One’s variables might 

be intelligence, verbal and numerical aptitudes, anxiety, social class membership, 
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nutrition, and achievement motivation. The phenomenon to be explained, of course, 

is school failure or, perhaps more accurately, school achievement. That is, school fail¬ 

ure could be perceived as being at one end of the school achievement continuum 

with school success being at the other end. School failure is explained by specified re¬ 

lations between each of the seven variables and school failure, or by combinations of 

the seven variables and school failure. The scientist, successfully using this set of 

constructs, then “understands” school failure. He or she is able to “explain” and, to 

some extent at least, “predict” it. 

It is obvious that explanation and prediction can be subsumed under theory. The 

very nature of a theory lies in its explanation of observed phenomena. Take rein¬ 

forcement theory, for example. A simple proposition flowing from this theory is: If a 

response is rewarded (reinforced) when it occurs, it will tend to be repeated. The 

psychological scientist who first formulated some such proposition did so as an expla¬ 

nation of the observed repetitious occurrences of responses. Why did they occur and 

reoccur with dependable regularity? Because they were rewarded. Although this is an 

explanation, it may not be a satisfactory explanation to many people. Someone else 

may ask why reward increases the likelihood of a response’s occurrence. A full-blown 

theory would have the explanation. Today, however, there is no really satisfactory an¬ 

swer. All we can say is that, with a high degree of probability, the reinforcement of a 

response makes the response more likely to occur and reoccur (see Nisbett & Ross, 

1980). In other words, the propositions of a theory, the statements of relations, con¬ 

stitute the explanation, as far as that theory is concerned, of observed natural phe¬ 

nomena. 

On prediction and control, it can be said that scientists do not really have to be 

concerned with explanation and understanding. Only prediction and control are nec¬ 

essary. Proponents of this point of view may say that the adequacy of a theory is its 

predictive power. If by using the theory we are able to predict successfully, then the 

theory is confirmed and this is enough. We need not necessarily look for farther un¬ 

derlying explanations. Since we can predict reliably, we can control because control is 
deducible from prediction. 

The prediction view of science has validity. But as far as this book is concerned, 

prediction is considered to be an aspect of theory. By its very nature, a theory pre¬ 

dicts; that is, when from the primitive propositions of a theory we deduce more com¬ 

plex ones, we are in essence “predicting.” When we explain observed phenomena, 

we are always stating a relation between, say, class A and class B. Scientific explana¬ 

tion inheres in specifying the relations between one class of empirical events and an¬ 

other, under certain conditions. We say: If A, then B, A and B referring to classes of 

objects or events.2 But this is prediction, prediction from A to B. Thus a theoretical 

explanation implies prediction. And we come back to the idea that theory is the ulti¬ 
mate aim of science. All else flows from theory. 

■ Statements of the form “If p, then q,” called conditional statements in logic, are the core of scientific 

inquiry. 1 hey and the concepts or variables that go into them are the central ingredient of theories. 

The logical foundation of scientific inquiry that underlies much of the reasoning in this book is out¬ 
lined in Kerlinger (1977). 
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There is no intention here to discredit or denigrate research that is not specifi¬ 

cally and consciously theory-oriented. Much valuable social scientific and educational 

research is preoccupied with the shorter-range goal of finding specific relations; that 

is, merely to discover a relation is part of science. The ultimately most usable and 

satisfying relations, however, are those that are the most generalized, those that are 
tied to other relations in a theory. 

The notion of generality is important. Theories, because they are general, apply 

to many phenomena and to many people in many places. A specific relation, of 

course, is less widely applicable. If, for example, one finds that test anxiety is related 

to test performance. This finding, though interesting and important, is less widely 

applicable and less understood than finding a relation in a network of interrelated 

variables that are parts of a theory. Modest, limited, and specific research aims, then, 

are good. Theoretical research aims are better because, among other reasons, they 

are more general and can be applied to a wide range of situations. Additionally, when 

both a simple and a complex theory exist and both account for the facts equally well, 

the simple explanation is preferred (Occam’s Razor). Hence, in the discussion of gen- 

eralizability, a good theory is also parsimonious. However, a number of incorrect 

theories concerning mental illness persist because of this parsimony feature. Some 

still believe that individuals are possessed with demons. Such an explanation is simple 

when compared to psychological and/or medical explanations. 

Theories are tentative explanations. Each theory is evaluated empirically to 

determine how well it predicts new findings. Theories can be used to guide a re¬ 

search plan by generating testable hypotheses and to organize facts obtained from 

the testing of these hypotheses. A good theory is one that cannot fit all observa¬ 

tions. One should be able to find an occurrence that would contradict it. Blond- 

lot’s theory of N-rays is an example of a poor theory. Blondlot claimed that all 

matter emitted N-rays (Weber, 1973). Although N-rays were later demonstrated 

to be nonexistent, Barber (1976) reported that nearly 100 papers were published 

in a single year on N-rays in France. Blondlot even developed elaborate equip¬ 

ment for the viewing of N-rays. Scientists claiming they saw N-rays only added 

support to Blondlot’s theory and findings. However, when a person did not see 

N-rays, Blondlot claimed that the person’s eyes were not sensitive enough or the 

person did not set up the instrument correctly. No possible outcome was taken as 

evidence against the theory. In more recent times, another faulty theory that took 

over 75 years to debunk concerned the origin of peptic ulcers. In 1910 Schwartz 

(as reported in Blaser, 1996) claimed that he had firmly established the cause of 

ulcers. He stated that peptic ulcers were due to stomach acids. In the years that 

followed, medical researchers devoted their time and energies toward treating ul¬ 

cers by developing medications to either neutralize or block the acids. These 

treatments were never totally successful and were expensive. However, in 1985, 

J. Robin Warren and Barry Marshall (as reported in Blaser, 1996) discovered that 

the helioc bacter pylori was the real cause of stomach ulcers. Almost all cases of 

this type of ulcer were successfully treated with antibiotics, and for a considerably 

lower cost. For seventy-five years no possible outcome was taken as evidence 

against this stress-acid theory of ulcers. 
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Scientific Research: A Definition 

It is easier to define scientific research than it is to define science. It would not be 

easy, however, to get scientists and researchers to agree on such a definition. Even so, 

we attempt one here: Scientific research is systematic, controlled, empirical, amoral, public, 

and critical investigation of natural phenomena. It is guided by theory and hypotheses about 

the presumed relations among such phenomena. This definition requires little explanation 

since it consists mostly of a condensed and formalized statement of much that was 

said earlier or that will soon be said. Two points need emphasis, however. 

First, when we say that scientific research is systematic and controlled, we mean, 

in effect, that scientific investigation is so ordered that investigators can have critical 

confidence in research outcomes. As we shall see later, scientific research observa¬ 

tions are tightly disciplined. Moreover, among the many alternative explanations of a 

phenomenon, all but one are systematically ruled out. One can thus have greater 

confidence that a tested relation is as it is than if one had not controlled the observa¬ 

tions and ruled out alternative possibilities. In some instances a cause-and-effect rela¬ 

tionship can be established. 

Second, scientific investigation is empirical. If the scientist believes something is 

so, that belief must somehow or other be put to an outside independent test. Subjec¬ 

tive belief, in other words, must be checked against objective reality. Scientists must 

always subject their notions to the court of empirical inquiry and test. Scientists are 

hypercritical of the results of their own and others’ research. Every scientist writing a 

research report has other scientists reading what is being written while he or she 

writes it. Though it is easy to err, to exaggerate, to overgeneralize, when writing up 

one’s own work, it is not easy to escape the feeling of scientific eyes constantly peer¬ 

ing over one’s shoulder. 

In science there is peer review. This means that others of equal training and 

knowledge are called upon to evaluate another scientist’s work before it is published 

in scientific journals. There are both positive and negative points concerning this. It 

is through peer review that fraudulent studies have been exposed. The essay written 

by R. W. Wood (1973) on his experiences with Professor Blondlot of France con¬ 

cerning the nonexistence of N-rays gives a clear demonstration of peer review. Peer 

review works well for science and promotes quality research. The system, however, is 

not perfect. There are occasions when peer review has worked against science. This 

is documented throughout history with people such as Kepler, Galileo, Copernicus, 

Jenner, and Semelweiss. The ideas of these individuals were not popular with their 

peers. More recently in psychology, the works of John Garcia on the biological con¬ 

straints on learning went contrary to his peers. Garcia managed to publish his find¬ 

ings in a journal (Bulletin of the Psychonomic Society) that did not have peer review. 

Others who read Garcia’s work and replicated it found Garcia’s work to be valuable. 

In the large majority of cases, peer review of science is beneficial. 

Third, knowledge obtained scientifically is not subject to moral evaluation. The 

results are neither considered “bad” nor “good,” but in terms of validity and reliabil¬ 

ity. The scientific method is, however, subject to issues of morality; that is, scientists 

are held responsible for the methods used in obtaining scientific knowledge. In 
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psychology, codes of ethics are enforced to protect those under study. Science is a co¬ 

operative venture. Scientific information is available to all, and the scientific method 

is well-known and available to all who choose to use it. 

The Scientific Approach 

The scientific approach is a special systematized form of all-reflective thinking and 

inquiry. Dewey (1933/1991), in his influential How We Think, outlined a general par¬ 

adigm of inquiry. The present discussion of the scientific approach is based largely 

on Dewey’s analysis. 

Problem — Obstacle — Idea 

Scientists may experience obstacles to understanding, a vague unrest about observed 

and unobserved phenomena, a curiosity as to why something is as it is. The first and 

most important step is to get the idea out in the open, to express the problem in 

some reasonably manageable form. Rarely or never will the problem spring full¬ 

blown at this stage. The scientist must struggle with it, try it out, and live with it. 

Dewey (1933/1991, p. 108) says, “There is a troubled, perplexed, trying situation, 

where the difficulty is, as it were, spread throughout the entire situation, infecting it 

as a whole.” Sooner or later, explicitly or implicitly, the scientist states the problem, 

even if the expression of it is inchoate and tentative. Here the scientist intellectual- 

izes, as Dewey (p. 109) puts it, “what at first is merely an emotional quality of the 

whole situation.” (Italics added.) In some respects, this is the most difficult and im¬ 

portant part of the whole process. Without some sort of statement of the problem, 

the scientist can rarely go further and expect the work to be fruitful. With some re¬ 

searchers, the idea may come from speaking to a colleague or observing a curious 

phenomenon. The idea here is that the problem usually begins with vague and/or 

unscientific thoughts or unsystematic hunches. It then goes through a series of re¬ 

finement steps. 

Hyp o thesis 

After intellectualizing the problem, referring to past experiences for possible solu¬ 

tions, observing relevant phenomena, the scientist may formulate a hypothesis. A hy¬ 

pothesis is a conjectural statement, a tentative proposition about the relation between 

two or more phenomena or variables. Our scientist will say, “If such-and-such oc¬ 

curs, then so-and-so results.” 

Reasoning — Deduction 

This step or activity is frequently overlooked or underemphasized. It is perhaps the 

most important part of Dewey’s analysis of reflective thinking. The scientist deduces 



16 Part One * The Language and Approach of Science 

the consequences of the hypothesis he or she has formulated. Conant (1951), in talk¬ 

ing about the rise of modern science, says that the new element added in the seven¬ 

teenth century was the use of deductive reasoning. Here is where experience, knowl¬ 

edge, and perspicacity are important. 

Often the scientist, when deducing the consequences of a formulated hypothesis, 

will arrive at a problem quite different from the original one. On the other hand, de¬ 

ductions may lead to the belief that the problem cannot be solved with present tech¬ 

nical tools. For example, before modern statistics were developed, certain behavioral 

research problems were insoluble. It was difficult, if not impossible, to test two or 

three interdependent hypotheses simultaneously. It was next to impossible to test the 

interactive effect of variables. We now have reason to believe that certain problems 

are insoluble unless they are tackled in a multivariate manner. An example of this is 

teaching methods and their relationship to achievement and other variables. It is 

likely that teaching methods, per se, do not differ much if we study only their simple 

effects. Teaching methods work differently under different conditions, with different 

teachers, and with different pupils. It is said that the methods “interact” with the 

conditions and characteristics of teachers and of pupils. Simon (1987) stated another 

example of this: A research study on pilot training proposed by Williams and Adel- 

son in 1954 could not be carried out using traditional experimental research meth¬ 

ods. The study proposed to examine thirty-four variables and their influence on pilot 

training. Using traditional research methods, the number of variables under study 

was too overwhelming. Over twenty years later, Simon (1976) and Simon and Roscoe 

(1984) deomonstrated how such studies could be effectively undertaken using eco¬ 

nomical megafactor designs. An example may help us understand this reasoning- 
deduction step. 

Suppose an investigator becomes intrigued with aggressive behavior. The inves¬ 

tigator wonders why people are often aggressive in situations where aggressiveness 

may be inappropriate. Personal observation leads to the notion that aggressive be¬ 

havior seems to occur when people have experienced difficulties of one kind or an¬ 

other. (Note the vagueness of the problem here.) After thinking for some time, read¬ 

ing the literature for clues, and making further observations, the hypothesis is 

formulated: Frustration leads to aggression. Frustration is defined as prevention from 

reaching a goal and aggression as behavior characterized by physical or verbal attack 
on other persons or objects. 

What follows from this is a statement like: If frustration leads to aggression, then 

we should find a great deal of aggression among children who are in schools that are 

restrictive, schools that do not permit children much freedom and self-expression. 

Similarly, in difficult social situations assuming such situations are frustrating, we 

should expect more aggression than is “usual.” Reasoning further, if we give experi¬ 

mental subjects interesting problems to solve and then prevent them from solving 

them, we can predict some kind of aggressive behavior. In a nutshell, this process of 

moving from a broader picture to a more specific one is called deductive reasoning. 

Reasoning may, as indicated above, change the problem. We may realize that the 

initial problem was only a special case of a broader, more fundamental and important 

problem. We may, for example, start with a narrower hypothesis: Restrictive school 
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situations lead to negativism in children. Then we can generalize the problem to the 

form: Frustration leads to aggression. While this is a different form of thinking from 

that discussed earlier, it is important because of what could almost be called its 

heuristic quality. Reasoning can help lead to wider, more basic, and thus more signif¬ 

icant problems, as well as provide operational (testable) implications of the original 

hypothesis. This type of reasoning is called inductive reasoning. It starts from particu¬ 

lar facts and moves to a general statement or hypothesis. If one is not careful, this 

method could lead to faulty reasoning due to the method’s natural tendency to ex¬ 

clude data that do not fit the hypothesis. The inductive reasoning method is inclined 

to look for supporting data rather than refuting evidence. 

Consider the classical study by Peter Wason (Wason & Johnson-Laird, 1972) 

that has been a topic of much interest (Hoch, 1986; Klayman & Ha, 1987). In this 

study, students were asked to discover a rule the experimenter had in mind that gen¬ 

erated a sequence of numbers. One example was to generate a rule for the following 

sequence of numbers: “3, 5, 7.” Students were told that they could ask about other 

sequences and would receive feedback on each sequence proposed as to whether it fit 

or did not fit the rule the experimenter had in mind. When the students felt confi¬ 

dent, they could put forth the rule. Some students offered “9, 11, 13,” and were told 

that this sequence fit the rule. They then followed with “15, 17, 19,” and again were 

told that this sequence fit. The students then offered as their answer: “The rule is 

three consecutive odd numbers,” but were told that this was not the rule. Others that 

would be offered after some more proposed sequences are “increasing numbers in in¬ 

crements of two,” or “odd numbers in increments of two.” In each of these, they are 

told that it is not the rule that the experimenter was thinking of. The actual rule in 

mind was “any three increasing positive numbers.” Had the students proposed the 

sequences “8, 9, 10” or “1, 15, 4500” they would have been told that these also fit the 

rule. Where the students made their error was in testing only the cases that fitted 

their first proposed sequence that confirmed their hypothesis. 

Although oversimplified, the Wason study demonstrated what could happen in 

actual scientific investigations. A scientist could easily be locked into repeating the 

same type of experiment that always supported the hypothesis. 

Observation — Test — Experiment 

It should be clear by now that the observation-test-experiment phase is only part of 

the scientific enterprise. If the problem has been well stated, the hypothesis or hy¬ 

potheses adequately formulated, and the implications of the hypotheses carefully de¬ 

duced, this step is almost automatically assuming that the investigator is technically 

competent. 
The essence of testing a hypothesis is to test the relation expressed by the hy¬ 

pothesis. We do not test variables, as such; we test the relation between the variables. 

Observation, testing, and experimentation are for one large purpose: putting the 

problem relation to empirical test. To test without knowing—at least fairly well — 

what and why one is testing is to blunder. Simply to state a vague problem, like “How 

does Open Education affect learning?” and then to test pupils in schools presumed to 
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differ in “openness”; or to ask: “What are the effects of cognitive dissonance?” and 

then, after experimental manipulations to create dissonance, to search for presumed 

effects, could only lead to questionable information. Similarly, to say one is going to 

study attribution processes without really knowing why one is doing it, or without 

stating relations between variables, is research nonsense. 

Another point about testing hypotheses is that we usually do not test hypotheses 

directly. As indicated in the previous step on reasoning, we test deduced implications 

of hypotheses. Our test hypothesis may be: “Subjects told to suppress unwanted 

thoughts will be more preoccupied with them than subjects who are given a distrac¬ 

tion.” This was deduced from a broader and more general hypothesis: “Greater ef¬ 

forts to suppress an idea leads to greater preoccupation with the idea.” We do not 

test “suppression of ideas” or “preoccupation,” we test the relation between them— 

in this case the relation between suppression of unwanted thoughts and the level of 

preoccupation (see Wegner, Schneider, Carter, & White, 1987; Wegner, 1989). 

Dewey emphasized that the temporal sequence of reflective thinking or inquiry 

is not fixed. We can repeat and reemphasize what he says in our own framework. The 

steps of the scientific approach are not neatly fixed. The first step is not neatly com¬ 

pleted before the second step begins. Further, we may test before adequately deduc¬ 

ing the implications of the hypothesis. The hypothesis itself may seem to need elabo¬ 

ration or refinement as a result of deducing implications from it. Hypotheses and 

their expression will often be found inadequate when implications are deduced from 

them. A frequent difficulty occurs when a hypothesis is so vague that one deduction 

is as good as another; that is, the hypothesis may not yield to precise testing. 

Feedback to the problem, the hypotheses, and, finally, the theory of the results of 

research is highly important. Learning theorists and researchers, for example, have 

frequently altered their theories and research as a result of experimental findings (see 

Malone, 1991; Schunk, 1996; Hergenhahn, 1996). Theorists and researchers have 

been studying the effects of early environment and training on later development. 

Kagan and Zentner (1996) reviewed the results of 70 studies concerned with the rela¬ 

tion between early life experiences and psychopathology in adulthood. They found 

that juvenile delinquency could be predicted by the amount of impulsivity detected at 

preschool age. Lynch, Short and Chua (1995) found that musical processing was in¬ 

fluenced by the perceptual stimulation an infant experienced at age 6 months to 1 

year. These and other research have yielded varied evidence converging on this ex¬ 

tremely important theoretical and practical problem. Part of the essential core of 

scientific research is the constant effort to replicate and check findings, to correct 

theory on the basis of empirical evidence, and to find better explanations of natural 

phenomena. One can even go so far as to say that science has a cyclic aspect. A re¬ 

searcher finds, say, that A is related to B in such-and-such a way. Then more research 

is conducted to determine under what other conditions A is similarly related to B. 

Other researchers challenge this theory and research, offering explanations apd evi¬ 

dence of their own. The original researcher, it is hoped, alters his or her work in the 
light of new data. The process never ends. 

Let us summarize the so-called scientific approach to inquiry. First, there is 

doubt, a barrier, an indeterminate situation crying out to be made determinant. The 
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scientist experiences vague doubts, emotional disturbance, and inchoate ideas. There 

is a struggle to formulate the problem, even if inadequately. The scientist then stud¬ 

ies the literature, scans his or her own experience and the experiences of others. Of¬ 

ten the researcher simply has to wait for an inventive mind leap. Maybe it will occur; 

maybe not. With the problem formulated, with the basic question or questions prop¬ 

erly asked, the rest is much easier. The hypothesis is then constructed, after which its 

empirical implications are deduced. In this process the original problem and, of 

course, the original hypothesis, may be changed. It may be broadened or narrowed. 

It may even be abandoned. Last, but not finally, the relation expressed by the hy¬ 

pothesis is tested by observation and experimentation. On the basis of the research 

evidence, the hypothesis is supported or rejected. This information is then fed back 

to the original problem, and the problem is kept or altered, as dictated by the evi¬ 

dence. Dewey pointed out that one phase of the process may be expanded and be of 

great importance, another may be skimped, and there may be fewer or more steps in¬ 

volved. Research is rarely an orderly business. Indeed, it is much more disorderly 

than the above discussion may imply. Order and disorder, however, are not of pri¬ 

mary importance. What is important is the controlled rationality of scientific re¬ 

search as a process of reflective inquiry, the interdependent nature of the parts of the 

process, and the paramount importance of the problem and its statement. 

Chapter Summary 

1. To understand complex human behavior, one must understand the scientific 

language and approach. 

2. Science is a systematic and controlled extension of common sense. There are 

five differences between science and common sense: 

a. Science uses conceptual schemes and theoretical structures, 

b. Science systematically and empirically tests theories and hypotheses, 

c. Science attempts to control possible extraneous causes, 

d. Science pursues relations consciously and systematically, 

e. Science rules out metaphysical (untestable) explanations. 

3. Peirce’s Four Methods of Knowing 

a. method of tenacity—influenced by established past beliefs; 

b. method of authority—influenced by the weight of tradition or public 

sanction; 

c. a priori method (also known as the method of intuition)—natural 

inclination toward the truth; 

d. method of science — self-correcting; notions are testable and objective. 

4. The stereotype of science has hindered understanding of science by the 

public. 

5. Views, functions of science 

a. Static view sees science contributing scientific information to world; sci¬ 

ence adds to the body of information and present state of knowledge. 
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b. Dynamic view is concerned with the activity of science (what scientists do). 
With this comes the heuristic view of science. This is one of self-discovery. 
Science takes risks and solves problems. 

6. The aims of science are: 
a. develop theory and explain natural phenomenon, 
b. promote understanding and develop predictions. 

7. A theory has three characteristics: 
a. set of properties consisting of defined and interrelated constructs, 
b. systematically sets the interrelations among a set of variables, 
c. explains phenomenon. 

8. Scientific research is a systematic, controlled, empirical, and critical investiga¬ 
tion of natural phenomenon. It is guided by theory and hypotheses about pre¬ 
sumed relations among such phenomenon. It is also public and amoral. 

9. The scientific approach according to Dewey is made up of the following: 
a. Problem-Obstacle-Idea — formulate the research problem or question to 

be solved 
b. Hypothesis — formulate a conjectural statement about the relationship 

between phenomena or variables 
c. Reasoning-Deduction—scientist deduces the consequences of the 

hypothesis. This can lead to a more significant problem and provide ideas 
on how the hypothesis can be tested in observable terms. 

d. Observation-Test-Experiment—This is the data collection and analysis 
phase. The results of the research conducted are related back to the 
problem. 

Study Suggestions 

Some of the content of this chapter is highly controversial. The views expressed are 
accepted by some thinkers and rejected by others. Readers can enhance understand¬ 
ing of science and its purpose, the relationship between science and technology, and 
the differences between basic and applied research, by selective reading of the litera¬ 
ture. Such reading can be the basis for class discussions. Extended treatment of the 
controversial aspects of science, especially behavioral science, is given in the first au¬ 
thor’s book, Behavioral Research: A Conceptual Approach (New York: Holt, Rinehart 
and Winston, 1979, chaps. 1, 15, and 16). Many fine articles on science and research 
have been published in science journals and philosophy of science books. Here are 
some of them. Also included is a special report in Scientific American. All are pertinent 
to this chapter’s substance. 

Barinaga, M. (1993). Philosophy of science: Feminists find gender everywhere in 
science. Science 260: 392-393. Discusses the difficulty of separating cultural views 
of women and science. Talks about science as a predominantly male 
field. . 
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Hausheer, J., & Harris, J. (1994). In search of a brief definition of science. The Physics 

Teacher 32(5): 318. Mentions that any definition of science must include guide¬ 

lines for evaluating theory and hypotheses as either science or nonscience. 

Holton, G. (1996). The controversy over the end of science. Scientific American 

273(10): 191. This article is concerned with the development of two camps of 

thought: the linearists and the cyclists. The linearists take a more conventional 

perspective of science; the cyclists see science as degenerating within itself. 

Horgan, J. (1994). Anti-omniscience: An eclectic gang of thinkers pushes at knowl¬ 

edge’s limits. Scientific American 271: 20-22. Discusses the limits of science. 

Horgan, J. (1997). The end of science. New York: Broadway Books. 

Miller, J. A. (1994). Postmodern attitude toward science. Bioscience 41(6): 395. Dis¬ 

cuses the reasons some educators and scholars in the humanities have adopted a 

hostile attitude toward science. 

Scientific American. Science versus antiscience. (Special report). January 1997, 96-101. 

Presents three different antiscience movements: creationist, feminist, and media. 

Smith, B. (1995). Formal ontology, common sense and cognitive science. Interna¬ 

tional Journal of Human-Computer Studies 43(5-6): 641-667. An article examining 

common sense and cognitive science. 

Timpane, J. (1995). How to convince a reluctant scientist. Scientific American 272: 

104. This article warns that too much originality in science would lead to non- 

acceptance and difficulty of understanding. It also discusses how scientific accep¬ 

tance is governed by both old and new data and the reputation of the scientist. 
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Many people believe that science is basically a fact-gathering activity. It is not. As M. 

R. Cohen (1956/1997, p. 148) says: 

There is ... no genuine progress in scientific insight through the Baconian 

method of accumulating empirical facts without hypotheses or anticipation of 

nature. Without some guiding idea we do not know what facts to gather ... we 

cannot determine what is relevant and what is irrelevant. 

The scientifically uninformed person often has the idea that the scientist is a highly 

objective individual who gathers data without preconceived ideas. Poincare (1952/ 

1996, p. 143) pointed out how wrong this idea is: “It is often said that experiments 

should be made without preconceived ideas. That is impossible. Not only would it 

make every experiment fruitless, but even if we wished to do so, it could not be 

done.” 

23 
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Problems 

It is not always possible for a researcher to formulate the problem simply, clearly, and 

completely. The researcher may often have only a rather general, diffuse, even con¬ 

fused notion of the problem. This is in the nature of the complexity of scientific re¬ 

search. It may even take an investigator years of exploration, thought, and research 

before he or she can state the questions clearly. Nevertheless, adequate statement of 

the research problem is one of the most important parts of research. The difficulty of 

stating a research problem satisfactorily at a given time should not cause one to lose 
sight of the ultimate desirability and necessity of doing so. 

Bearing this difficulty in mind, a fundamental principle can be stated: If one 

wants to solve a problem, one must generally know what the problem is. It can be 

said that a large part of the solution lies in knowing what it is one is trying to do. 

Another part lies in knowing what a problem is and especially what a scientific prob¬ 
lem is. 

What is a good problem statement? Although research problems differ greatly 

and there is no one “right” way to state a problem, certain characteristics of prob¬ 

lems and problem statements can be learned and used to good advantage. To start, let 

us take two or three examples of published research problems and study their charac¬ 

teristics. First, take the problem of the study by Hurlock (1925)1 mentioned in 

Chapter 1: What are the effects on pupil performance of different types of incen¬ 

tives? Note that the problem is stated in question form. Here, the simplest way is the 

best way. Also note that the problem states a relation between variables, in this case 

between the variables incentives and pupil performance (achievement). (Variable will be 

defined formally in Chapter 3. For now, variable is used as the name of a phenome¬ 
non, or a construct, that takes a set of different numerical values.) 

A problem, then, is an interrogative sentence or statement that asks: What rela¬ 

tionship exists between two or more variables? The answer is what is being sought 

in the research. A problem in most cases will have two or more variables. In the 

Hurlock example, the problem statement relates incentive to pupil performance. 

Another problem, studied in an influential experiment by Bahrick (1984, 1992), is as¬ 

sociated with the age-old questions: How much of what you are now studying will 

you remember ten years from now? How much of it will you remember fifty years 

from today? How much will you remember later if you never use it? Formally, 

Bahrick asks: Does semantic memory involve separate processes? One variable is the 

amount of time since the material was first learned, a second would be the quality of 

original learning, and the other variable is remembering (or forgetting). Still another 

problem, by Little, Sterling, and Tingstrom (1996), is quite different: Do geographic 

V 

When citing problems and hypotheses from the literature, we have not always used the authors’ 
words verbatim. In fact, the statements of many of the problems are ours and not diose of the cited 
authors. Some authors use only problem statements; some use only hypotheses; others use both. 
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and racial cues influence attribution (perceived blame)? One variable is geographical 

cues, a second would be racial information, and the third is attribution. 

Not all research problems contain two or more clear variables. For example, in 

experimental psychology, the research focus is often on psychological processes like 

memory and categorization. In her justifiably well-known and influential study of 

perceptual categories, Rosch (1973) in effect asked the question: Are there nonarbi- 

trary (“natural”) categories of color and form? Although the relationship between 

two or more variables is not apparent in this problem statement, in the actual 

research the categories were related to learning. Toward the end of this book we 

will see that factor analytical research problems also lack the relationship form dis¬ 

cussed above. In most behavioral research problems, however, the relations among 

two or more variables are studied, and we will therefore emphasize such relation 

statements. 

riteria of Problems and Problem Statements 

There are three criteria of good problems and problem statements. One, the prob¬ 

lem should express a relation between two or more variables. It asks, in effect, ques¬ 

tions like: Is A related to 5? How are A and B related to C? How is A related to B un¬ 

der conditions C and D? The exceptions to this dictum occur mostly in taxonomic or 

methodological research. 
Two, the problem should be stated clearly and unambiguously in question form. 

Instead of saying, for instance, “The problem is ...” or “The purpose of this study 

is . . . ,” ask a question. Questions have the virtue of posing problems directly. The 

purpose of a study is not necessarily the same as the problem of a study. The purpose 

of the Hurlock study, for instance, was to throw light on the use of incentives in 

school situations. The problem was the question about the relation between incen¬ 

tives and performance. Again, the simplest way is the best way: ask a question. 

The third criterion is often difficult to satisfy. It demands that the problem and 

the problem statement must imply possibilities of empirical testing. A problem that 

does not contain implications for testing its stated relation(s) is not a scientific prob¬ 

lem. This means not only that an actual relation is stated, but also that the variables 

of the relation can somehow be measured. Many interesting and important questions 

are not scientific questions simply because they are not amenable to testing. Certain 

philosophic and theological questions, while perhaps important to the individuals 

who consider them, cannot be tested empirically and are thus of no interest to the 

scientist as a scientist. The epistemological question, “How do we know?” is such a 

question. Education has many interesting but nonscientific questions, such as, “Does 

democratic education improve the learning of youngsters?” “Are group processes 

good for children?” These questions can be labeled metaphysical in the sense that 

they are, at least as stated, beyond empirical testing possibilities. The key difficulties 

are that some of them are not relations, and most of their constructs are very difficult 

or impossible to define so that they can be measured. 
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Hyp O theses 

A hypothesis is a conjectural statement of the relation between two or more variables. 

Hypotheses are always in declarative sentence form, and they relate—either gener¬ 

ally or specifically—variables to variables. There are two criteria for “good” hy¬ 

potheses and hypothesis statements. They are the same as two of those for problems 

and problem statements. (1) Hypotheses are statements about the relations between 

variables. (2) Hypotheses carry clear implications for testing the stated relations. 

These criteria mean, then, that hypothesis statements contain two or more variables 

that are measurable or potentially measurable and that they specify how the variables 
are related. 

Let us take three hypotheses from the literature and apply the criteria to them. 

The first hypothesis from a study by Wegner, et al. (1987) seems to defy common 

sense: The greater the suppression of unwanted thoughts, the greater the preoccupa¬ 

tion with those unwanted thoughts (suppress now; obsess later). Here a relation is 

stated between one variable, suppression of an idea or thought, and another variable, 

preoccupation or obsession. Since the two variables are readily defined and mea¬ 

sured, implications for testing the hypothesis, too, are readily conceived. The criteria 

are satisfied. In the Wegner, et al. study, subjects were asked not to think about a 

“white bear.” Each time they did think of the white bear, they would ring a bell. The 

number of bell rings indicated the level of preoccupation. A second hypothesis is 

from a study by Ayres and Hughes (1986). This study’s hypothesis is unusual. It states 

a relation in the so-called null form: Levels of noise or music have no effect on visual 

functioning. The relation is stated clearly: one variable, loudness of sound (like mu¬ 

sic), is related to another variable, visual functioning, by the words “has no effect 

on.” On the criterion of potential testability, however, we meet with difficulty. We 

are faced with the problem of defining “visual functioning” and “loudness” so they 

can be are measured. If we can solve this problem satisfactorily, then we definitely 

have a hypothesis. Ayres and Hughes did solve this by defining loudness as 107 deci¬ 

bels and visual functioning in terms of a score on a visual acuity task. And this hy¬ 

pothesis did lead to answering a question that people often ask: “Why do we turn 

down the volume of the car stereo when we are looking for a street address?” Ayres 

and Hughes found a definite drop in perceptual functioning when the level of music 
was at 107 decibels. 

The third hypothesis represents a numerous and important class. Here the rela¬ 

tion is indirect, concealed, as it were. It customarily comes in the form of a statement 

that groups A and B will differ on some characteristic. For example: Women more 

often than men believe they should lose weight even though their weight is well 

within normal bounds (Fallon & Rozin, 1985). That is, women differ from men in 

terms of their perceived body shape. Note that this statement is one step removed 

from the actual hypothesis, which may be stated: Perceived body shape is in part 

a function of gender. If the latter statements were the hypothesis stated, then the 

first might be called a subhypothesis or a specific prediction based on the original 
hypothesis. 
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Let us consider another hypothesis of this type but removed one step further. In¬ 

dividuals having the same or similar characteristics will hold similar attitudes toward 

cognitive objects significantly related to their occupational role (Saal & Moore, 

1993). (Cognitive objects are defined as a concrete or abstract thing perceived and 

“known” by individuals. People, groups, job or grade promotion, the government, 

and education are examples.) The relation in this case is, of course, between personal 

characteristics and attitudes (toward a cognitive object related to the personal charac¬ 

teristic, for example, gender and attitudes toward others receiving a promotion). In 

order to test this hypothesis, it would be necessary to have at least two groups, each 

with a different characteristic, and then to compare the attitudes of the groups. For 

instance, as in the case of the Saal and Moore study, the comparison would be be¬ 

tween men and women. They would be compared on their assessment of fairness to¬ 

ward a promotion given to a coworker of the opposite or same sex. In this example, 

the criteria are satisfied. 

The Importance of Problems and Hypo theses 

There is little doubt that hypotheses are important and indispensable tools of 

scientific research. There are three main reasons for this belief. The first reason is 

that they are, so to speak, the working instruments of theory. Hypotheses can be 

deduced from theory and from other hypotheses. If, for instance, we are working on 

a theory of aggression, we are presumably looking for causes and effects of aggressive 

behavior. We might have observed cases of aggressive behavior occurring after 

frustrating circumstances. The theory, then, might include the proposition: Frustra¬ 

tion produces aggression (Berkowitz, 1983; Dill & Anderson, 1995; Dollard, Doob, 

Miller, Mowrer, & Sears, 1939). From this broad hypothesis we may deduce more 

specific hypotheses, such as: To prevent children from reaching desired goals (frus¬ 

tration) will result in their fighting each other (aggression); if children are deprived 

of parental love (frustration), they will react in part with aggressive behavior. 

The second reason is that hypotheses can be tested and shown to be probably 

true or probably false. Isolated facts are not tested, as we said before; only relations 

are tested. Since hypotheses are relational propositions, this is probably the main 

reason why they are used in scientific inquiry. They are, in essence, predictions of the 

form, “If A, then B,” which we set up to test the relation between/! and B. We let the 

facts have a chance to establish the probable truth or falsity of the hypothesis. 

Reason three is that hypotheses are powerful tools for the advancement of 

knowledge because they enable scientists to get outside themselves. Although 

constructed by humans, hypotheses exist, can be tested, and can be shown to be 

probably correct or incorrect apart from a person’s values and opinions (biases). This 

is critical: there would be no science in any complete sense without hypotheses. 

Just as important as hypotheses are the problems behind the hypotheses. As 

Dewey (1938/1982, pp. 105-107) has pointed out, research usually starts with a prob¬ 

lem. He states that there is first an indeterminant situation in which ideas are vague, 
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doubts are raised, and the thinker is perplexed. Dewey further points out that the 

problem is not enunciated; indeed, cannot be enunciated until one has experienced 

such an indeterminant situation. 

The indeterminancy, however, must ultimately be removed. Although it is true, 

as stated earlier, that a researcher may often have only a general and diffuse notion of 

the problem, sooner or later he or she has to have a fairly clear idea of just what the 

problem is. Even though this statement seems self-evident, one of the most difficult 

things to do is to state one’s research problem clearly and completely. In other words, 

one must know what one is trying to find out. When this is finally known, the 
problem is a long way toward solution. 

Virtues of Problems and Hypotheses 

Problems and hypotheses, then, have important virtues: (1) they direct investigation 

(The relations expressed in the hypotheses tell the investigator what to do); (2) prob¬ 

lems and hypotheses, because they are ordinarily generalized relational statements, 

enable the researcher to deduce specific empirical manifestations implied by the 

problems and hypotheses. We may say, following Guida and Ludlow (1989): If it is 

indeed true that children in one type of culture (Chile) have higher test anxiety than 

children of another type of culture (white Americans), then it follows that children in 

the Chilean culture should do more poorly in academics than children in the Ameri¬ 

can culture. The Chilean children also should perhaps have a lower self-esteem or 

more external locus-of-control when it comes to school and academics. 

There are important differences between problems and hypotheses. Hypotheses, 

if properly stated, can be tested. A given hypothesis may be too broad to be tested 

directly, yet if it is a good” hypothesis, then other testable hypotheses can be 

deduced from it. Facts or variables are not tested as such. The relations stated by the 

hypotheses are tested. And a problem cannot be solved scientifically unless it is re¬ 

duced to its hypothesis form because a problem is a question, usually broad in nature, 

and not directly testable. One does not test questions: Does the presence or absence 

of another person in a public restroom alter personal hygiene (Pedersen, Keithly, 

& Brady, 1986)? Do group counseling sessions reduce the level of psychiatric mor¬ 

bidity in police officers (Doctor, Cutris, & Issacs, 1994)? Perhaps, one tests one 

or more hypotheses implied by these questions. For example, to study the latter 

problem, one may hypothesize that police officers who attend stress-reduction 

counseling sessions will use fewer sick days than those police officers who did not 

attend counseling sessions. The hypothesis in the former problem could state that 

the presence of a person in a public restroom will cause the other person to wash his 
or her hands. 

Problems and hypotheses advance scientific knowledge by helping an investiga¬ 

tor confirm or disconfirm theory. Suppose a psychological investigator gives a 

number of subjects three or four tests, among which is a test for anxiety related to an 

arithmetic test. Routinely computing the intercorrelations between the three or four 

tests, one finds that the correlation between anxiety and arithmetic is negative. One 
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therefore concludes that the greater the anxiety the lower the arithmetic score. But it 

is quite conceivable that the relation is fortuitous or even spurious. If, however, the 

investigator had hypothesized the relation on the basis of theory, he or she could 

have greater confidence in the results. Investigators who do not hypothesize relations 

in advance do not, in short, give the facts a chance to prove or disprove anything. 

The words prove and disprove are not to be taken here in their literal sense. A hypoth¬ 

esis is never really proved or disproved. To be more accurate we should probably say 

something like: The weight of evidence is on the side of the hypothesis, or the 

weight of the evidence casts doubt on the hypothesis. Braithwaite (1953/1996 , p. 14) 

says: 

Thus the empirical evidence of its instance never proves the hypothesis: in 

suitable cases we may say that it establishes (italics added) the hypothesis, meaning 

by this that the evidence makes it reasonable to accept the hypothesis; but it 

never proves the hypothesis in the sense that the hypothesis is a logical conse¬ 

quence of the evidence. 

This use of the hypothesis is similar to playing a game of chance. The rules of the 

game are set up and bets are made in advance. One cannot change the rules after an 

outcome, neither can one change one’s bets after placing them. One cannot throw 

the dice first and then bet. That would not be “fair.” Similarly, if one gathers data 

first and then selects a datum and comes to a conclusion on the basis of the datum, 

one has violated the rules of the scientific game. The game is not “fair” because the 

investigator can easily capitalize on, say, two significant relations out of five tested. 

What usually happens to the other three is that they are forgotten. In a “fair” game, 

every throw of the dice is counted, in the sense that one either wins or does not win 

on the basis of the outcome of each throw. 
Hypotheses direct inquiry. As Darwin pointed out over a hundred years ago, 

observations have to be for or against some view if they are to be of any use. 

Hypotheses incorporate aspects of the theory under test in testable or near-testable 

form. Earlier, an example of reinforcement theory was given in which testable 

hypotheses were deduced from the general problem. The importance of recognizing 

this function of hypotheses may be shown by going through the back door and using 

a theory that is very difficult, or perhaps impossible, to test. Freud’s theory of anxiety 

includes the construct of repression. By repression, Freud meant the forcing of 

unacceptable ideas deep into the unconscious. In order to test the Freudian theory of 

anxiety it is necessary to deduce relations suggested by the theory. These deductions 

will, of course, have to include the repression notion, which includes the construct of 

the unconscious. Hypotheses can be formulated using these constructs; in order 

to test the theory, they have to be so formulated. But testing them is another, more 

difficult matter because of the extreme difficulty of defining terms such as “repres¬ 

sion” and “unconscious” so that they can be measured. To the present, no one has 

succeeded in defining these two constructs without seriously departing from the 

original Freudian meaning and usage. Hypotheses, then, are important bridges 

between theory and empirical inquiry. 
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Pro bl ems, Values, and Definitions 

To clarify farther the nature of problems and hypotheses, two or three common 

errors will now be discussed. First, scientific problems are not moral and ethical 

questions: Are punitive disciplinary measures bad for children? Should an organiza¬ 

tion’s leadership be democratic? What is the best way to teach college students? To 

ask these questions is to ask value and judgmental questions that science cannot 

answer. Many so-called hypotheses are not hypotheses at all. For instance: The 

small-group method of teaching is better than the lecture method. This is a value 

statement; it is an article of faith and not a hypothesis. If it were possible to state a 

relation between the variables, and if it were possible to define the variables so as to 

permit testing the relation, then we might have a hypothesis. But there is no way to 

test value questions scientifically. 

A quick and relatively easy way to detect value questions and statements is to 

look for words such as should, ought, better than (instead of greater than). Also, one can 

look for similar words that indicate cultural or personal judgments or preferences 

(biases). Value statements, however, are tricky. While a “should” statement is obvi¬ 

ously a value statement, certain other kinds of statements are not so obvious. Take 

the statement: Authoritarian methods of teaching lead to poor learning. Here there 

is a relation. But the statement fails as a scientific hypothesis because it uses two 

value expressions or words, “authoritarian methods of teaching” and “poor learning,” 

neither of which can be defined for measurement purposes without deleting the 
words authoritarian and poor.2 

Other kinds of statements that are not hypotheses, or are poor ones, are 

frequently formulated, especially in education. Consider, for instance: The core 

curriculum is an enriching experience. Another statement type, used too frequently, 

is vague generalization: Reading skills can be identified in the second grade; The goal 

of the unique individual is self-realization; Prejudice is related to certain personality 
traits. 

Another common defect of problem statements often occurs in doctoral theses: 

the listing of methodological points or “problems” as subproblems. These method¬ 

ological points have two characteristics that make them easy to detect: (1) they are 

not substantive problems that spring from the basic problem; and (2) they relate 

to techniques or methods of sampling, measuring, or analyzing. They are usually 

not in question form but rather contain such words as test, determine, measure. “To 

determine the reliability of the instruments used in this research,” “To test the signifi¬ 

cance of the differences between the means,” or “To assign pupils at random 

to the experimental groups” are examples of this mistaken notion of problems and 
subproblems. 

~ V almost classic case of the use of the word authoritarian is the statement sometimes heard among 

educators: The lecture method is authoritarian. This seems to mean that the speaker does not like 

the lectuie method and is telling us that it is bad. Similarly, one of the most effective ways to criti¬ 

cize a teacher is to say that teacher is authoritarian. * 
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Generality and Specificity of Problems 

and Hypotheses 

One difficulty that a researcher usually encounters, and that almost all students 

working on a thesis find annoying, is the generality and specificity of problems and 

hypotheses. If the problem is too general, it is also too vague to be tested. Thus, it is 

scientifically useless, even though it may be interesting to read. Problems and 

hypotheses that are too general or too vague are common. For example: Creativity is 

a function of the self-actualization of the individual; Democratic education enhances 

social learning and citizenship; Authoritarianism in the college classroom inhibits the 

creative imagination of students. These are interesting problems but, in their present 

form, are worse than useless scientifically because they cannot be tested and because 

they give one the spurious assurance that they are hypotheses that can “someday” be 

tested. 

Terms such as “creativity,” “self-actualization,” “democracy,” “authoritarianism,” 

and the like have, at the present time at least, no adequate empirical referents.3 It is 

quite true that we can define creativity, say, in a limited way by specifying one or two 

creativity tests. This may be a legitimate procedure. Still, in so doing, we run the risk 

of getting far away from the original term and its meaning. This is particularly true 

when we speak of artistic creativity. We are, of course, often willing to accept the risk 

in order to be able to investigate important problems. Yet a term like “democracy” is 

almost hopeless to define. Even when we do define it, we often find we have 

destroyed its original meaning. Air outstanding exception to this statement is Bollen’s 

(1980) definition and measurement of “democracy.” We will examine both in subse¬ 

quent chapters. 

The other extreme is too great specificity. Every student has heard that it is 

necessary to narrow down problems to workable size. This is true. But, unfortu¬ 

nately, we can also narrow the problem out of existence. In general, the more specific 

the problem or hypothesis, the clearer is its testing implications. But triviality may be 

the price we pay. Researchers cannot handle problems that are too broad because 

they tend to be too vague for adequate research operations. On the other hand, in 

their zeal to cut down the problems to workable size or to find a workable problem, 

they may cut the life out of it. They may make it trivial or inconsequential. A thesis, 

for instance, on the simple relation between the speed of reading and size of type, 

while important and maybe even interesting, is too thin by itself for a doctoral study. 

The doctoral student would need to expand on the topic by also recommending a 

comparison between genders and considering variables such as culture and family 

3 Although many studies of authoritarianism have been done with considerable success, it is doubtful 

that we know what authoritarianism in the classroom means. For instance, an action of a teacher 

that is authoritarian in one classroom may not be authoritarian in another classroom. The alleged 

democratic behavior exhibited by one teacher may even be called authoritarian if exhibited by an¬ 

other teacher. Such elasticity is not the stuff of science. 
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background. The researcher could possibly expand the study to look at levels of 

illumination and font types. Too great specificity is perhaps a worse danger than too 

great generality. The researcher may be able to answer the specific question but will 

not be able to generalize the finding to other situations or groups of people. At any 

rate, some kind of compromise must be made between generality and specificity. The 

ability to make such compromises effectively is<a function partly of experience and 

partly of critical study of research problems. 

Here are a few examples contrasting research problems stated as too general or 

too specific: 

1. Too General: 

Too Specific: 

About Right: 

2. Too General: 

Too Specific: 

About Right: 

There are gender differences in game playing. 

Tommy’s score will be 10 points higher than Carol’s on 

Tetris Professional Gold. 

Video game playing will result in a higher transfer of 

learning for boys than girls. 

People can read large-size letters faster than small-size 

letters. 

Seniors at Duarte High School can read 24-point fonts 

faster than 12-point fonts. 

A comparison of three different font sizes and visual 

acuity on reading speed and comprehension. 

The Multivariable Nature of Behavorial Research 
and Problems 

Until now the discussion of problems and hypotheses has been limited to two vari¬ 

ables, x and y. We must hasten to correct any impression that such problems and 

hypotheses are the norm in behavioral research. Researchers in psychology, sociol¬ 

ogy, education, and other behavioral sciences have become keenly aware of the mul¬ 

tivariable nature of behavioral research. Instead of saying: If p, then q, it is often 

more appropriate to say: If pu p2, . . . , pk, then q\ or: If p then q, under conditions r, 
s, and t. 

An example may clarify the point. Instead of simply stating the hypothesis: If 

frustration, then aggression, it is more realistic to recognize the multivariable nature 

of the determinants and influences of aggression. This can be done by saying, for ex¬ 

ample: If high intelligence, middle class, male, and frustrated, then aggression. Or: If 

frustration, then aggression, under the conditions of high intelligence, middle class, 

and male. Instead of one x, we now have four vs. Although one phenomenon may be 

the most important in determining or influencing another phenomenon, it is unlikely 

that most of the phenomena of interest to behavioral scientists are determined sim¬ 

ply. It is much more likely that they are determined multiply. It is much more likely 
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that aggression is the result of several influences working in complex ways. More¬ 

over, aggression itself has multiple aspects., There are after all, different kinds of ag¬ 
gression. 

Problems and hypotheses thus have to reflect the multivariable complexity of 

psychological, sociological, and educational reality. We will talk of one x and one y, 

especially in the early part of the book. However, it must be understood that behav¬ 

ioral research, which used to be almost exclusively univariate in its approach, has be¬ 

come more and more multivariable. We have purposely used the word “multivari¬ 

able” instead of “multivariate” for an important reason. Traditionally, “multivariate” 

studies are those that have more than one y variable and one or more x variables. 

When we speak of one y and more than one x variable, we use the more appropriate 

term “multivariable” to make the distinction. For now, we will use “univariate” to in¬ 

dicate one x and oney. “Univariate,” strictly speaking, also applies toy. We will soon 

encounter multivariate conceptions and problems. And later parts of the book will be 

especially concerned with a multivariate approach and emphasis. For a clear explana¬ 

tion on the differences between multivariable and multivariate (see Kleinbaum, Kup- 

per, Muller, & Nizam, 1997). 

Concluding Remarks: The Special Power 
o f Hyp o theses 

One sometimes hears that hypotheses are unnecessary in research. Some feel that 

they restrict the investigative imagination unnecessarily, and that the job of science 

and scientific investigation is to discover new things and not to belabor the obvious. 

Some feel that hypotheses are obsolete. Such statements are quite misleading. They 

misconstrue the purpose of hypotheses. 

It can almost be said that the hypothesis is one of the most powerful tools yet in¬ 

vented to achieve dependable knowledge. We observe a phenomenon. We speculate 

on possible causes. Naturally, our culture has answers to account for most phe¬ 

nomena— many correct, many incorrect, many a mixture of fact and superstition, 

many pure superstition. It is the business of scientists to doubt most explanations of 

phenomena. Such doubts are systemic. Scientists insist on subjecting explanations of 

phenomena to controlled empirical testing. In order to do this, they formulate the 

explanations into theories and hypotheses. In fact, the explanations are hypotheses. 

Scientists simply discipline the business by writing systematic and testable hypothe¬ 

ses. If an explanation cannot be formulated into a testable hypothesis, it can be con¬ 

sidered to be a metaphysical explanation and thus not amenable to scientific investi¬ 

gation. As such, it is dismissed by scientists as being of no interest. 

The power of hypotheses go further than this, however. A hypothesis is a predic¬ 

tion. It says that if a occurs, y will also occur; that is, y is predicted from x. If, then, x 

is made to occur (vary), and it is observed that y also occurs (varies concomitantly), 

then the hypothesis is confirmed. This is more powerful evidence than simply ob¬ 

serving, without prediction, the covarying of x and y. It is more powerful in the 

1 
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betting-game sense discussed earlier. The scientist makes a bet that x leads to y. If, in 

an experiment, x does lead to y, then one has won the bet. A person cannot just enter 

the game at any point and pick a perhaps fortuitous common occurrence of x and y. 

Games are not played this way (at least in our culture). This person must play 

according to the rules, and the rules in science are made to minimize error and falli¬ 

bility. Hypotheses are part of the rules of the science game. 

Even when hypotheses are not confirmed, they have power. Even when y does 

not covary with x, knowledge is still advanced. Negative findings are sometimes as 

important as positive ones, since they reduce the total universe of ignorance and 

sometimes point up fruitful further hypotheses and lines of investigation. But the sci¬ 

entist cannot tell positive from negative evidence unless he or she uses hypotheses. It is, of 

course, possible to conduct research without hypotheses, particularly in exploratory 

investigations. But it is hard to conceive modern science in all its rigorous and disci¬ 

plined fertility without the guiding light and power of hypotheses. 

Chapter Summary 

1. Formulating the research problem is not an easy task. The researcher starts 

with a general, diffused, and vague notion and then gradually refines it. Re¬ 

search problems differ greatly and there is no one right way to state the 

problem. 

2. Three criteria of a good problem and problem statement 

a. The problem should be expressed as a relationship between two or more 

variables. 

b. The problem should be put in the form of a question. 

c. The problem statement should imply the possibilities of empirical 
testing. 

3. A hypothesis is a conjectural statement of the relationship between two 

or more variables. It is put in the form of a declarative statement. A criteria 

for a good hypothesis is the same as (a) and (b) in criteria of a good 

problem. 

4. Importance of problems and hypotheses 

a. It is a working instrument of science and a specific working statement of 
theory 

b. Hypotheses can be tested and be predictive 

c. Advance knowledge 

5. Virtues of problems and hypotheses 

a. Direct investigation and inquiry 

b. Enable the researcher to deduce specific empirical manifestations ■ 
c. Serve as the bridge between theory and empirical inquiry. 

6. Scientific problems are not moral or ethical questions. Science cannot an¬ 

swer value or judgmental questions. 
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7. Detection of value questions: Look for words such as better than, should, or 
ought. 

8. Another common defect of problem statements is the listing of methodolog¬ 
ical points as subproblems. 

a. They are not substantive problems that come directly from the basic 
problem 

b. They relate to techniques or methods of sampling, measuring, or analyz¬ 
ing; not in question form. 

9. On problems, there is a need to compromise between being too general 

and too specific. The ability to do this comes with experience. 

10. Problems and hypotheses need to reflect the multivariate complexity of be¬ 
havioral science reality*. 

11. The hypothesis is one of the most powerful tools invented to achieve de¬ 

pendable knowledge. It has the power of prediction. A negative finding for a 

hypothesis can serve to eliminate one possible explanation and open other 

hypotheses and lines of investigation. 

Study Suggestions 

1. Use the following variable names to write research problems and 

hypotheses: frustration, academic achievement, intelligence, verbal ability, 

race, social class (socioeconomic status), sex, reinforcement, teaching 

methods, occupational choice, conservatism, education, income, authority, 

need for achievement, group cohesiveness, obedience, social prestige, 

permissiveness. 

2. Ten problems from the research literature are given below. Study them care¬ 

fully, choose two or three, and construct hypotheses based on them. 

a. Do children of different ethnic groups have different levels of test anxiety 

(Guida & Ludlow, 1989)? 

b. Do cooperative social situations lead to higher levels of intrinsic 

motivation? (Horn, Berger, Duncan, Miller, & Belvin, 1994)? 

c. Are affective responses influenced by people’s facial activity (Strack, Martin 

& Stepper, 1988)? 

d. Will jurors follow prohibitive judicial instructions and information (Shaw 

& Skolnick, 1995)? 

e. What are the positive effects of using alternating pressure pads to prevent 

pressure sores in homebound hospice patients (Stoneberg, Pitcock, & My- 

ton, 1986)? 

f. What are the effects of early Pavlovian conditioning on later Pavlovian 

conditioning (Lariviere & Spear, 1996)? 

g. Does the efficacy of encoding information into long-term memory depend 

on the novelty of the information (Tulving & Kroll, 1995)? 
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h. What is the effect of alcohol consumption on the likelihood of condom use 

during causal sex (MacDonald, Zanna, & Fong, 1996)? 

i. Are there gender differences in predicting retirement decisions (Talaga & 
Beehr, 1995)? 

j. Is the Good Behavior Game a viable intervention strategy for children 

in a classroom that require behavior change procedures (Tingstrom, 

1994) ? 
3. Ten hypotheses are given below. Discuss possibilities of testing them. 

Then read two or three of the studies to learn how the authors tested 

them. 

a. Job applicants who claim a great deal of experience at nonexistent tasks 

overstate their ability on real tasks (Anderson, Warner, & Spencer, 

1984). 
b. In social situations, men misread women’s intended friendliness as a sign of 

sexual interest (Saal, Johnson, & Weber, 1989). 

c. The greater the team success, the greater the attribution of each team 

member toward one’s ability and luck (Chambers & Abrami, 1991). 

d. Increasing interest in a task will increase compliance (Rind, 1997). 

e. Extracts from men’s perspiration can affect women’s menstrual cycles 

(Cutler, Preti, Kreiger, & Huggins, 1986). 

f. Physically attractive people are viewed as having higher intelligence than 

nonattractive people (Moran & McCullers, 1984). 

g. One can receive help from a stranger if that stranger is similar to oneself, 

or if the request is made at a certain distance (Glick, DeMorest, & Hotze, 

1988). 

h. Cigarette smoking (nicotine) improves mental performance (Spilich, 

June, & Remer, 1992). 

i. People stowing valuable items in unusual locations will have better mem¬ 

ory of that location than stowing valuable items in usual locations (Wino- 

grad & Soloway, 1986). 

j. Gay men with symptomatic HIV disease are significantly more 

distressed than gay men whose HIV status is unknown (Cochran and 

Mays, 1994). 

4. Multivariate (for now, more than two dependent variables) problems and 

hypotheses have become common in behavioral research. To give the student 

a preliminary feeling for such problems, we here append several of them. Try 

to imagine how you would do research to study them. 

a. Do men and women differ in their perceptions of their genitals, sexual 

enjoyment, oral sex and masturbation (Reinholtz & Muehlenhard, 
1995) ? 

b. Are youthful smokers more extroverted whereas older smokers are more 

depressed and withdrawn (Stein, Newcomb, & Bentler, 1996)? 

c. How much do teacher’s ratings of social skills for popular students differ 

from rejected students (Frentz, Gresham, & Elliot, 1991; Stuart, Gresham, 
& Elliot, 1991)? 
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d. Do counselor-client matching on ethnicity, gender, and language 

influence treatment outcomes of school-aged children (Hall, Kaplan, & 
Lee, 1994)? 

e. Are there any differences in the cognitive and functional abilities of 

Alzheimer’s patients who reside at a special care unit versus those 

residing at a traditional care unit (Swanson, Maas, & Buckwalter, 
1994)? 

f. Do hyperactive children with attention deficit differ from nonhyperactive 

children with attention deficit on reading, spelling, and written language 

achievement (Elbert, 1993)? 

g. Will perceivers see women who prefer the courtesy title of Ms. as 

being higher on instrumental qualities and lower on expressiveness 

qualities than women who prefer traditional courtesy titles (Dion & 
Cota, 1991)? 

h. Will an empowering style of leadership increase team member satisfaction 

and will perceptions of team efficacy increase effectiveness (Kumpfer, 

Turner, Hopkins, & Librett, 1993)? 

i. How do ethnicity, gender, and socioeconomic background influence psy¬ 

chosis proneness: perceptual aberration, magical ideation, and schizotypal 

personality (Porch, Ross, Hanks, & Whitman, 1995)? 

j. Does stimulus exposure have two effects, one cognitive and one affective, 

which in turn affect liking, familiarity, and recognition confidence and ac¬ 

curacy (Zajonc, 1980)? 

The last two problems and studies are quite complex because the stated relations are 

complex. The other problems and studies, though also complex, have only one phe¬ 

nomenon presumably affected by other phenomena, whereas the last two problems 

have several phenomena influencing two or more other phenomena. Readers should 

not be discouraged if they find these problems a bit difficult. By the end of the book 

they should appear interesting and natural. 
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Chapter 3 

Constructs, Variables, 

and Definitions 

■ Concepts and Constructs 

■ Variables 

■ Constitutive and Operational Definitions of Constructs and 

Variables 

a Types of Variables 

Independent and Dependent Variables 
Active and Attribute Variables 
Continuous and Categorical Variables 

■ Constructs, Observables, and Latent Variables 

■ Examples of Variables and Operational Definitions 

Scientists operate on two levels: theory-hypothesis-construct and observation. 

More accurately, they shuttle back and forth between these levels. A psychological 

scientist may say, “Early deprivation produces learning deficiency.” This statement is 

a hypothesis consisting of two concepts, “early deprivation” and “learning defi¬ 

ciency,” joined by a relation word, produces. It is on the theory-hypothesis-construct 

level. Whenever scientists utter relational statements and use concepts, or constructs 

as we shall call them, they are operating at this level. 

Scientists must also operate at the level of observation. They must gather data to 

test hypotheses. To do this, they must somehow get from the construct level to the 

observation level. They cannot simply make observations of “early deprivation” and 

“learning deficiency.” They must define these constructs so that observations are 

possible. The problem studied in this chapter is how to examine and clarify the 

39 
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nature of scientific concepts or constructs. This chapter will also examine and clarify 

the way in which behavioral scientists get from the construct level to the observation 

level, how they shuttle from one to the other. 

Concepts and Constructs 

The terms “concept” and “construct” have similar meanings, yet there is an impor¬ 

tant distinction. A concept expresses an abstraction formed by generalization from 

particulars. “Weight” is a concept. It expresses numerous observations of things that 

are “more or less” and “heavy or light.” “Mass,” “energy,” and “force” are concepts 

used by physical scientists. They are, of course, much more abstract than concepts 

such as “weight,” “height,” and “length.” 

A concept of more interest to readers of this book is “achievement.” It is an ab¬ 

straction formed from the observation of certain behaviors of children. These behav¬ 

iors are associated with the mastery or “learning” of school tasks — reading words, 

doing arithmetic problems, drawing pictures, and so on. The various observed be¬ 

haviors are put together and expressed in a word. “Achievement,” “intelligence,” “ag¬ 

gressiveness,” “conformity,” and “honesty” are all concepts used to express varieties 

of human behavior. 

A construct is a concept. It has the added meaning, however, of having been delib¬ 

erately and consciously invented or adopted for a special scientific purpose. “Intelli¬ 

gence” is a concept, an abstraction from the observation of presumably intelligent 

and nonintelligent behaviors. But as a scientific construct, “intelligence” means both 

more and less than it may mean as a concept. It means that scientists consciously and 

systematically use it in two ways: (1) it enters into theoretical schemes and is related 

in various ways to other constructs (we may say, for example, that school achieve¬ 

ment is in part a function of intelligence and motivation) and (2) “intelligence” is so 

defined and specified that it can be observed and measured (we can make observa¬ 

tions of the intelligence of children by administering an intelligence test, or by 

asking teachers to tell us the relative degrees of intelligence of their pupils). 

Variables 

Scientists somewhat loosely call the constructs or properties they study “variables.” 

Some examples of important variables in sociology, psychology, political science, and 

education are: gender, income, education, social class, organizational productivity, 

occupational mobility, level of aspiration, verbal aptitude, anxiety, religious affilia¬ 

tion, political preference, political development (of nations), task orientation, racial 

and ethnic prejudices, conformity, recall memory, recognition memory, and achieve¬ 

ment. It can be said that a variable is a property that takes on different values. 

Putting it redundantly, a variable is something that varies. While this way of speaking 

gives us an intuitive notion of what variables are, we need a more general and yet 
more precise definition. 
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A variable is a symbol to which numerals or values are assigned. For instance, x is 

a variable: it is a symbol to which we assign numerical values. The variable x may take 

on any justifiable set of values, for example, scores on an intelligence test or an atti¬ 

tude scale. In the case of intelligence we assign to a a set of numerical values yielded 

by the procedure designated in a specified test of intelligence. This set of values 
ranges from low to high, from, say, 50 to 150. 

A variable, x, however, may have only two values. If gender is the construct un¬ 

der study, then x can be assigned 1 and 0, where 1 represents one of the genders and 

0 the other. It is still a variable. Other examples of two-valued variables are in-out, 

correct-incorrect, old-young, citizen-noncitizen, middle class-working class, 

teacher-nonteacher, Republican-Democrat, and so on. Such variables are called di¬ 

chotomies, dichotomous, or binary variables. 

Some of the variables used in behavioral research are true dichotomies; that is, 

they are characterized by the presence or absence of a property: male-female, 

home-homeless, employed-unemployed. Some variables ar & polytomies. A good ex¬ 

ample is religious preference: Protestant, Catholic, Muslim, Jew, Buddhist, Other. 

Such dichotomies and polytomies have been called “qualitative variables.” The na¬ 

ture of this designation will be discussed later. Most variables, however, are theoreti¬ 

cally capable of taking on continuous values. It has been common practice in behav¬ 

ioral research to convert continuous variables to dichotomies or polytomies. For 

example, intelligence, a continuous variable, has been broken down into high and 

low intelligence, or into high, medium, and low intelligence. Variables such as anxi¬ 

ety, introversion, and authoritarianism have been treated similarly. While it is not 

possible to convert a truly dichotomous variable such as gender to a continuous vari¬ 

able, it is always possible to convert a continuous variable to a dichotomy or a poly- 

tomy. As we will see later, such conversion can serve a useful conceptual purpose, but 

is poor practice in the analysis of data because it discards information. 

Constitutive and Operational Definitions of 

Constructs and Variables 

The distinction made earlier between “concept” and “construct” leads naturally to 

another important distinction between kinds of definitions of constructs and vari¬ 

ables. Words or constructs can be defined in two general ways. First, we can define a 

word by using other words, which is what a dictionary does. We can define intelli¬ 

gence by saying it is “operating intellect,” “mental acuity,” or “the ability to think ab¬ 

stractly.” Such definitions use other concepts or conceptual expressions in lieu of the 

expression or word being defined. Second, we can define a word by assigning ex¬ 

pressed or implied actions or behaviors. Defining intelligence this way requires that 

we specify which behaviors of children are “intelligent” and what behaviors are 

“not intelligent.” We may say that a seven-year-old child who successfully reads a 

story is “intelligent.” If the child cannot read the story, we may say the child is “not 

intelligent.” In different words, this kind of definition can be called a behavioral or 
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observational definition. Both “other word” and “observational” definitions are used 

constantly in everyday living. 
There is a disturbing looseness about this discussion. Although scientists use the 

types of definitions just described they do so in a more precise manner. We express 

this usage by defining and explaining Margenau’s (1950/1977) distinction between 

constitutive and operational definitions. A constitutive definition defines a construct 

using other constructs. For instance, we can define weight by saying that it is the 

“heaviness” of objects. Or we can define anxiety as “subjectified fear.” In both cases 

we have substituted one concept for another. Some of the constructs of a scientific 

theory may be defined constitutively. Torgerson (1958/1985), borrowing from Mar- 

genau, says that all constructs, in order to be useful scientifically, must possess consti¬ 

tutive meaning. This means that they must be capable of being used in theories. 

An operational definition assigns meaning to a construct or a variable by spec¬ 

ifying the activities or “operations” necessary to measure it and evaluate the mea¬ 

surement. Alternatively, an operational definition is a specification of the activities of 

the researcher in measuring a variable or in manipulating it. An operational defini¬ 

tion is a sort of manual of instructions to the investigator. It says, in effect, “Do such- 

and-such in so-and-so a manner.” In short, it defines or gives meaning to a variable 

by spelling out what the investigator must do to measure it and evaluate that mea¬ 

surement. 

Michel (1990) gives an excellent historical account on how operational defini¬ 

tions became popular in the social and behavioral sciences. Michel cites P. W. 

Bridgeman, a Nobel laureate, for creating the operational definition in 1927. Bridge- 

man as quoted in Michel (1990, p. 15) states: “In general we mean by any concept 

nothing more than a set of operations; the concept is synonymous with the corresponding 

set of operations.” Each different operation would define a different concept. 

A well-known, if extreme, example of an operational definition is: Intelligence 

(anxiety, achievement, and so forth) is scores on X intelligence test, or intelligence is 

what X intelligence test measures. Also high scores indicate a greater level of intelli¬ 

gence than low scores. This definition tells us what to do to measure intelligence. It 

says nothing about how well intelligence is measured by the specified instrument. 

(Presumably the adequacy of the test was ascertained prior to the investigator’s use of 

it.) In this usage, an operational definition is an equation where we say, “Let intelli¬ 

gence equal the scores on X test of intelligence and high scores indicate a higher de¬ 

gree of intelligence than low scores.” We also seem to be saying, “The meaning of 

intelligence (in this research) is expressed by the scores on X intelligence test.” 

There are, in general, two kinds of operational definitions: (1) measured, and (2) 

experimental. The definition given above is more closely tied to measured than to ex¬ 

perimental definitions. A measured operational definition describes how a variable 

will be measured. For example, achievement tAay be defined by a standardized 

achievement test, by a teacher-made achievement test, or by grades. Doctor, Cutris, 

and Isaacs (1994), studying the effects of stress counseling on police officers, opera¬ 

tionally defined psychiatric morbidity as scores on the General Health Questionnaire 

and the number of sick-leave days taken. Higher scores and large number of days in¬ 

dicated elevated levels of morbidity. Little, Sterling, and Tingstrom (1996) studied 

the effects of race and geographic origin on attribution. Attribution was opera- 
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tionally defined as a score on the Attributional Style Questionnaire. A study may in¬ 

clude the variable consideration. It can be defined operationally by listing behaviors of 

children that are presumably considerate behaviors and then requiring teachers to 

rate the children on a five-point scale. Such behaviors might be when children say to 

each other, “I’m sorry,” or “Excuse me.” Or when one child yields a toy to another 

on request (but not on threat of aggression), or when one child helps another with a 

school task. It can also be defined as counting the number of considerate behaviors. 

The greater the number, the higher the level of consideration. 

An experimental operational definition spells out the details (operations) of the 

investigator’s manipulation of a variable. Reinforcement can be operationally defined 

by giving the details of how subjects are to be reinforced (rewarded) and not rein¬ 

forced (not rewarded) for specified behaviors. Horn, Berger, Duncan, Miller, and 

Belvin (1994) operationally defined reinforcement experimentally. In this study, chil¬ 

dren were assigned to one of four groups. Two of the groups received a cooperative 

reward condition while the other two groups received an individualistic reward con¬ 

dition. Bahrick (1984) defines long-term memory in terms of at least two processes 

when it comes to the retention of academically oriented information. One process, 

called “permastore,” selectively chooses some information to be stored permanently 

and is highly resistant to decay (forgetting). The other process appears to select cer¬ 

tain apparently less-significant information, and hence appears less resistant to for¬ 

getting. This definition contains clear implications for experimental manipulation. 

Strack, Martin, and Stepper (1988) operationally defined smiling as the activation of 

the muscles associated with the human smile. This was done by having a person hold 

a pen in his or her mouth in a certain way. This was unobtrusive in that the partici¬ 

pants in the study were not asked to pose with a smiling face. Other examples of both 

kinds of operational definitions will be given later. 

Scientific investigators must eventually face the necessity of measuring the vari¬ 

ables of the relations they are studying. Sometimes measurement is easy, sometimes 

difficult. To measure gender or social class is easy; to measure creativity, conser¬ 

vatism, or organizational effectiveness is difficult. The importance of operational def¬ 

initions cannot be overemphasized. They are indispensable ingredients of scientific 

research because they enable researchers to measure variables and because they are 

bridges between the theory-hypothesis-construct level and the level of observation. 

There can be no scientific research without observations, and observations are im¬ 

possible without clear and specific instructions on what and how to observe. Opera¬ 

tional definitions are such instructions. 

Although indispensable, operational definitions yield only limited meanings of 

constructs. No operational definition can ever express the rich and diverse aspects of 

some variables, such as human prejudice. This means that the variables measured by 

scientists are always limited and specific in meaning. The “creativity” studied by psy¬ 

chologists is not necessarily the “creativity” referred to by artists, though there will 

of course be common elements. A person who thinks of a creative solution for a math 

problem may show little creativity as a poet (Barron & Harrington, 1981). Some psy¬ 

chologists have operationally defined creativity as performance on the Torrance Test 

of Creative Thinking (Torrance, 1982). Children who score high on this test are 

more likely to make creative achievements as adults. 
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Some scientists claim that such limited operational meanings are the only mean¬ 

ings that “mean” anything, that all other definitions are metaphysical nonsense. They 

say that discussions of anxiety are metaphysical nonsense, unless adequate opera¬ 

tional definitions of anxiety are available and used. This view is extreme, though it 

has healthy aspects. To insist that every term we use in scientific discourse be opera¬ 

tionally defined would be too narrowing, too restrictive, and, as we shall see, scientif¬ 

ically unsound. Northrop (1947/1983, p. 130) says, for example, “The importance of 

operational definitions is that they make verification possible and enrich meaning. 

They do not, however, exhaust scientific meaning.” Margenau (1950/1977, p. 232) 

makes the same point in his extended discussion of scientific constructs. 

Despite the dangers of extreme operationalism, it can be safely said that opera- 

tionalism has been and still is a healthy influence. As Skinner (1945, p. 274) puts it, 

The operational attitude, in spite of its shortcomings, is a good thing in any sci¬ 

ence, but especially in psychology, because of the presence there of a vast vocab¬ 

ulary of ancient and nonscientific origin. 

When the terms used in education are considered, clearly education, too, has a vast 

vocabulary of ancient and nonscientific terms. Consider these: the whole child, hori¬ 

zontal and vertical enrichment, meeting the needs of the learner, core curriculum, 

emotional adjustment, and curricular enrichment. This is also true in the field of 

geriatric nursing. Here nurses deal with such terms as the aging process, self-image, 

attention span, and unilateral neglect (Eliopoulos, 1993; Smeltzer & Bare, 1992). 

M Figure 3.1 
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To clarify constitutive and operational definitions (as well as theory) look at 
Figure 3.1, which has been adapted after Margenau (1950/1977) and Torgerson 
(1958/1985). The diagram is intended to illustrate a well-developed theory. The sin¬ 
gle lines represent theoretical connections or relations between constructs. These 
constructs, labeled with lowercase letters, are defined constitutively; that is, c4 is 
somehow defined by ch or vice versa. The double lines represent operational defini¬ 
tions. The constructs are directly linked to observable data; they are indispensable 
links to empirical reality. However, not all constructs in a scientific theory are de¬ 
fined operationally. Indeed, it is a rather thin theory that has all its constructs so 
defined. 

Let us build a “small theory” of underachievement to illustrate these notions. 
Suppose an investigator believes that underachievement is in part a function of 
pupils’ self-concepts. The investigator believes that pupils who perceive themselves 
as inadequate and have negative self-perceptions, also tend to achieve less than their 
potential capacity and aptitude indicate they should achieve. It follows that ego- 
needs (which we will not define here) and motivation for achievement (call this 
nach, or need for achievement) are tied to underachievement. Naturally, the investi¬ 
gator is also aware of the relation between aptitude and intelligence and achievement 
in general. A diagram to illustrate this “theory” might look like Figure 3.2. 

H] Figure 3.2 

Observations 
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The investigator has no direct measure of self-concept, but assumes that infer¬ 

ences can be drawn about an individual’s self-concept from a figure drawing test. 

Self-concept is operationally defined, then, as certain responses to the figure drawing 

test. This is probably the most common method of measuring psychological (and ed¬ 

ucational) constructs. The heavy single line between c, and Cj indicates the relatively 

direct nature of the presumed relation between self-concept and the test. (The dou¬ 

ble line between C1 and the level of observation indicates an operational definition, 

as it did in Figure 3.1.) 

Similarly, the construct achievement (c4) is operationally defined as the discrep¬ 

ancy between measured achievement (C2) and measured aptitude (c3). In this model 

the investigator has no direct measure of achievement motivation, no operational de¬ 

finition of it. In another study an investigator may specifically hypothesize a relation¬ 

ship between achievement and achievement motivation, in which case he or she will 

try to define achievement motivation operationally. 

A single solid line between concepts, for example, the one between the construct 

achievement (c4) and achievement test (C2), indicates a relatively well-established re¬ 

lation between postulated achievement and what standard achievement tests mea¬ 

sure. The single solid lines between C1 and C2 and between C2 and C3 indicate ob¬ 

tained relations between the test scores of these measures. (The lines between C1 and 

C2 and between C2 and C3 are labeled (r) for “relation,” or “coefficient of correla¬ 
tion.”) 

The broken single lines indicate postulated relations between constructs that are 

not relatively well established. A good example of this is the postulated relation be¬ 

tween self-concept and achievement motivation. One of the aims of science is to 

make these broken lines solid lines by bridging the operational definition-measure¬ 

ment gap. In this case, it is quite conceivable that both self-concept and achievement 

motivation can be operationally defined and directly measured. 

In essence, this is the way a behavioral scientist operates. The scientist shuttles 

back and forth between the level of construct and the level of observation. This is 

done by operationally defining the variables of the theory that are amenable to such 

definition. Then the relations are estimated between the operationally-defined and 

measured variables. From these estimated relations the scientist draws inferences as 

to the relations between the constructs. In the above example, the behavioral scien¬ 

tist calculates the relation between C, (figure drawing test) and C2 (achievement test). 

If the relation is established on this observational level, the scientist infers that a rela¬ 
tion exists between c2 (self-concept) and c4 (achievement). 

Types of Variables 

Independent and Dependent Variables 

With definitional background behind us, we return to variables. Variables can be 

classified in several ways. In this book three kinds of variables are very important and 



CHAPTER 3 ■ Constructs, Variables, and Definitions 47 

will be emphasized: (1) independent and dependent variables, (2) active and attribute 

variables, and (3) continuous and categorical variables. 

The most useful way to categorize variables is either as independent or depen¬ 

dent. This categorization is highly useful because of its general applicability, simplic¬ 

ity, and special importance, both in conceptualizing and designing research and in 

communicating the results of research. An independent variable is the presumed cause 

of the dependent variable, the presumed effect. The independent variable is the an¬ 

tecedent; the dependent is the consequent. Since one of the goals of science is to un¬ 

cover relations between different phenomena, looking at the relation between inde¬ 

pendent and dependent variables accomplishes this. It is the independent variable 

that is assumed to influence the dependent variable. In some studies, the independent 

variable “causes” changes in the dependent variable. When we say: If A, then B, we 

have the conditional conjunction of an independent variable (A) and a dependent 

variable (B). 

The terms “independent variable” and “dependent variable” come from mathe¬ 

matics, where X is the independent and Y the dependent variable. This is probably 

the best way to think of independent and dependent variables because there is no 

need to use the touchy word cause and related words, and because use of such sym¬ 

bols applies to most research situations. There is no theoretical restriction on num¬ 

bers of Xs and Ts. When we later consider multivariate thinking and analysis, we will 

deal with several independent and dependent variables. 

In experiments the independent variable is the variable manipulated by the ex¬ 

perimenter. Changes in the values or levels of the independent variable produce 

changes in the dependent variable. When educational investigators studied the ef¬ 

fects of differing teaching methods on math test performance, they varied the 

method of teaching. In one condition they may have “lecture only,” in the other it 

might be “lecture plus video.” Teaching method is the independent variable. The 

outcome variable, test score on mathematics, is the dependent variable. 

The assignment of participants to different groups based on the existence of 

some characteristic is an example of where the researcher was not able to manipulate 

the independent variable. The values of the independent variable in this situation 

preexist. The participant either has the characteristic or not. Here, there is no possi¬ 

bility of experimental manipulation, but the variable is considered to “logically” have 

some effect on a dependent variable. Subject characteristic variables make up most of 

these types of independent variables. One of the more common independent vari¬ 

ables of this kind is gender (female and male). So, if a researcher wanted to deter¬ 

mine if females and males differ on math skills, a math test would be given to repre¬ 

sentatives of both groups, and the test scores then compared. The math test would 

be the dependent variable. A general rule is that when the researcher manipulates a 

variable or assigns participants to groups according to some characteristic, that vari¬ 

able is the independent variable. Table 3.1 gives a comparison between the two types 

of independent variable and their relation to the dependent variable. The indepen¬ 

dent variable must have at least two levels or values. Notice in Table 3.1 that both 

situations have two levels for the independent variable. 
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Table 3.1 Relation of Manipulated and Nonm,amputated Independent Variables 

to the Dependent Variable 

Levels of Independent Variable 

TeachinffJVfethod .Gender 

Lecture Only 

Math Test Scores 

Lecture plus Video Female ^WMale 

Math Test Scores 

Dependent variables 

Math Test Scores Math Test Scores 
\yf. 

Dependent variables 

The dependent variable is of course the variable predicted to, whereas the in¬ 

dependent variable is predicted from. The dependent variable, Y, is the presumed 

effect, which varies concomitantly with changes or variations in the independent 

variable, X. It is the variable that is observed for variation as a presumed result of 

variation in the independent variable. The dependent variable is the outcome mea¬ 

sure that the researcher uses to determine if changes in the independent variable had 

an effect. In predicting from X to Y, we can take any value of X we wish, whereas the 

value of Y we predict to is “dependent on” the value of X we have selected. The de¬ 

pendent variable is ordinarily the condition we are trying to explain. The most com¬ 

mon dependent variable in education, for instance, is “achievement” or “learning.” 

We want to account for or explain achievement. In so doing we have a large number 

of possible Xs or independent variables from which to choose. 

When the relation between intelligence and school achievement is studied, intel¬ 

ligence is the independent and achievement is the dependent variable. (Is it conceiv¬ 

able that it might be the other way around?) Other independent variables that can be 

studied in relation to the dependent variable achievement, are social class, methods 

of teaching, personality types, types of motivation (reward and punishment), atti¬ 

tudes toward school, class atmosphere, and so on. When the presumed determinants 

of delinquency are studied, such determinants as slum conditions, broken homes, 

lack of parental love, and the like, are independent variables and, naturally, delin¬ 

quency (more accurately, delinquent behavior) is the dependent variable. In the frus¬ 

tration-aggression hypothesis, frustration is the independent variable and aggression 

the dependent variable. Sometimes a phenomenon is studied by itself, and either an 

independent or a dependent variable is implied. This is the case when teacher behav¬ 

iors and characteristics are studied. The usual implied dependent variable is achieve¬ 

ment or child behavior. Teacher behavior can of course be a dependent variable. 

Consider an example in nursing science. When cognitive and functional measures of 

Alzheimer’s patients are compared between traditional nursing homes and special 

care units (SCU), the independent variable is the place of care. The dependent vari¬ 

ables are the cognitive and functional measures (Swanson, Maas, & Buckwalter 
1994). 
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The relation between an independent variable and a dependent variable can per¬ 

haps be more clearly understood if we lay out two axes at right angles to each other. 

One axis represents the independent variable and the other represents the dependent 

variable. (When two axes are at right angles to each other, they are called orthogonal 

axes.) Following mathematical custom, x, the independent variable, is the horizontal 

axis and y, the dependent variable, is the vertical axis (x is called the abscissa and y the 

ordinate). The values for x are laid out on the A-axis, andy values on they-axis. 

A very common and useful way to “see” and interpret a relation is to plot the 

pairs of xy values, using the x and y axes as a frame of reference. In a study of child 

development, let us suppose that we have two sets of measures. The x measures 

chronological age and the y measures reading age. Reading age is a so-called growth 

age. Seriatim measurements of individuals’ growths—in height, weight, intelligence, 

and so forth — are expressed as the average chronological age at which they appear in 

the standard population. 

x: Chronological Age (in Months) y: Reading Age (in Months) 

72 48 

84 62 

96 69 

108 71 

120 100 

132 112 

These measures are plotted in Figure 3.3. 
The relation between chronological age (CA) and reading age (RA) can now be 

“seen” and roughly approximated. Note that there is a pronounced tendency (as 

might be expected) for more advanced CA to be associated with higher RA, medium 

CA with medium RA, and less advanced CA with lower RA. In other words, the rela¬ 

tion between the independent and dependent variables, in this case between CA and 

RA, can be seen from a graph such as shown in Figure 3.3. A straight line has been 

drawn in to “show” the relation. It is a rough average of all the points of the plot. 

Note that if one has knowledge of independent variable measures and a relation such 

as that shown in Figure 3.3, one can predict—with considerable accuracy—the de¬ 

pendent variable measures. Plots like this can, of course, be used with any indepen¬ 

dent and dependent variable measures. 
The student should be alert to the possibility of a variable being an independent 

variable in one study and a dependent variable in another, or even both in the same 

study. An example is job satisfaction. A majority of the studies involving job satisfac¬ 

tion use it as a dependent variable. Day and Schoenrade (1997) show the effect of 

sexual orientation on work attitudes. One of these work attitudes is job satisfaction. 
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[U Figure 3.3 

Likewise, Hodson (1989) studies gender differences in job satisfaction. Scott, Moore, 

and Miceli (1997) find job satisfaction linked to the behavior patterns of workaholics. 

There are studies where job satisfaction is used as an independent variable. Meiksins 

and Watson (1989) show how much job satisfaction influences the professional au¬ 

tonomy of engineers. Studies by Somers (1996); Francis-Felsen, Coward, Hogan, 

and Duncan (1996); and Hutchinson and Turner (1988) examined job satisfaction’s 
effect on nursing personnel turnover. 

Another example is anxiety. Anxiety has been studied as an independent variable 

affecting the dependent variable achievement. Oldani (1997) found mother’s anxiety 

during pregnancy influenced the achievement (measured as success in the music in¬ 

dustry) of the offspring. Capaldi, Crosby, and Stoolmiller (1996) used the anxiety lev¬ 

els of teenage boys to predict the timing of their first sexual intercourse. Onwueg- 

buzie and Seaman (1995) studied the effects of test anxiety on test performance in a 

statistics course. Anxiety can also be readily conceived and used as a dependent vari¬ 

able. For example, it could be used to study the difference between types of culture, 

socioeconomic status and gender (see Guida & Ludlow, 1989; Murphy, Olivier’ 

Monson, & Sobol, 1991). In other words, the independent and dependent variable 

classification is really a classification of uses of variables rather than a distinction be¬ 
tween different kinds of variables. 



CHAPTER 3 ■ Constructs, Variables, and Definitions 51 

tive and Attribute Variables 

A classification that will be useful later in our study of research design is based on the 

distinction between experimental and measured variables. It is important when plan¬ 

ning and executing research to distinguish between these two types of variables. Ma¬ 

nipulated variables will be called active variables; measured variables will be called at¬ 

tribute variables. For example, Colwell, Foreman, and Trotter (1993) compared two 

methods of treating pressure ulcers of bedridden patients. The dependent variables 

were efficacy and cost effectiveness. The two treatment methods were moist gauze 

dressing and hydrocolloid wafer dressing. The researchers had control over who got 

which type of treatment. As such, the treatment or independent variable was an ac¬ 

tive or manipulated variable. 
Any variable that is manipulated, then, is an active variable. “Manipulation” 

means, essentially, doing different things to different groups of subjects, as we will 

see clearly in a later chapter where we discuss in depth the differences between ex¬ 

perimental and nonexperimental research. When a researcher does one thing to one 

group (for example, positively reinforces a certain kind of behavior), and does some¬ 

thing else to another group, or has the two groups follow different instructions, this 

is manipulation. When one uses different methods of teaching, or rewards the sub¬ 

jects of one group and punishes those of another, or creates anxiety through worri¬ 

some instructions, one is actively manipulating the variables methods, reinforcement, 

and anxiety. 
Another related classification, used mainly by psychologists, is stimulus and re¬ 

sponse variables. A stimulus variable is any condition or manipulation by the experi¬ 

menter of the environment that evokes a response in an organism. A response variable 

is any kind of behavior of the organism. The assumption is made that for any kind of 

behavior there is always a stimulus. Thus the organism’s behavior is a response. This 

classification is reflected in the well-known equation: R = / (O, 5), which is read: 

“Responses are a function of the organism and stimuli,” or “Response variables are a 

function of organismic variables and stimulus variables.” 
Variables that cannot be manipulated are attribute variables or subject-characteristic 

variables. It is impossible, or at least difficult, to manipulate many variables. All hu¬ 

man characteristic variables such as intelligence, aptitude, gender, socioeconomic sta¬ 

tus, conservatism, field dependence, need for achievement, and attitudes are attribute 

variables. Subjects come to our studies with these variables (attributes) ready-made 

or preexisting. Early environment, heredity, and other circumstances have made indi¬ 

viduals what they are. Such variables are also called organismic variables. Any prop¬ 

erty of an individual, any characteristic or attribute, is an organismic variable. It is 

part of the organism, so to speak. In other words, organismic variables are those 

characteristics that individuals have in varying degrees when they come to the re¬ 

search situation. The term individual differences implies organismic variables. One of 

the more common attribute variables in the social and behavioral sciences is gender: 

female-male. Studies designed to compare gender differences involve an attribute 

variable. Take, for example, the study by de Weerth and Kalma (1993). These 

researchers compared females to males on their response to spousal or partner 
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infidelity. The attribute variable here is gender. Gender is not a manipulated variable. 

There are studies where a test score or a collection of test scores were used to divide 

a group of people into two or more groups. In this case the group differences are re¬ 

flected in an attribute variable. For example, the study by Hart, Forth, and Hare 

(1990) administered a psychopathology test to male prison inmates. Based on their 

scores, inmates were assigned to one of three groups: low, medium, and high. They 

were then compared on their score on a battery of neuropsychological tests. The 

level of psychopathology preexists and is not manipulated by the researcher. If an in¬ 

mate scored high, he was placed in the high group. Hence psychopathology is an at¬ 

tribute variable in this study. There are some studies where the independent variable 

could have been manipulated; however, for logistical or legal reasons, they were not. 

An example of where the independent variable could have been manipulated but was 

not is the study by Swanson, Maas, and Buckwalter (1994). These researchers com¬ 

pared different care facilities’ effect on cognitive and functional measures of 

Alzheimer’s patients. The attribute variable was the type of facility. The researchers 

were not allowed to place patients into the two different care facilities (traditional 

nursing home versus special care unit). The researchers were forced to study the sub¬ 

jects after they had been assigned to a care facility. Hence the independent variable 

can be thought of as a nonmanipulated variable. The researchers inherited intact 
groups. 

The word attribute, moreover, is accurate enough when used with inanimate ob¬ 

jects or referents. However, organizations, institutions, groups, populations, homes, 

and geographical areas also have attributes—active attributes. Organizations are vari¬ 

ably productive; institutions become outmoded; groups differ in cohesiveness; geo¬ 
graphical areas vary widely in resources. 

This active attribute distinction is general, flexible, and useful. We will see that 

some variables are by their very nature always attributes, but other variables that are 

attributes can also be active. This latter characteristic makes it possible to investigate 

the same relations in differing ways. Again, using the variable anxiety example, we 

can measure the anxiety of subjects. Anxiety is in this case obviously an attribute vari¬ 

able. However, we can also manipulate anxiety by inducing different degrees of anxi¬ 

ety. For example, telling the subjects of one experimental group that the task they are 

about to do is difficult, that their intelligence is being measured, and that their fu¬ 

tures depend on the scores they get. The subjects of another experimental group are 

told to do their best but to relax. They are told the outcome is unimportant and will 

have no influence on their futures. Actually, we cannot assume that the measured (at¬ 

tribute) and the manipulated (active) “anxieties” are the same. We may assume that 

both are anxiety in a broad sense, but they are certainly not the same. 

V 

Continuous and Categorical Variables 

A distinction especially useful in the planning of research and the analysis of data be¬ 

tween continuous and categorical variables has already been introduced. Its later im¬ 
portance, however, justifies more extended consideration. 
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A continuous variable is capable of taking on an ordered set of values within a cer¬ 

tain range. This definition means, first, that the values of a continuous variable re¬ 

flect at least a rank order, a larger value of the variable meaning more of the property 

in question than a smaller value. The values yielded by a scale to measure depen¬ 

dency, for instance, express differing amounts of dependency from high through 

medium to low. Second, continuous measures in actual use are contained in a range, 

and each individual obtains a “score” within that range. A scale to measure depen¬ 

dency may have the range 1 through 7. Most scales in use in the behavioral sciences 

also have a third characteristic: there is a theoretically infinite set of values within the 

range. (Rank-order scales are somewhat different; they will be discussed later in the 

book.) That is, a particular individual’s score may be 4.72 rather than simply 4 or 5. 

Categorical variables, as we will call them, belong to a kind of measurement called 

nominal (explained in Chapter 25). In nominal measurement, there are two or more 

subsets of the set of objects being measured. Individuals are categorized by their pos¬ 

session of the characteristic that defines any subset. “To categorize” means to assign 

an object to a subclass (or subset) of a class (or set) on the basis of the object’s having 

or not having the characteristic that defines the subset. The individual being catego¬ 

rized either has the defining property or does not have it; it is an all-or-none kind of 

thing. The simplest examples are dichotomous categorical variables: female-male, 

Republican-Democrat, right-wrong. Polytomies—variables with more than two 

subsets or partitions—are fairly common, especially in sociology and economics: re¬ 

ligious preference, education (usually), nationality, occupational choice, and so on. 

Categorical variables and nominal measurement have simple requirements: all 

the members of a subset are considered the same and all are assigned the same name 

(nominal) and the same numeral. If the variable is religious preference, for instance, 

all Protestants are the same, all Catholics are the same, and all “others” are the same. 

If an individual is a Catholic (operationally defined in a suitable way), that person is 

assigned to the category “Catholic” and also assigned a “1” in that category. In brief, 

that person is counted as a “Catholic.” Categorical variables are “democratic.” There 

is no rank order, or greater than and less than, among the categories, and all mem¬ 

bers of a category are assigned the same value. 
The expression “qualitative variables” has sometimes been applied to categorical 

variables, especially to dichotomies, probably in contrast to “quantitative variables” 

(our continuous variables). Such usage reflects a somewhat distorted notion of what 

variables are. They are always quantifiable, or they are not variables. If x has only two 

subsets and can take on only two values (1 and 0), these are still values, and the vari¬ 

able varies. If a is a polytomy, like political affiliation, we quantify again by assigning 

integer values to individuals. If an individual, say, is a Democrat, then put that person 

in the Democrat subset. That individual is assigned a 1. All individuals in the Demo¬ 

crat subset would be assigned a value of 1. It is extremely important to understand 

this because, for one thing, it is the basis of quantifying many variables, even experi¬ 

mental treatments, for complex analysis. In multiple regression analysis, as we will 

see later, all variables — continuous and categorical — are entered as variables into the 

analysis. Earlier, the example of gender was given, 1 being assigned to one gender 

and 0 to the other. We set up a column of Is and Os just as we would set up a column 



54 PART One ■ The Language and Approach of Science 

of dependency scores. The column of Is and Os is the quantification of the variable 

gender. There is no mystery here. Such variables have been called “dummy vari¬ 

ables.” Since they are highly useful and powerful, even indispensable in modern re¬ 

search data analysis, they need to be understood clearly. A deeper explanation of this 

can be found in Kerlinger and Pedhazur (1973) and Chapter 34 of this book. The 

method is easily extended to polytomies. A polytomy is a division of the members of a 
group into three or more subdivisions. 

Constructs, Observables, and Latent Variables 

In much of the previous discussion of this chapter it has been implied, though not 

explicitly stated, that there is a sharp difference between constructs and observed 

variables. Moreover, we can say that constructs are nonobservables; and variables, 

when operationally defined, are observables. This distinction is important because, if 

we are not always keenly aware of the level of discourse we are on when talking about 
variables, we can hardly be clear about what we are doing. 

An important and fruitful expression, which we will encounter and use exten¬ 

sively later in this book, is “latent variable.” A latent variable is an unobserved “en¬ 

tity presumed to underlie observed variables. The best-known example of an impor¬ 

tant latent variable is “intelligence.” We can say that three ability tests—verbal, 

numerical, and spatial—are positively and substantially related. This means, for the 

most part, that people high on one tend to be high on the others; similarly, persons 

low on one tend to be low on the others. We believe that something is common to 

the three tests or observed variables, and name this something “intelligence.” It is a 
latent variable. 

We have encountered many examples of latent variables in previous pages: 

achievement, creativity, social class, job satisfaction, religious preference, and so on. 

Indeed, whenever we utter the names of phenomena on which people or objects vary, 

we are talking about latent variables. In science, our real interest is more in the rela¬ 

tions among latent variables than it is in the relations among observed variables, be¬ 

cause we seek to explain phenomena and their relations. When we enunciate a the¬ 

ory, we enunciate in part systematic relations among latent variables. We are not too 

interested in the relation between observed frustrated behaviors and observed ag¬ 

gressive behaviors, for example, though we must of course work with them at the 

empirical level. We are really interested in the relation between the latent variable 
frustration and the latent variable aggression. 

We must be cautious, however, when dealing with nonobservables. Scientists, us¬ 

ing such terms as “hostility,” “anxiety,” and “learning,” are aware that they are talk¬ 

ing about invented constructs. The “reality” of these constructs is inferred from be¬ 

havior. If they want to study the effects of different kinds of motivation, they must 

know that “motivation” is a latent variable, a construct invented to account for pre¬ 

sumably “motivated” behavior. They must know that its “reality” is only postulated. 

They can only judge that youngsters are motivated or not motivated by observing 

their behaviors. Still, in order to study motivatidn, they must measure or manipulate 
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it. But they cannot measure it directly because it is, in short, an “in-the-head” vari¬ 

able, an unobservable entity, a latent variable. The construct was invented for “some¬ 

thing” presumed to be inside individuals, “something” prompting them to behave in 

such-and-such a manner. This means that researchers must always measure pre¬ 

sumed indicators of motivation and not motivation itself. They must, in different 

words, always measure some kind of behavior, be it marks on paper, spoken words, or 

meaningful gestures, and then draw inferences about presumed characteristics—or 

latent variables. 
Other terms have been used to express more or less the same ideas. For example, 

Tolman (1951 pp. 115-129.) calls constructs intervening variables. Intervening vari¬ 

able is a term invented to account for internal, unobservable psychological processes 

that in turn account for behavior. An intervening variable is an “in-the-head” vari¬ 

able. It cannot be seen, heard, or touched. It is inferred from behavior. “Hostility” is 

inferred from presumably hostile or aggressive acts. “Anxiety” is inferred from test 

scores, skin responses, heartbeat, and certain experimental manipulations. Another 

term is “hypothetical construct.” Since this expression means much the same as la¬ 

tent variable with somewhat less generality, we need not pause over it. We should 

mention, however, that “latent variable” appears to be a more general and applicable 

expression than “intervening variable” and “hypothetical construct,” because it can 

be used for virtually any phenomena that presumably influence or are influenced by 

other phenomena. In other words, “latent variable” can be used with psychological, 

sociological, and other phenomena. “Latent variable” seems to be the preferable 

term because of its generality. Also, because it is now possible, in the analysis of co- 

variance structures approach, to assess the effects of latent variables on each other 

and on so-called manifest or observed variables. This rather abstract discussion will 

later be made more concrete and, it is hoped, meaningful. We will then see that the 

idea of latent variables and the relations between them is an extremely important, 

ffuit-ful, and useful one, that is helping to change fundamental approaches to re¬ 

search problems. 

Examples of Variations and Operational Definitions 

A number of constructs and operational definitions have already been given. To illus¬ 

trate and clarify the preceding discussion, especially where the distinction was made 

between experimental and measured variables and between constructs and opera¬ 

tionally defined variables, several examples of constructs or variables and operational 

definitions are given below. If a definition is experimental, it is labeled (E); if it is 

measured, it is labeled (M). 
Operational definitions differ in degree of specificity. Some are quite closely 

tied to observations. “Test” definitions, like “intelligence is defined as a score on X 

intelligence test,” are very specific. A definition like “frustration is prevention from 

reaching a goal” is more general and requires further specification to be measurable. 

Social Class “. . . two or more orders of people who are believed to be, and are ac¬ 

cordingly ranked by the members of a community, in socially superior and inferior 
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positions” (M) (Warner & Lunt, 1941, p. 82). To be operational, this definition has to 

be specified by questions aimed at people’s beliefs about other people’s positions. This 

is a subjective definition of social class. Social class, or social status, is also defined 

more objectively by using such indices as occupation, income, and education, or by 

combinations of such indices. For example, “. . . we converted information about the 

education, occupation and income of the parents of the NLSY youths into an index of 

socioeconomic status (SES) in which the highest scores indicate advanced education, 

affluence and prestigious occupations. Lowest scores indicate poverty, meager educa¬ 

tion and the most menial jobs” (M) (Herrnstein & Murray, 1996, p. 131). 

Achievement (School, Arithmetic, and Spelling) Achievement is customarily defined 

operationally by citing a standardized test of achievement (for example, Iowa Tests of 

Basic Skills, Elementary or the Achievement Test of the Kaufman Assessment Bat¬ 

tery for Children [K-ABC]), by grade-point averages, or by teacher judgments. “Stu¬ 

dent achievement was measured by the combined test scores of reading and mathe¬ 

matics” (M) (Peng & Wright, 1994). Occasionally, achievement is in the form of a 

performance test. Silverman (1993) examined students on two skills in volleyball: the 

serve test and the forearm passing test. In the serve test, students received a score be¬ 

tween 0 and 4 depending on where the served ball dropped. The forearm passing test 

involved bouncing the ball off of one’s forearm. The criteria used was to count the 

number of times a student could pass the ball above an 8-foot line against the wall 

within a 1-minute period (M). Also used in some educational studies is an operational 

definition of the concept student achievement perception. Here, students are asked to 

evaluate themselves. The question used by Shoffner (1990) was “What kind of stu¬ 

dent do you think you are?” The response choices available were “A student,” “B stu¬ 
dent,” and “C student” (M). 

Achievement (Academic Performance) “As a result, grades for all students in all sec¬ 

tions were obtained and used to determine the section-rank for each student partici¬ 

pating in the study. Section percentile rank was computed for each of these students 

and was used as the dependent measure of achievement in the final data analysis” (M) 
(Strom, Hocevar, & Zimmer, 1990). 

Intrinsic Motivation is defined operationally by Horn, Berger, et al. (1994) as 

The cumulative amount of time that each student played with the pattern blocks 
with the reward system absent” (M). 

Popidarity. Popularity is often defined operationally by the number of sociomet¬ 

ric choices an individual receives from other individuals (in his or her class, play 

group, and so on). Individuals are asked: “With whom would you like to work"1” 

“With whom would you like to play?” and the like. Each individual is required to 

choose one, two, or more individuals from his or her group on the basis of such cri¬ 
terion questions (M). 

Task Involvement “. . . each child’s behavior during a lesson was coded every 6 

sec. as being appropriately involved, or deviant. The task involvement scores for a 

lesson was the percentage of 6-sec. units in which the children were coded as appro¬ 
priately involved” (M) (Kounin & Doyle, 1975). 

Reinforcement. Reinforcement definitions come in a number of forms Most in¬ 

volve, in one way or another, the principle of reward. However, both positive and 
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negative reinforcement may be used. Specific experimental definitions of “reinforce¬ 

ment” follow. 

In the second 10 minutes, every opinion statement S made was recorded by E 

and reinforced. For two groups, E agreed with every opinion statement by saying: 

“Yes, you’re right,” “That’s so,” or the like, or by nodding and smiling affirmation if 

he could not interrupt (E). 

. . . the model and the child were administered alternately 12 different sets of 

story items. ... To each of the 12 items, the model consistently expressed judg¬ 

mental responses in opposition to the child’s moral orientation . . . and the ex¬ 

perimenter reinforced the model’s behavior with verbal approval responses such 

as “Very good,” “That’s fine,” and “That’s good.” The child was similarly rein¬ 

forced whenever he adopted the model’s class of moral judgments in response to 

his own set of items [this is called “social reinforcement”] (E) (Bandura & Mac¬ 

Donald, 1994). 

The teacher gives verbal praise each time the child exhibits the target behavior. 

The target behaviors are attending to instruction, schoolwork, and responding aloud. 

The recording is done every 15 seconds (E) (Martens, Hiralall, & Bradley, 1997). 

Attitudes Toward AIDS is defined by an 18-item scale. Each item consisted of a 

Likert-type format reflecting different attitudes toward AIDS patients. Some sam¬ 

ple items are: “People with AIDS should not be permitted to use public toilets,” 

and “There should be mandatory testing of all Americans for AIDS” (M) (Lester, 

1989). 
Borderline Personality is defined by Comrey (1993) as having low scores on three 

scales of the Comrey Personality Scales. The three scales are: Trust versus Defen¬ 

siveness, Social Conformity versus Rebelliousness, and Emotional Stability versus 

Neuroticism. 
Employee Delinquency is defined operationally as a combination of three variables. 

The variables are the number of chargeable accidents, the number of warning letters, 

and the number of suspensions (M) (Hogan & Hogan, 1989). 
Religiosity is defined as a score on the Francis Scale of Attitudes toward Chris¬ 

tianity. This scale consists of 24 items. Each item has a Likert-type response scale. 

Sample items include: “Saying my prayers helps me a lot,” and “God helps me to 

lead a better life” (M) (Gillings & Joseph, 1996). Religiosity should not be confused 

with religious preference. Here religiosity refers to the strength of devotion to one’s 

chosen religion. 
Self-esteem is a manipulated independent variable in the study by Steele, Spencer, 

and Lynch (1993). Here subjects are given a self-esteem test, but when they are given 

feedback, the information on the official-looking feedback report is bogus. Subjects 

of the same measured level of self-esteem are divided into three feedback groups: 

positive, negative, and none. In the positive feedback condition (positive self-esteem), 

subjects are described with statements such as clear thinking. Those in the negative 

group (negative self-esteem) are given adjectives like “passive in action.” The “no 

feedback” group are told that their personality profiles (self-esteem) were not ready 
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due to a backlog in scoring and interpretation (E). Most studies on self-esteem 

use a measured operational definition. In the above example, Steele, Spencer, and 

Lynch also used the Janis-Field Feelings of Inadequacy Self-esteem Scale (M). In an¬ 

other example, Luhtanen and Crocker (1992) define collective self-esteem as a score 

on a scale containing 16 Likert-type items. These items ask respondents to think 

about a variety of social groups and membership such as gender, religion, race, and 
ethnicity (M). 

Race is usually a measured variable. However, in a study by Annis and Coren- 

blum (1986), 83 Canadian Indian kindergartners and first graders were asked ques¬ 

tions on racial preferences and self-identity by either a white or Indian experimenter 

(E). The interest here was on whether or not the race of the experimenter influenced 
responses. 

Loneliness. One definition of this is a score on the UCLA Loneliness Scale. This 

scale includes items such as “No one really knows me well,” or “I lack companion¬ 

ship.” There is also the Loneliness Deprivation Scale that has items such as “I expe¬ 

rience a sense of emptiness,” or “There is no one who shows a particular interest in 
me” (M) (Oshagan & Allen, 1992). 

Halo. There have been many operational definitions of the halo effect. Balzer 

and Sulsky (1992) found and summarized 108 definitions that fit into six categories. 

One of the definitions states that halo is “. . . the average within-rate variance or 

standard deviation of ratings.” Another would be “comparing obtained ratings with 
true ratings provided by expert raters” (M). 

Memory: Recall and Recognition “. . . recall is to ask the participant to recite what 

he or she remembers of the items shown him or her, giving a point for each item that 

matches one on the stimulus list (M) (Norman, 1976, p. 97). “The recognition test 

consisted of 62 sentences presented to all subjects . . . subjects were instructed to rate 

each sentence on their degree of confidence that the sentence had been presented in 
the acquisition set” (M) (Richter & Seay, 1987). 

Social Skills. These can be operationally defined as a score on the Social Skills 

Rating Scale (Gresham & Elliot, 1990). There is the possibility of input from the 

student, parent and teacher. Social behaviors are rated in terms of frequency of oc¬ 

currence and also on the level of importance. Some social skill items include: “Gets 

along with people who are different [teacher],” “Volunteers to help family members 

with tasks [parent],” and “I politely question rules that may be unfair [student]” (M). 

Ingratiation. One of many impression management techniques (see Orpen, 1996; 

Gordon, 1996). Ingratiation is defined operationally as a score on the Kumar and 

Beyerlein (1991) Scale. This scale consisted of 25 Likert-type items and designed to 

measure the frequency that subordinates, in a superior-subordinate relationship, use 

mgratiatory tactics (M). Strutton, Pelton, and Lumpkin (1995) modified 5 the 

Kumar-Beyerlein scale. Instead of measuring ingratiation between and employee 

and employer-supervisor, it measured ingratiation behavior between a salesperson 
and a customer (M). 

Feminism. This is defined by a score on the Attitudes toward Women Question¬ 

naire. This instrument consists of 18 statements to which the respondent registers 

agreement on a 5-point scale. Items include:' “Men have held power for too long”; 

Beauty contests are degrading to women”; “Children of working mothers are bound 
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to suffer” (Wilson & Reading, 1989). 

Values. “Rank the ten goals in the order of their importance to you. (1) financial 

success; (2) being liked; (3) success in family life; (4) being intellectually capable; 

(5) living by religious principles; (6) helping others; (7) being normal, well-adjusted; 

(8) cooperating with others; (9) doing a thorough job; (10) occupational success” (M) 

(Newcomb, 1978). 
Democracy (Political Democracy) “The index [of political democracy] consists of 

three indicators of popular sovereignty and three of political liberties. The three 

measures of popular sovereignty are: (1) fairness of elections, (2) effective executive 

selection, and (3) legislative selection. The indicators of political liberties are: 

(4) freedom of the press, (5) freedom of group opposition, and (6) government sanc¬ 

tions” (M). Bollen (1979) gives operational details of the six social indicators in an 

appendix (pp. 585-586). This is a particularly good example of the operational defin¬ 

ition of a complex concept. Moreover, it is an excellent description of the ingredients 

of democracy. 
The benefits of operational thinking have been great. Indeed, operationalism has 

been and is one of the most significant and important movements of our times. Ex¬ 

treme operationalism, of course, can be dangerous because it clouds recognition of 

the importance of constructs and constitutive definitions in behavioral science, and 

because it can also restrict research to trivial problems. There can be little doubt, 

however, that it is a healthy influence. It is the indispensable key to achieving objec¬ 

tivity (without which there is no science), because its demand that observations must 

be public and replicable helps to put research activities outside of and apart from re¬ 

searchers and their predilections. And, as Underwood (1957, p. 53) has said in his 

classical text on psychological research: 

I would say that operational thinking makes better scientists. The operationist is 

forced to remove the fuzz from his empirical concepts . . . operationism facili¬ 

tates communication among scientists because the meaning of concepts so de¬ 

fined is not easily subject to misinterpretation. 

Chapter Summary 

1. A concept is an expression of an abstraction formed from generalization of par¬ 

ticulars, for example, weight. This expression is from observations of certain 

behaviors or actions. 
2. A construct is a concept that has been formulated so that it can be used in sci¬ 

ence. It is used in theoretical schemes. It is defined so that it can be observed 

and measured. 
3. A variable is defined as a property that can take on different values. It is a sym¬ 

bol to which values are assigned. 

4. Constructs and words can be defined by 

a. other words or concepts, 
b. description of an implicit or explicit action or behavior. 
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5. A constitutive definition is where constructs are defined by other constructs. 

6. An operational definition is where meaning is assigned by specifying the activi¬ 

ties or operations necessary to measure and evaluate the construct. Opera¬ 

tional definitions can give only limited meaning of constructs. They cannot 

completely describe a construct or variable. There are two types of opera¬ 
tional definitions: , 

a. measured—tells us how the variable or construct will be scaled. 

b. experimental — lays out the details of how the variable (construct) is ma¬ 
nipulated by the experimenter. 

7. Types of variables 

a. The independent variable is varied and has a presumed cause on another 

variable, the dependent variable. In an experiment, it is the manipulated 

variable. It is the variable under the control of the experimenter. In a non- 

experimental study, it is the variable that has a logical effect on the depen¬ 
dent variable. 

b. The dependent variable’s effect alters concomitantly with changes or varia¬ 
tions in the independent variable. 

c. An active variable is manipulated. Manipulation means that the experi¬ 
menter has control over how the values change. 

d. An attributive variable is measured and cannot be manipulated. A variable 

that cannot be manipulated is one where the experimenter has no control 
over the values of the variable. 

e. A continuous variable is capable of taking on an ordered set of values within 

a certain range. Between two values there are an infinite number of other 
values. These variables reflect at least a rank order. 

f. Categorical variables belong to a kind of measurement where objects are as¬ 

signed to a subclass or subset. The subclasses are distinct and nonoverlap¬ 

ping. All objects put into the same category are considered to have the 
same characteristic(s). 

g. Latent variables are unobservable entities. They are assumed to underlie 
observed variables. 

h. Intervening variables are constructs that account for internal unobservable 

psychological processes that account for behavior. It cannot be seen but is 
inferred from behavior. 

Study Suggestions 

1. Write operational definitions for five or six'of the following constructs. When 

possible, write two such definitions: an experimental and a measured defini¬ 
tion. 

reinforcement 

achievement 

punitiveness 

reading ability 
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underachievement 

leadership 

transfer of training 

level of aspiration 

organizational conflict 

political preference 

needs 

interests 

delinquency 

need for affiliation 

conformity 

marital satisfaction 

Some of these concepts or variables —for example, needs and transfer of 

training—may be difficult to define operationally. Why? 

2. Can any of the variables in 1, above, be both independent and dependent vari¬ 

ables? Which ones? 
3. It is instructive and broadening for specialists to read outside their fields. This 

is particularly true for students of behavioral research. It is suggested that the 

student of a particular field read two or three research studies in one of the 

best journals of another field. If you are in psychology, read a sociology jour¬ 

nal, for example, the American Sociological Review. If you are in education or 

sociology, read a psychology journal, for example, the Journal of Personality 

and Social Psychology or the Journal of Experimental Psychology. Students not in 

education can sample the Journal of Educational Psychology or the American Ed¬ 

ucational Research Journal. As you read, jot down the names of the variables 

and compare them to the variables in your own field. Are they primarily active 

or attribute variables? Note, for instance, that psychology’s variables are more 

“active” than sociology’s. What implications do the variables of a field have 

for its research? 
4. Reading the following articles is useful in learning and developing operational 

definitions. 

Kinnier, R. T. (1995). A reconceptualization of values clarification: Values 

conflict resolution. Journal of Counseling and Development, 74(1), 18-24. 

Lego, S. (1988). Multiple disorder: An interpersonal approach to etiology, 

treatment and nursing care. Archives of Psychiatric Nursing, 2(4), 231-235. 

Lobel, M. (1994). Conceptualizations, measurement, and effects of prenatal 

maternal stress on birth outcomes. Journal of Behavioral Medicine, 17(3), 

225-272. 
Navathe, P. D., & Singh, B. (1994). An operational definition for spatial dis¬ 

orientation. Aviation, Space <zb Environmental Medicine, 65(12), 1153 — 

1155. 
Sun, K. (1995). The definition of race. American Psychologist, 50(1), 43-44. 

Talaga, J. A., & Beehr, T. A. (1995). Are there gender differences in predicting 

retirement decisions? Journal of Applied Psychology, 80(1), 16-28. 

Woods, D. W., Miltenberger, R. G., & Flach, A. D. (1996). Habits, tics, and 

stuttering: Prevalence and relation to anxiety an somatic awareness. Be¬ 

havior Modification, 20(2), 216-225. 
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Sets 

■ Subsets 

s Set Operations 

■ Set Diagrams 

■ The Universal and Empty Sets: Set Negation 

m Set Operations with More than Two Sets 

m Partitions and Cross Partitions 

■ Levels of Discourse 

The concept of “set” is one of the most powerful and useful of mathematical ideas 

for understanding the methodological aspects of research. Sets and their elements 

are the primitive materials under which mathematics operates. Even if we are un¬ 

aware of it, sets and set theory are foundations of our descriptive, logical, and analyti¬ 

cal thinking and operating. They are the basis of virtually all else in this book. They 

are the foundations upon which we erect the complexities of numerical, categorical, 

and statistical analysis, even though we do not always make the set basis of our think¬ 

ing and work explicit. For example, set theory provides an unambiguous definition of 

relations. It helps one to approach and understand probability and sampling, and is 

first cousin to logic. It also helps one understand the highly important subject of 

categories and categorizing the objects of the world. Moreover, set thinking can even 

help one to understand that difficult problem of human communication: confusion 

caused by mixing levels of discourse. 
Science works basically with group, class, or set concepts. When scientists dis¬ 

cuss individual events or objects, they do so by considering such objects as members 

of sets of objects. But this is true of human discourse in general. We say “goose,” but 

the word goose is meaningless without the concept of a goose-like group called 

65 
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“geese.” When we talk about a child and the child’s problems, we inevitably must talk 

of the groups, classes, or sets of objects to which the child belongs. This would 

include a seven-year-old (first set), second grade (second set), bright (third set), and 

healthy (fourth set), boy (fifth set). 

According to Farlow (1988) and Smith (1992), a set is a well-defined collection of 

objects. A set is well defined when there is no doubt as to whether a given object does 

or does not belong to the set. Terms like class, school, family, flock, and group indi¬ 

cate sets. There are two ways to define a set: (1) by listing all the members of the set, 

and (2) by giving a rule for determining whether objects do or do not belong to the 

set. Call (1) a “list” definition and (2) a “rule” definition. In research, the rule 

definition is usually used, although there are cases where all members of a set are 

actually or imaginatively listed. For example, suppose we study the relation between 

voting behavior and political preference. Political preference can be defined as being a 

registered Republican or Democrat. We then have a large set of all people with polit¬ 

ical preferences with two smaller subsets: the subset of Republicans and the subset of 

Democrats. This is a rule definition of sets. Of course, we might list all registered 

Democrats and all registered Republicans to define the two subsets, but this is often 

difficult if not impossible. Besides, it is unnecessary. The rule is usually sufficient. 

Such a rule might be: A Republican is any person who is registered with the Republi¬ 

can Party. Another such rule might be: A Republican is any person who says he or 
she is a Republican. 

Subsets 

A subset of a set is a set that results from selecting sets from an original set. Each 

subset of a set is part of the original set. More succinctly and accurately, the set B is a 

subset of a set A whenever all the elements of B are elements of A (Kershner & 

Wilcox, 1974). We designate sets by capital letters: A, B, K, L, X, Y, and so forth. If B 

is a subset of A we write B C A, which means “B is a subset of A,” “B is contained in 
A,” or “All members of B are also members of A.” 

Whenever a population is sampled, the resulting samples are subsets of the 

population. Suppose an investigator samples four eleventh-grade classes out of all the 

eleventh-grade classes in a large high school. The four classes form a subset of the 

population of all the eleventh-grade classes. Each of the four classes of the sample 

can also be considered a subset of the four classes—and also of the total population 

of classes. All the students of the four classes can be broken down into two subsets: 

boys and girls. Whenever a researcher breaks down or partitions a population or a 

sample into two or more groups, subsets are created using a “rule” or criterion to do 

so. Examples are numerous: religious preferences into Protestant, Catholic, Jew; 

intelligence into high and low; and so on. Even experimental conditions can be so 

viewed. The classic experimental - control group idea is a set-subset idea. Individuals 

are put into the experimental group; this is a subset of the whole sample. All 
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other individuals used in the experiment (the control-group individuals) also form a 
subset. 

set Op erations 

There are two basic set operations: intersection and tmion. An operation is simply 

“a doing-something-to.” In arithmetic we add, subtract, multiply, and divide. We 

“intersect” and “union” sets. We also “negate” them. When dealing with sets, there 

are logical operators involved. For intersection the logical operator is “and.” For 

union, the proper logical operator is “or.” For negation, the operator is “not.” For 

more on logical operators see Udolf (1973). 

Intersection is the overlapping of two or more sets; it is the elements shared 

in common by the two or more sets. The symbol for intersection is H (read 

“intersection” or “cap”). The intersection of the sets A and B is written A D B, 

and A D B is itself a set. More precisely, it is the set that contains those elements 

of A and B that belong to both A and B. Intersection is also written A • B, or simply 

AB. 

Let A = {0, 1, 2, 3}; let B = {2, 3, 4, 5}. (Note that braces “{ }” are used to 

symbolize sets. ) Then A D B = {2, 3}. This is shown in Figure 4.1. A fl B, or {2, 3}, 

is a new set composed of the members common to both sets. Note that A fl B also 

indicates the relation between the sets — the elements shared in common by A 

and B. 

The union of two sets is written A U B. A U B is a set that contains all the 

members of A and all the members of B. Mathematicians define A U B as a set that 

contains those elements that belong either to A or to B, or to both. In other words, 

we “add” the elements of A to those of B to form the new set A U B. Take the 

example in Figure 4.1. A included 0, 1,2, and 3; B included 2, 3, 4, and 5. A U B = 

(0, 1, 2, 3, 4, 5}. The union of A and B in Figure 4.1 is indicated by the whole area of 

the two circles. Note that we do not count the members of A fl B (2, 3}, twice. 

Examples of union in research would be putting males and females together, 

M U F, or Republican and Democrats together, R U D. Let A be all the children of 

the elementary schools, and B be all the children of the secondary schools of X 

school district. Then A U B is the set of all the school children in the district. 

d Figure 4.1 

A B 
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The Universal and Empty Sets,- Set Negation 

The universal set, labeled U, is the set of all elements under discussion. It can be 

called the universe of discourse or level of discourse. (It is much like the terms population 

and universe in sampling theory.) This means that we limit our discussion to the fixed 

set of elements — all of them—from this fixed .class, U. If we were to study determi¬ 

nants of achievement in the elementary school, for example, we might define U as all 

pupils in grades 1 through 6. We can define U, alternatively, as the scores on an 

achievement test of these same pupils. Subsets of U, perhaps to be studied separately, 

might be the scores of Grade 1 pupils, the scores of Grade 2 pupils, and so on. 

U can be large or small. Returning to the example of Figure 4.1, A = {0, 1, 2, 3} 

and B = {2, 3, 4, 5}.lf A U B = U, then U = {0, 1, 2, 3, 4, 5}. Here Uis quite small. 

LetT = [Jane, Mary, Phyllis, Betty}, and B = {Tom, John, Paul}. If these individuals 

are all we are talking about, then U — {Jane, Mary, Phyllis, Betty, Tom, John, Paul}. 

And, of course, U = A U B. This is another example of a small U. In research Us are 

more often large. If we sample the schools of a large county, then U is all the schools 

in the county, a rather large U. U might also be all the children or all the teachers in 

these schools, a still larger U. 

In research, it is important to know the U one is studying. Ambiguity in the defi¬ 

nition of U can lead to erroneous conclusions. It is known, for example, that social 

classes differ in incidences of neurosis and psychosis (Murphy, Olivier, Monson, & 

Sobol, 1991). If we were studying presumed determinants of mental illness and used 

only middle-class persons as subjects, our conclusions would of course be limited to 

the middle class. It is easy to generalize to all people but such generalizations can be 

grossly in error. In such a case we have generalized to all people, U, when in fact we 

have studied our relations only in Uu middle class. It is quite possible, perhaps even 

likely, that the relations are different in U2, working class. 
The empty set is the set with no members in it. We label it E. It can also be called 

the null set. Though it may seem peculiar to the student that we bother with sets 

with no members, the notion is quite useful, even indispensable. With it we can con¬ 

vey certain ideas economically and unambiguously. To indicate that there is no rela¬ 

tion between two sets of data for example, we can write the set equation A D B = E, 

which simply says that the intersection of the sets A and B is empty, meaning that no 

member of A is a member of B, and vice versa. 

Let A = {1,2, 3}; let B = {4, 5, 6}. Then A fl B = E. Clearly there are no mem¬ 

bers common to A and B. The set of possibilities of the Democratic and Republican 

presidential candidates both winning the national election is empty (E). The set of 

occurrences of rain without clouds is empty (E). The empty set, then, is another way 

of expressing the falsity of propositions. In this case we can say that the statement 

“Rain without clouds” is false. In set language this can be expressed P D Q = E, 

where P equals the set of all occurrences of rain, Q equals the set of all occurrences of 

clouds, and ~Q equals the set of all occurrences of no clouds. 

The negation or complement of the set A is written ~A. It means all members of U 

not in A. If we let A equal all men, when U equals all human beings, then ~A equals 

all women (not-men). Simple dichotomization seems to be a fundamental basis of 
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HI Figure 4.2 

human thinking. Categorization is necessary in order to think: one must, at the most 

elementary level, separate objects into those belonging to a certain set and those not 

belonging to that set. We must distinguish between human and not-human, me and 

not-me, early and not-early, good and not-good. 

If U = {0, 1, 2, 3, 4}, and A = {0, 1}, then ~A = {2, 3, 4}. A and —A are of course 

subsets of U. An important property of sets and their negation is expressed in the set 

equation: A U ~A = U. Note, too, that A D ~A = E. 

Set Diagrams 

We now pull together and illustrate the basic set ideas already presented by diagram¬ 

ming them. Sets can be depicted using various figures, but rectangles and circles are 

ordinarily used. They have been adapted from a system invented by John Venn, a 

nineteenth-century logician. In this book rectangles, circles, and ovals will be used. 

Look at Figure 4.2 where U is represented by the rectangle. All members of the uni¬ 

verse under discussion are in U. All members of U not in A form another subset of 

U: ~A. Note, again, that A U ~A = U. Note, too, that A D ~A = E; that is, there 

are no members common to both A and ~A. 

Next we depict, (Figure 4.3) two sets, A and B, both subsets of U. From the dia¬ 

gram it can be seen that A D B = E. We adopt a convention: when we wish to indi¬ 

cate a set or a subset, we shade it either horizontally, vertically, or diagonally. The set 

A U B has been shaded in Figure 4.3. 

H Figure 4.3 

AUB 



70 Part Two m Sets, Relations, and Variance 

M Figure 4.4 

Intersection, probably the most important set notion from the point of view of 
this book, is indicated by the shaded portion in Figure 4.4. The situation can be 
expressed by the equation 4 fl B 4. E; the intersection of the sets A and B is not 
empty. 

When two sets, A and B, are equal, they have the same set elements or members. 
The Venn diagram would show two congruent circles in U. In effect, only one circle 
would show. When A = B, then AnB = AL)B = A = B. 

We diagram A C 5; A is a subset of B, in Figure 4.5. B has been shaded horizon¬ 
tally, A vertically. Note that A U B = B (whole shaded area) and A n B - A (area 
shaded both horizontally and vertically). All members of A are also in B, or all as are 
also bs, if we let a equal any member of A and b equal any member of B. 

Set Op erations with More Than Two Sets 

Set operations are not limited to two subsets of U. Let A, B, and C be three subsets 
of U. Suppose the intersection of these three subsets of U is not empty, as shown in 
Figure 4.6. The triply hatched area shows A D B n C. There are four intersections, 
each hatched differently: A H B, A D C, B (1 C, and A H B Pi C. 

U Figure 4.5 

Ac B 
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M Figure 4.6 

Although four or more sets can be diagrammed, such diagrams become cumber¬ 

some and not easy to draw and inspect. There is no reason, however, why the inter¬ 

section and union operations cannot be applied symbolically to four or more sets. 

Partitions and Cross Partitions 

Our discussion of sets has been abstract and perhaps a bit dull. We leave the discus¬ 

sion by examining an aspect of set theory of great importance for clarifying princi¬ 

ples of categorization, analysis, and research design: partitioning. U can be broken 

down (partitioned) into subsets that do not intersect and that exhaust all of U. When 

this is done the process is called partitioning. Formally stated, partitioning breaks 

down a universal set into subsets that are disjoint and exhaustive of the universal set. 

Let U be a universe, and let A and B be subsets of U that are partitions. We label 

subsets of A\ Au A2 ... ,Ak and of B: Bh B2 . . . , Brn. Partitions are usually set off by 

square brackets, whereas sets and subsets are set off by curled brackets or braces. 

Now, \A\ A2] and [I?! B2], for example, are partitions if: 

Ai U A2 — Uand Ax H A2 = E 

Bx U B2 = U and Bx D B2 = E 

Diagrams make this clearer. The partitioning of U (represented by a rectangle) 

separately into the subsets Ax and A2 and into Bx and B2, is shown in Figure 4.7. Both 

partitionings have been performed on the same U. We have met examples of such 

partitions: male-female, middle class-working class, high income-low income, 

Democrat-Republican, pass-fail, approve-disapprove, and so on. Some of these are 

true dichotomies; some are not. 
It is possible to put the two partitions together into a cross partition. A cross parti¬ 

tion is a new partitioning that arises from successively partitioning the same set U by 

forming all subsets of the form A fl B. In other words, perform the A partitioning, 
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[U Figure 4.7 

b2 

A 
A 

\ 

a2 

U U 

then the B partitioning on the same U, or the same square. This is shown in Figure 

4.8. Each cell of the partitioning is an intersection of the subsets of A and B. We shall 

find in a later chapter that such cross-partitioning is very important in research 

design and in the analysis of data. 

Anticipating later developments, we give a research example of a cross partition. 

Such examples are called crossbreaks or crosstabs. Crossbreaks or crosstabs provide 

the most elementary way to show a relation between two variables. The example is 

from Miller and Swanson’s (1960) study of child-rearing practices. One of the tables 

they use is a crosstab in which the variables are social class (middle class and working 

class) and weaning (early and late). The data converted to percentages are given 

in Table 4.1. The cell frequencies reported by Miller and Swanson are given in 

the lower-right corner of each cell. Evidently, there is a relation between social class 

and weaning, middle-class mothers show a tendency to wean their children earlier 

than working-class mothers do. The two conditions of disjointness and exhaustive¬ 

ness are satisfied. The intersection of any two cells is empty, for example, (Ai D Bt) 

(Ai n B2) H (A2 H Bt) n (A2 n B2) = E. And the cells exhaust all the cases: (A1 D B^ 
u (Aj n b2) u (A2 n B{) u (A2 n b2) = u. 

Partitioning, of course, extends beyond two partitions. Instead of dichotomies, 

we can have polytomies; instead of success-failure, for instance, we can have 

GU Figure 4.8 
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HH Table 4.1 Crossbreak Table: Relation between Social Class and Weaning (Miller 
& Swanson Study) 

Weaning 

Early (B,) Late (B2) 

Middle 
Class 
(A;) 

Social 

Class 

60% 

(33) 

40% 

(22) 

Working 
Class 
(A2) 35% 65% 

(17) (31) 

success-partial success-failure. Theoretically, a variable can be partitioned into any 

number of subsets, though there are usually practical limitations. There is no 

theoretical limitation, either, on the number of variables in a cross partition, but 

practical considerations usually limit the number to three or four. The study by 

Foster, Dingman, Muscolino, and Jankowski (1996) demonstrates how one variable is 

partitioned into three categories. Their research is concerned with job-hiring 

decisions. In this study, participants served as human resource managers. Each 

participant is given three resumes to review. The name on the resume determined 

the sex of the candidate. Participants are to recommend one applicant for the adver¬ 

tised position. The researchers developed two different packages. In one package, a 

male candidate is the most qualified and the woman is less qualified. The second 

package is the reverse of the first. The most qualified person is a woman candidate 

with the male candidate being least qualified. There is also a third resume from a 

person whose sex cannot be determined. The table Foster et al. report is a crossbreak 

in which the variables are gender of reviewer-decisionmaker (women and men) and 

resume type (highly qualified male, lesser qualified male, highly qualified female, 

lesser qualified female, highly qualified unknown sex, lesser qualified unknown sex). 

These data, converted to percentages, are given in Table 4.2. The frequencies re¬ 

ported by Foster et al. are given in the lower-right corner of each cell. The data pre¬ 

sented shows a relation between gender of reviewer and gender of candidate. Women 

reviewers (decisionmakers) tend to select women candidates when making hiring rec¬ 

ommendations. Men reviewers (decisionmakers) tend to select male candidates even 

when the woman candidate is superior in qualification. In a later chapter we will ex¬ 

tend the partitioning of variables. 
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13 TABLE 4.2 Crossbreak Table: Relation between Gender of Reviewer and Qualifi¬ 

cation of the Job Applicant (Foster et al. Study) 

Gender of Resume A Resume B Resume C 
Reviewer Highly Qualified Less Qualified Less Qualified 

[Package 1] Jill Sidney George 

Female 50% (12) 33% (8) 17% (4) 

Male 41% (7) 24% (4) 35% (6) 

[Package 2] Andrew Pat Jennifer 

Female 45% (9) 5% (1) 50% (10) 

Male 53% (10) 26% (5) 21% (4) 

Levels of Discourse 

When we talk about anything we talk about it in a context or frame of reference. The 

expressions, context and frame of reference are closely related to U, the universe of 

discourse. The universe of discourse must be able to include any objects we talk 

about. If we go to another U (another level of discourse), the new level will not in¬ 

clude all the objects. Indeed, it may not include any of the objects. If we are talking 

about people, for instance, we do not—or perhaps we should say “should not” — 

start talking about birds and their habits unless we somehow relate birds and their 

habits to people, and make it clear that this is what we are doing. There are two lev¬ 

els of discourse or universes (Us) of discourse here: people and birds. When dis¬ 

cussing the democratic implications of segregation, we should not abruptly shift to 

religious preference unless, of course, we somehow relate the latter to the former. If 

we do relate the latter to the former, we lose our original universe of discourse, or 

cannot assign the objects of the one level (perhaps religion) to the other level (the 
education of African American children). 

To color the picture differently, let’s change our level of discourse to music and 

judging and understanding different genres of music. One of the great difficulties in 

listening to modern music is that the classical system of rules our ears have learned is 

not suited to the music of composers like Bartok, Schoenberg, or Ives. One has less 

difficulty with Bartok and much more difficulty with Schoenberg and Ives because 

Bartok maintains more of the classical bases than do Schoenberg and Ives. Take Ives’s 

“Concord Sonata,” a truly great work. At first hearing one is bewildered by the 

seeming cacophony and lack of structure. After a number of hearings, however, one 

begins to suspend classical judgmental frames of reference and to hear the beauty, 

meaning, and structure of the work. Ives’s universe of musical discourse is simply 
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quite different from the classical universe of discourse, and it is extremely difficult for 

one to shift from the classical U to Ives’s U. Some people are unable or even unwill¬ 

ing to make the shift. They find Ives’s music strange, even repugnant. They are un¬ 

able to shake the classical aesthetic and judgmental level of discourse to make the 
shift.1 

In research, we must be careful not to mix or shift our levels of discourse, or to 

do so only knowingly and consciously. Set-thinking helps us avoid such mixing and 

shifting. As an extreme example, suppose an investigator decided to study the toilet 

training, authoritarianism, musical aptitude, creativity, intelligence, reading achieve¬ 

ment, and general scholastic achievement of ninth-grade youngsters. While it is con¬ 

ceivable that some sort of relations can be teased out of this array of variables, it is 

more conceivable that it is an intellectual mess. At any rate, remember sets. Ask 

yourself: “Do the objects I am discussing or am about to discuss belong to the set or 

sets of my present discussion?” If so, then you are on one level of discourse. If not, 

then another level of discourse, another set, or set of sets, is entering the discussion. 

If this occurs without your knowing it, the result is confusion. In short, ask: “What 

are U and the subsets of 17?” 

Research requires precise definitions of universal sets. Precise means to give a 

clear rule that tells you when an object is or is not a member of U. Similarly, it de¬ 

fines subsets of U and the subsets of the subsets of U. If the objects of U are people, 

then you cannot have a subset with objects that are not people. (Although you might 

have a set A of people and the set ~A of not-people, this logically amounts to U be¬ 

ing people. “Not-people” is in this case a subset of “people,” by definition or conven¬ 

tion.) 

The set idea is fundamental in human thinking. This is because all or most 

thinking probably depends on putting things into categories and labeling the cate¬ 

gories (see Ross & Murphy, 1996; Smith, 1995). What we do is to group together 

classes of objects — things, people, events, phenomena in general — and name these 

classes. Such names are then concepts, labels that we no longer need to learn anew 

and that we can use for efficient thinking. 

Set theory is also a general and widely applicable tool of conceptual and analyti¬ 

cal thinking. Its most important applications pertinent to research methodology are 

probably to the study of relations, logic, sampling, probability, measurement, and 

data analysis (see Curtis, 1985; Hays, 1994). But sets can be applied to other areas 

and problems that are not considered technical in the sense, say, that probability and 

measurement are. The use of sets and Venn diagrams are not in abundance in the be¬ 

havioral sciences. Well-known researchers throughout the years have employed sets 

and Venn diagrams in their research. Piaget (1957), for example, has used set algebra 

to help explain the thinking of children (see also Piaget, Garcia, Davidson, & Easley, 

1 We do not want to imply that it is necessarily desirable to make the shift, neither do we want to 

imply that all modern music, even all of Ives’s music is great or good music. We are merely trying to 

illustrate the generality and applicability of the ideas of sets and levels of discourse. 
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[H Figure 4.9 

1991). Lewin’s (1935) classical work in gestalt psychology used sets and Venn dia¬ 

grams to describe the interaction between people and their environment as well as 

within themselves. More recently, Kubat (1993) has applied sets to studies of concept 

learning. Sheridan (1997) has used the Venn diagram to depict her conceptual frame¬ 

work for conjoint behavioral consultation in school psychology. Sheridan states that 

the problem identification, problem analysis, plan implementation, and plan evalua¬ 

tion for a child’s behavior can be explained as an intersection of that child’s home sys¬ 

tem, school system and support system. Dayton (1976) uses a Venn diagram to ex¬ 

plain how a creative individual confronts his or her inner preconscious mind and the 

outer world. Trites and Laprade (1983) use Venn diagrams to depict a contingency 

analysis graphically. This analysis involves a composite of factor scores in the study of 

hyperactivity and conduct disorder in children (see Figure 4.9). 

Bolman (1995) discusses the role and need of behavioral science knowledge in 

medical education and practice. In doing so, he uses a Venn diagram to show what he 

means by “biopsychosocial forces.” This is the intersection of the biological sciences 

(anatomy, physiology) with psychology (feelings, self, goals) and sociology and an¬ 

thropology (culture, family, ethics). The combination of these three factors is in Bol- 

rnan’s term “clinical reality.” Lane (1986) is a strong proponent of teaching children 

conditional reasoning (logical thinking) using Venn diagrams and set theory. Lane 

conducted a number of studies comparing different instructional material used in 

teaching logical thinking. In each study, Venn diagrams (the set theory approach) 

were found to be superior over other methods in terms of immediate performance, 

retention, and transfer of learning. Figure 4.10 presents a sample used by Lane in 

comparing Venn diagrams to Cartesian Logic Board. The concept or rule card under 

study is “If it is yellow, then it is a circle.” Later in this book, measurement will be 

defined using a single set-theoretic equation. In addition, basic principles of sam¬ 

pling, analysis, and of research design will be clarified with sets and set theory. Un¬ 

fortunately, most social scientists and educators are still not aware of the generality, 
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U Figure 4.10 

If it is yellow, then it is a circle 

(Rule Card) 

power, and flexibility of set thinking. It can be safely predicted, however, that re¬ 

searchers in the social sciences and education will find set thinking and theory in¬ 

creasingly useful in the conceptualization of theoretical and research problems. 

Chapter Summary 

1. Sets are useful in understanding research methods. It is the foundation of de¬ 

scriptive, logical, and analytical thinking and processing. It is the basis of nu¬ 

merical, categorical, and statistical analysis. 

2. A set is a well-defined collection of objects or elements. Two ways of defining 

a set: 

a. list all members of a set 
b. give a rule for determining whether objects do or do not belong to the set 

3. Subsets are parts of the original set. If the entire set is the population, then 

subsets are samples of the population. 

4. Set operations include intersection and union. 

a. Intersection is the elements that are common in two or more sets or sub¬ 

sets; the symbol is Pi. 
b. Union is the combination of nonredundant elements from two or more 

sets or subsets; the symbol is U. 
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5. The universal set, U, is defined as all elements under consideration. It is 

sometimes referred to as the population. The empty set, E, is the set that con¬ 

tains no members or elements. It is also called the null set. 

6. Negation set is symbolized by Placing this symbol in front of a set tells 

us that it contains members in the universal set, U, that are not contained in 

the set. For example ~A says this set contains all the elements in U that is not 
in A. 

7. A partition is one that breaks U into subsets such that when the subsets are 

combined, U is reformed. Also, another requirement of a partition is that no 

elements of one subset overlap the elements in the other subsets. 

8. Cross partition is the combination of two or more different partitions. Cross¬ 

breaks or contingency tables are examples of a cross partition that show the 

relationship between two variables. 

Study Suggestions 

1. Draw two overlaping circles, enclosed in a rectangle. Label the following 

parts: the universal set U, the subsets A and B, the intersection of A and B, 
and the union of A and B. 
a. If you were working on a research problem involving fifth-grade children, 

what part of the diagram would indicate the children from which you 
might draw samples? 

b. What might the sets A and B represent? 

c. What meaning might the intersection of A and B have? 

d. How would you have to change the diagram to represent the empty set? 

Under which conditions would such a diagram have research meaning? 
2. Consider the following cross partition: 

Republican (By) Democrat (B2) 

Male (Ay) 

Female (A2) 

What is the meaning of the following sets; that is, what would we call any ob¬ 
ject in the sets? 

a. (Ay n By); (A2 n b2) 
b. Ay; By 

C. (Ay n By) U (Ay D B2) U (A2 n By) u (A2 n b2) 
d. (Ay n By) U (A2 n By) 

3. Create a cross partition using the variables socioeconomic status and voting 

preference (Democrat and Republican). Can a sample of American individuals 
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be unambiguously assigned to the cells of the cross partition? Are the cells ex¬ 

haustive? Are they disjoint? Why are these two conditions necessary? 

4. Under which conditions will the following set equation be true? [Note: n(A) 
represents the number of objects in the set yd.] 

n(A U B) — n(A) + n(B) 

5. Suppose a researcher in sociology wants to do a study of the influence of race 

on occupational status. How can this researcher conceptualize the problem in 

set terms? 

6. How are sets related to variables? Can we talk about the partitioning of vari¬ 

ables? Is it meaningful to talk about subsets and variables? Explain. 

7. Let A = [Opus 101, Opus 106, Opus 109, Opus 110, Opus 111}, which is the 

set of Beethoven’s last five piano sonatas. This is a list definition. Here is a 

rule definition: 

A = \a\a is one of the last five Beethoven sonatas} 

(The sign “|” is read “given”) Under which conditions are rule definitions better 

than list definitions? 





Chapter 5 

Relations 

■ Relations as Sets of Ordered Pairs 

m Determining Relations in Research 

■ Rules of Correspondence and Mapping 

■ Some Ways to Study Relations 
Graphs 

Tables 

Graphs and Correlation 

Research Examples 

■ Multivariate Relations and Regression 
Some Logic of Multivariate Inquiry 

Multiple Relations and Regression 

Relations are the essence of knowledge. What is important in science is not 

knowledge of particulars but knowledge of the relations among phenomena. We 

know that large things are large only by comparing them to smaller things. We 

thus establish the relations “greater than” and “lesser than.” Educational scientists 

can “know” about achievement only as they study achievement in relation to 

nonachievement and in relation to other variables. When they learn that children of 

high intelligence generally do well in school and that children of low intelligence of¬ 

ten do less well, they “know” an important facet of achievement. When they also 

learn that middle-class children tend to do better in school than working-class chil¬ 

dren, they are beginning to understand “achievement.” They are learning about the 

relations that give meaning to the Achievement concept. The relations between In¬ 

telligence and Achievement, between Social Class and Achievement and, indeed, be¬ 

tween any variables are the basic “stuff” of science. 

81 
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The relational nature of human knowledge is clearly seen even when seemingly 

obvious “facts” are analyzed. Is a stone hard? To say whether this statement is true or 

false we must first examine sets and subsets of different kinds of stones. Then, after 

operationally defining “hard,” we compare the “hardness” of stones to other “hard¬ 

nesses.” The “simplest” facts turn out, on analysis, to not be so simple. Northrop 

(1947/1983, p. 317), discussing concepts and facts, says, “The only way to get pure 

facts, independent of all concepts and theory, is merely to look at them and forthwith 

to remain perpetually dumb.” 

The dictionary tells us that a relation is a bond, a connection, a kinship. For 

most people this definition is good enough. But what do the words bond, con¬ 

nection, and kinship mean? Again, the dictionary says that a bond is a tie, a binding 

force; that a connection is, among other things, a union, a relationship, an 

alliance. But a union—a tie — between what? And what do union, tie, and binding 

force mean? Such definitions, while intuitively helpful, are too ambiguous for 
scientific use. 

Relations as Sets of Ordered Pairs 

Relations in science are always between classes or sets of objects. One cannot 

“know” the relation between social class and school achievement by studying 

one child. “Knowing” the relation is achieved only by abstracting the relation 

from sets of children, or more accurately, from sets of characteristics of children. 

Let us take examples of relations and intuitively develop a notion of what a 
relation is. 

Let A be the set of all fathers and B the set of all sons. If we pair each father with 

his son (or sons), we have the relation “father-son.” We might also call this relation 

“fatherhood,” even though daughters have not been considered. Similarly, we might 

pair parents (elements of A, each pair of parents being considered as a single ele¬ 

ment) with their children. This would be the relation of “parenthood,” or perhaps 

family. Let A be the set of all husbands and B the set of all wives. The set of pairs 

then defines the relation “marriage.” In other words, a new set is formed, a set of 

pairs with husbands always listed first and wives second, and each husband paired 
only with his own wife. 

Suppose set A consists of the scores of a specified group of children on 

an intelligence test, and set B the scores on an achievement test. If we pair each 

child’s IQ with the achievement score, we define a relation between Intelligence 

and Achievement. Note that we cannot so easily assign a name like 

“parenthood” or “marriage” to this relation. Suppose the sets of scores are as 
follows: 
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Intelligence Achievement 

136 55 

125 57 

118 42 

110 48 

100 42 

97 35 

90 32 

Consider the two sets as one set of pairs. Then this set is a relation. If we graph the 

two sets of scores on X and Y axes, as we did in Chapter 3 (Figure 3.3), the relation 

becomes easier to “see.” This has been done in Figure 5.1. Each point is defined by 

two scores. For example, the point farthest to the right is defined by (136, 55), and 

the point farthest to the left is (90, 32). Graphs like Figure 5.1 are highly useful and 

succinct ways to express relations. One sees at a glance, for instance, that higher 

values of X are accompanied by higher values of Y, and lower values of X by lower 

values of Y. As we will see in a later chapter, it is also possible to draw a line through 

Figure 5.1 
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the plotted points of Figure 5.1, from lower left to upper right. (The reader should 

try this.) This line, called a regression line, expresses the relation between X and Y, be¬ 

tween intelligence and achievement, but it also succinctly gives us considerably more 

information about the relation: namely its direction and magnitude. 

We are now ready to define “relation” formally: A relation is a set of ordered pairs. 

Any relation is a set, a certain kind of set: a set of ordered pairs. An ordered pair is two 

objects, or a set of two elements, in which there is a fixed order for the objects to ap¬ 

pear. Actually, we speak of ordered pairs, which means (as indicated earlier) that the 

members of each pair always appear in a certain order. If the members of the sets, A 

and B are paired, then we must specify whether the members of A or the members of 

B come first in each pair. If we define the relation of marriage, for example, we spec¬ 

ify the set of ordered pairs with, say, husbands always placed first in each pair. In 

other words, the pair {a, b) is not the same as the pair (b, a). Ordered pairs are en¬ 

closed thusly: (). A set of ordered pairs is indicated: {(a, k), (b, /), (c, m)}. 

We have fortunately left the previous ambiguity of the dictionary definition be¬ 

hind. The definition of relations as sets of ordered pairs, though it may seem a bit 

strange and even curious to the reader, is unambiguous and general. Moreover, the 
scientist, like the mathematician, can work with it. 

When discussing relations, there are two special types of sets that play an impor¬ 

tant role. One set is called the domain and the other is called the range. Instead of for¬ 

mally defining these immediately, it may be clearer if we consider an example: Say we 

let A be the set of all men and B the set of all women. Let’s also say we want to define 

the relation “married to.” We can do this by forming the appropriate intersection of 

A and B (i.e., A O B) so that every ordered pair in the intersection would consist of 

married couples (shown in Figure 5.2). The intersection consists of the married cou¬ 

ples. Given this example, the domain in this relation are the men who are married. 

The range would be all of the women who are married. Flence the domain would be 

that set of men who are in the intersection, A Pi B and the range would be that set of 

women who are in the intersection. The domain is {John, Don, Rob, Warren, Bob, 

Dick, and Carl}. The range is {Carol, Debbi, Dawn, Elaine, Jean, Ramona, and 

Enid}. Note that the domain of the relation is always a subset of A and the range of 
the relation is always a subset of B. 

Formally, if we let RL represent the relation, a be elements of the set A, and b be 

the elements of set B, then the domain of RL is the set of all things a such that, for 

some b, the ordered pair, (a, b) is in RL. The range (it is also known as the counter¬ 

domain) of the relation RL is the set of all things b such that, for some a, the ordered 
pair {a, b) is in RL. 

Defining the domain and range in a relation is important because they play a key 

role in defining a function. Hays (1994) considers the function as one of the most im¬ 

portant concepts in mathematics and science. Functions and relations are very simi¬ 

lar. A function can be thought of as a special kind of relation. A relation is a function 

when each element of the domain is paired with one and only one member of the 

range. Most people think of a function in numerical terms, but this is not necessarily 

so. In American society, for example, the relation of being a husband is a function 

since that man has at most one wife at any given time. However, the relation of being 
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HI Figure 5.2 
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a mother is not a function since that person could be the mother of several different 

children. If we look at it very carefully, the relation of being a mother’s daughter is a 

function since that child can have only one biological mother. Hence, a function is a 

set of ordered pairs in which no two distinct or different pairs have the same ele¬ 

ment. 

etermining Relations in Research 

Although we have avoided ambiguity with our definition of relations, we have not 

cleared up the definitional and especially the practical problem of “determining” re¬ 

lations. There is another way to define a relation that may help us. Let A and B be 

sets. If we pair each individual member of A with every member of B, we obtain all 

the possible pairs between the two sets. This is called the Cartesian product of the two 

sets and is labeled A X B. A relation is then defined as a subset of A X B; that is, any 

subset of ordered pairs drawn from A X B is a relation, (see Kershner & Wilcox, 

1974, for an excellent discussion of relations). 
To illustrate this idea simply, let set A = {au a2, a2) and set B = {bu b2, b3}.1 Then 

the Cartesian product, A X B, can be diagrammed as in Figure 5.3. That is, we gen¬ 

erate nine ordered pairs: (au bx), (au b2), . . . , (aif b3). With large sets, of course, there 

would be many pairs, in fact mn pairs, where m and n are the numbers of elements in 

A and B, respectively. 

1 The subscript integers merely label and distinguish individual members of sets. They do not imply 

order. Note, too, that there does not have to be equal numbers of members in the two sets. 
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ID Figure 5.3 

This is not very interesting—at least in the present context. What do we do to 

determine or “discover” a relation? Empirically, we determine which elements of A 

“go with” which elements of B according to some criterion. Obviously, there are 

many subsets of pairs of A X B, most of which do not “make sense” or do not interest 

us. Kershner and Wilcox (1974) say that a relation is “a method for distinguishing 

some ordered pairs from others; it is a scheme for singling out certain pairs from all 

of them.” According to this way of viewing relations, the relation of “marriage” is a 

method or procedure for distinguishing married couples from all possible pairings of 

men and women. In this way we can even think of religion as a relation. Let A = {ah 

a2, , an} be the set of all people in the United States, and let B equal {Catholic, 

Protestant, Jew, and so forth} be the set of religions. If we order pairs, in this 

case each person with a religion, then we have the “relation” of religion, or perhaps 

more accurately, “religious affiliation.” Lest the student be too disturbed by the 

perhaps jarring sensation of defining a relation as a subset of A X B, we add, again, 

that many of the possible subsets of ordered pairs of A X B, naturally, will make 

no sense. Perhaps the main point to be made is that our definition of relation is 

unambiguous and completely general. No matter what sets of ordered pairs we 

choose, it is a relation. It is up to us to decide whether or not the sets we pick make 

scientific sense according to the dictates of the problems to which we are seeking 
answers. 

The reader may wonder why so much trouble has been taken to define relations. 

The answer is simple: Almost all science pursues and studies relations. There is liter¬ 

ally no empirical way to “know” anything except through its relations to other 

things, as indicated earlier. If, like Behling and Williams (1991), our interests are in 

the perception of intelligence and expectations of scholastic achievement, we have to 

relate perception and expectation to other variables. To explain a phenomenon like 

perception of intelligence, we must “discover” its determinants — the relations it has 

with other pertinent variables. Behling and Williams “explained” teachers’ percep¬ 

tions of intelligence and expectation of scholastic achievement toward students by re¬ 

lating it to the type of clothing and style worn by high school students. Behling and 

Williams found that the style of dress influences the perceptions of both teachers and 

peers. Obviously, if relations are fundamental in science, then we must know clearly 
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what they are, as well as how to study them. The definition of “relation” has been 

neglected in behavioral research. It seems to be a concept whose meaning is assumed 

to be known by everyone. It is also confused with “relationship,” which is a connec¬ 

tion of some kind between people, or between people and groups, like a 

mother-child relationship. It is not the same as a relation. 

Rules of Correspondence and Mapping 

Any objects — people, numbers, gambling outcomes, points in space, symbols, and so 

on—can be members of sets and can be related in the ordered-pair sense. It is said 

that the members of one set are mapped onto the members of another set by using of 

a rule of correspondence. A rule of correspondence is a prescription or a formula that 

tells us how to map the objects of one set onto the objects of another. It tells us, in 

brief, how the correspondence between set members is achieved. Study Figure 5.4, 

which shows the relation between the names of five individuals and the symbols 1 

and 0, which represent male (1) and female (0). We have here a mapping of sex (1 

and 0) onto the names. This is, of course, a relation, each name having either 1 or 0, 

male or female, assigned to it. 
In a relation the two sets whose “objects” are being related are called the domain 

and the range, or D and R. D is the set of first elements, and R the set of second ele¬ 

ments. In Figure 5.4, we assigned 1 to male and 0 to female. To each member of the 

domain the appropriate member of the range is assigned. D = {Jane, Arthur, 

Michael, Alberta, Ruth}, and R = {0, 1}. The rule of correspondence says: If the ob¬ 

ject of D is female assign a “0,” if male assign a “1.” 
In other words, objects, especially numbers, are assigned to other objects—per¬ 

sons, places, numbers, and so on—according to rules. The process is highly varied in 

its applications but simple in its conception. Instead of thinking of all the different 

ways of expressing relations separately, we realize that they are all sets of ordered 

H] Figure 5.4 
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pairs and that the objects of one set are simply mapped onto the objects of another 

set. All the varied ways of expressing relations — as mappings, correspondences, 

equations, sets of points, tables, or statistical indices—can be reduced to sets of or¬ 
dered pairs. 

Some Ways to Study Relations 

Relations can be and are expressed in various ways. In the previous discussion, some 

of these were illustrated. One way is to simply list and pair the members of sets, as in 

Figures 5.3 and 5.4. Actually, this method is not often used in the research literature. 
We now examine more useful ways. 

Graphs 

A graph is a drawing in which the two members of each ordered pair of a relation 

are plotted on two axes, X and Y (or any appropriate designation). Figure 5.1 is 

a graph oi the ordered pairs of the fictitious intelligence and achievement scores 

given earlier. We can see from that graph that the ordered pairs tend to “go 

together”: high values of Y go with high values of A, and low values of Y go with low 
values of X. 

A more interesting set of ordered pairs is graphed in Figure 5.5. The numbers 

used to make the graph are from a fascinating study by Miller and DiCara (1968), in 

which seven rats were “trained” to secrete urine. (Since urine secretion is an auto¬ 

nomic function, it is normally beyond control and thus training and learning.) The 

“Before” or X axis of the graph indicates values of urine secretion before the training; 

the “After” or Y axis indicates values after the training. We will use these same data 

in another context later in the book (at that time the study will be described in more 

detail), no further details are given here. The relation between the two sets of urine 

secretion values is pronounced. Again, high values before training are accompanied 

by high values after training, and similarly with low values. The graph and the rela¬ 

tion it expresses reflect individual differences in urine secretion. The full meaning of 

this statement will be made clear when we later describe the statistical analysis of 
these data. 

Tables 

Perhaps the most common way to present data to show relations is in tables. The 

variables of the relations presented are usually given at the top and the sides of the 

table and the data in the table itself. The statistical data are most often means, fre¬ 

quencies, and percentages. Consider Table 5.1, which is a summary presentation of 

the frequency data presented by Freedman, Wallington, and Bless (1967). These re¬ 

searchers tested the notion that compliance is related to guilt: the greater the feeling 

of guilt, the greater the compliance with demands. The experimenters induced half 
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their subjects to lie; they assumed that lying would engender guilt (apparently it did). 

The Guilt or Lie variable is labeled at the top of the table. This is the independent 

variable, of course. The dependent variable was compliance to demands made of all 

subjects. This variable is labeled at the side of the table. The data in the cells of the 

table are frequencies; that is, the numbers of subjects who fell into the subsets or sub¬ 

categories. Of the 31 subjects induced to lie, 20 complied with the demands of the 

experimenter; 11 did not comply with the demands. Of the 31 subjects who were not 

induced to lie, 11 complied and 20 did not comply. The data are consistent with the 

hypothesis. In a later chapter we will study in detail how to analyze and interpret fre¬ 

quency data and tables of this kind. 
The point of Table 5.1 is that a relation and the evidence on the nature of the re¬ 

lation are expressed in the table. In this case the tabled data are in frequency form. (A 

frequency is the number of members of sets and subsets. A percentage is a rate or 

proportion per hundred. It is computed by multiplying 100 times the ratio of a sub¬ 

set to a set, or a subset to another subset.) The table itself is a cross partition, often 

called a crossbreak or crosstab, in which one variable of the relation is set up against 

another variable of the relation. The two variable labels appear on the top and side of 

the table, as indicated earlier. The direction and magnitude of the relation itself is 
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M Table 5.1 Frequency Results of Experiment to Study Relation Between Guilt and 

Compliance (Freedman, Wallington, & Bless study). 

Lie (Guilt) Not Lie (No Guilt) 

Comply 20 11 

Not-Comply 
\ 

11 20 

31 31 

expressed by the relative sizes of the frequencies in the cells of the table. In Table 5.1 

many more of the subjects (20 of 31) induced to lie complied than did the subjects 
not induced to lie (11 of 31). 

A more complicated example is given in Table 5.2. This is a summary presenta¬ 

tion of the frequency data of a study by Mays and Arrington (1984). These re¬ 

searchers tested the notion that the violation of territoriality or spatial boundaries is 

related to demographic characteristics. Persons with low status characteristics (race 

or gender) more often tend to have their space violated. The experimenters created 

10 conditions to represent 10 dyadic configurations. These dyads were produced by 

crossing two levels of race (white American and African American) with two levels of 

sex (female and male); for example, “African American female with white American 

male.” Confederates meeting the proper demographic specifications for each of 10 

conditions stood at a comfortable conversation distance and engaged in a casual dis¬ 

cussion. Two hidden observers recorded the path taken by approximately 210 on- 

comers in each condition. They noted their tendency to walk through (thus penetrat¬ 

ing dyadic boundaries) or to pass around it. Also recorded were the oncomer’s 

ethnicity and gender. The independent variable is the dyadic configurations. The de¬ 

pendent variable is the penetration of the dyadic boundary or nonpenetration (pass 

around it). Although Mays and Arrington considered many variables in the study, for 

the example here, we will use only the dyadic combination of sex (male-male, 

female-female, female-male). The combinations are labeled at the top of Table 5.2 

and the dependent variable is labeled at the side of the table. The table shows both 
the frequencies and the percentages. 

d Table 5.2 Frequency and Percentage Results of Experiment to Study Relation be¬ 

tween Sexual Dyads and Space Violation (JVIays Sf Arrington study). 

Male-Male Female-Female Female-Male 

Around 650 (30) 600 

Through 106 (33) 119 

756 (31) 719 

(28) 898 (42) 2148 (86) 

(37) 98 (30) 323 (14) 

(29) 996 (40) 2471 
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The total percentages for male-male and female-female combinations were 

very similar (31% versus 29%). Also, the percentages of pass arounds for male and 

female dyads were very similar (30% versus 28%). However, the table shows that 

there is a tendency to pass around the female-male combination dyad (42%). One 

can speculate from this that there is greater respect for the shared space of a different 

sex combination than a same sex combination. Mays and Arrington give credence to 

this notion by pointing out the percentages given in the violation or “through” data 

(second row of Table 5.2). In terms of percentages, the female dyads shared space is 

more often violated than male (37% versus 33%). For the different sex combination 

(female-male), the space is less invaded than are the others (30%). In a later chapter 

we will study in detail how to analyze and interpret frequency (percentage) data and 

tables of this kind. 
Table 5.2 shows the nature of the relation table form. In this, case the tabled data 

are in frequency and percentage form. Using the percentages in Table 5.2 for a sim¬ 

ple visual analysis is easier than using the pure frequencies. With percentages in 

Table 5.2 the maximum value is 100 and the minimum value is 0. In Table 5.2 there 

are more invaders of the female-female dyad (119 of 323 or 37%) than of the 

male-male dyad (106 of 323 or 33%). 
A different kind of table presents means, arithmetic averages, in the body of the 

table. The means express the dependent variable. If there is only one independent 

variable, its categories are labeled at the top of the table. If there are two or more in¬ 

dependent variables, their categories can be presented in various ways at the top and 

sides of tables, as we will see in later chapters. An example is given in Table 5.3, 

which is the simplest form such a table can take. Hyatt and Tingstrom (1993) studied 

the effect of behavioral jargon usage on the perception of teachers toward two behav¬ 

ioral interventions: reinforcement and punishment. The findings from past research 

on the effect of jargon on teachers were equivocal. In this study, teachers were given 

a hypothetical student with a behavioral problem. Teachers were then presented de¬ 

scriptions of two types of interventions. The description either contained behavioral 

jargon such as “operantly conditioned and incompatible appropriate behavior” or a 

nonjargon description with words such as “rewarded for sitting correctly.” Teachers 

receiving the behavioral jargon can be considered as being in the experimental group 

and teachers receiving nonjargon descriptions can be considered as being in the con¬ 

trol group. All teachers’ perceptions were measured by the Treatment Evaluation In¬ 

ventory (also referred to as the TEI). This measure allows the teachers to rate the in¬ 

terventions in terms of their perceived acceptability, suitability, fairness, and 

effectiveness. Scores ranged from 15 to 105. High scores indicated greater accept¬ 

ability. As can be seen in Table 5.3, the experimental group mean is larger than the 

control group mean. Is the difference between the means “large” or “small”? We will 

see later how to assess the size and meaning of such differences. At present, we are 

only interested in why the table expresses a relation. 
In tables of this kind a relation is always expressed or implied. Tables as simple as 

this are rarely used in the literature. It saves space merely to mention the two means 

in the text of a report. Moreover, there can be more than two means compared. The 

principle is the same, however; the means “express” the dependent variable, and the 



92 Part Two ■ Sets, Relations, and Variance 

HD Table 5.3 Means of Jargon and Nonjargon Groups 

(Hyatt & Tingstrom study).a 

Experimental (Jargon) Control (No Jargon) 

79.38 73.68 

“The means were calculated from the Treatment Evaluation Inventory. 

differences among them express the presumed effect of the independent variable. In 

the present case there are two variables being related: jargon and perception. The 

rubric “Experimental-Control” expresses the jargon that was received by the experi¬ 

mental group but not by the control group. This is the independent variable. The 

two means in the table express the teachers’ perception of the intervention methods 

as measured by the TEI. This is the dependent variable. If the means differ suffi¬ 

ciently, then it can be assumed that behavioral jargon had an effect on teachers’ per¬ 
ception or acceptability. 

Tables of means are extremely important in behavioral research, especially in ex¬ 

perimental research. There can be two, three, or more independent variables, and 

they can express the separate and combined effects of these variables on a dependent 

variable, or even on two or more dependent variables. The central point is that rela¬ 

tions are always studied, even though it is not always easy to conceptualize and to 
state the relations. 

Graphs and Correlation 

Although we briefly examined relations and graphs earlier, it will be profitable to 

pursue this important topic further. Suppose we have two sets of scores of the same 
individuals on two tests, X and Y 

X Y 

1 1 
2 1 
2 2 
3 3 

The two sets form a set of ordered pairs. This set is, of course, a relation. It can also 

be written, letting R stand for relation, R = {(1,1), (2,1), (2,2), (3,3)}. It is plotted in 
the graph of Figure 5.6. 

We can often get a rough idea of the direction and degree of a relation by in¬ 

specting the list of ordered pairs, but such a method is imprecise. Graphs, such as 

those of Figure 5.1 and Figure 5.6 tell us more. It can more easily be “seen” that Y 
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M Figure 5.6 
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values “go along” with X values. Higher values of Y accompany higher values of X, 

and lower values of Y accompany lower values of X. In this case, the relation — or 

correlation, as it is also called — is positive. (If we had the equation, R = {(1,3), (2,1), 

(2,2), (3,1)}, the relation would be negative. The student should plot these values and 

note their direction and meaning.) If the equation were R = {(1,2), (2,1), (2,2), (3,2)}, 

the relation would be null or zero. This is plotted in Figure 5.7. It can be seen that Y 

values do not “go along” with X values in any systematic way. This does not mean 

that there is “no” relation. There is always a relation — by definition—since there is 

a set of ordered pairs. It is commonly said, however, that there is “no” relation. It is 

more accurate to say that the relation is null or zero. 
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U Table 5.4 Three Sets of Ordered Pairs Showing Different Directions and 

Degrees of Correlation. 

CO r 
X 

= 1.00 

Y 

(II) r = 

X 

-1.00 

Y 

(III) r 

X 

= 0 

Y 

1 1 1 5 1 2 

2 2 2 4 2 5 

3 3 3 3 3 3 

4 4 4 2 4 1 

5 5 5 1 5 4 

Social scientists commonly calculate indices of relation, usually called coeffi¬ 

cients of correlation, between sets of ordered pairs in order to obtain more precise 

estimates of the direction and degree of relations. If one such index, the 

product-moment coefficient of correlation, or r, is calculated for the ordered pairs 

of Figure 5.6, r = .85 is obtained. For the pairs of R = {(1,3), (2,1), (2,2), (3,1)}, the 

relation we said was negative, r = -.85. For the pairs of Figure 5.7, the set of pairs 
showed a null or zero relation, r = 0.2 

Product-moment and related coefficients of correlation, then, are based on the 

concomitant variation of the members of sets of ordered pairs. If they covary—vary 

together high values with high values, medium values with medium values, and low 

values with low values, or high values with low values, and so on—it is said that 

there is a positive or negative relation as the case may be. If they do not covary, it is 

said there is “no” relation. The most useful of such indices range from +1.00 

through 0 to 1.00. A +1.00 indicates a perfect positive relation, —1.00 a perfect neg¬ 

ative relation, and 0 no discernible relation (or zero relation). Some indices range 
only from 0 to +1.00. Other indices may take on other values. 

Most coefficients of relation tell us how similar the rank orders of two sets of 

measures are. Table 5.4 presents three examples to illustrate this going together of 

rank orders. The coefficients of correlation are given with each of the sets of ordered 

pairs. I is obvious: the rank orders of the V and Y scores of / go together perfectly. So 

do the X and Y scores of II, but in the opposite direction. In III, no relation between 

the rank orders can be discerned. In I and II, one can predict perfectly the value of Y 

given the value of X, but in III one cannot predict values of Y from knowledge of X. 

Coefficients of correlation are rarely 1.00 or 0. Ordinarily, they take on intermediate 
values. 

2 Methods of calculating these rs and other coefficients of correlation are discussed in statistics texts. 

These texts also discuss at greater length than is possible in this book the interpretation of correla¬ 
tion coefficients. 
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Research Examples 

To put some flesh on the rather abstract bones of our discussion of relations, let’s 
look at two interesting examples of relations and correlation. Russell, Fujino, Sue, 
Cheung, and Snowden (1996) examined the effects of therapist-client ethnic match 
in the assessment of mental health functioning. These researchers used a large data 
set of adult clients seen in outpatient services of a large metropolitan mental health 
facility. From these data, the researchers extracted out four ethnic groups for the 
study. They were Asian Americans, African Americans, Mexican Americans, and 
white Americans. The Global Assessment Scale (GAS) obtained at the time of admis¬ 
sion was used as the measure of mental health functioning. GAS scores were assigned 
to the client by the therapist appointed to oversee their case. High scores indicated 
good general functioning whereas low scores indicated severe impairment. 

Russell, et al. examined the GAS scores for those clients who were matched 
ethnically to a therapist (i.e., Asian American therapist with Asian American client; 
African American therapist with African American client, etc.) against the GAS 
scores of those clients who were not matched ethnically to a therapist. Figure 5.8 
shows the relationship between therapist-client match and non-match and GAS 
scores. Note here that the relation is presented in the form of a graph that is differ¬ 
ent from what we have seen previously. This style of graphing is called histogram or 
bar chart. The graph shows consistently that GAS scores were higher (better mental 
health) when the therapists were matched ethnically to the clients than when the 
therapists were not matched ethnically to the clients. This says the therapist per¬ 
ceived the client to have a higher level of mental health functioning when the client 

E! Figure 5.8 
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m Table 5.5 The Relation between Religious Affiliation and Output of Scholarly 

Doctorates in the United States, Hardy Study 

Religious Type Productivity Rating 

Liberal, secularized Protestants, and Jews High productivity 

Moderately liberal, dissent, antitraditional Protestants Above average productivity 

Traditional Protestant Fair productivity 

Fundamentalist, conservative Protestant Low productivity 

Catholic Very low productivity 

was of the same ethnicity than when the client was of a different ethnicity. Also, for 

ethnic minorities, the matched therapist-clients had a higher GAS score than did 

white Americans. However, for nonmatched clients, the GAS scores were the highest 

for Mexican Americans and lowest for African Americans and Asian Americans. The 

greatest discrepancy between matched and nonmatched GAS scores were with the 

ethnic minority groups. 

Our second example is not quantitative, though quantity is implied and it would 

not be difficult to quantify the variables. Hardy (1974) studied, among other things, 

the relation between religious affiliation and doctoral productivity. Which religious 

groups produce the most scholarly doctorates and which the least? (Hardy was really 

studying values and their influence on scholarship.) The results are given in Table 

5.5. They need little comment. It is apparent that the relation is strong: the more lib¬ 

eral a religious group the higher the production of doctoral degrees. The ordered 

pairs of religious groups and their productivity ratings are easily seen. 

Our last example is a study by Little (1997). It is a variant of the Hardy study 

presented above. Unlike Hardy’s study, Little’s study involves a high level of quantifi¬ 

cation. Little (1997) studied the relation between degree-granting universities and 

scholarly productivity in the field of school psychology. The question asked was: 

Which university’s graduate education produces the most scholarly graduates? The 

answer to the question is important because it will give information that goes beyond 

the results from previous research. Previous research was primarily based on the cur¬ 

rent institutional affiliation of the authors and gives no information concerning 

where those people were educated. Little’s study provides that information by pre¬ 

senting data as to where the authors received their terminal degree. Little states that 

this measure may be a better measure of the quality of graduate education programs 

in school psychology. A partial reproduction of the total results is given in Table 5.6. 

Little shows that a majority of graduate programs are in the United States with a 

concentration in the Midwest, Southeast and East Coast regions of the United 

States. Among the data reported by Little is one set of ordered pairs between univer¬ 

sity and productivity. Little in this study finds a number of discrepancies between his 

findings and those published by US News & World Report (1995) on America’s best 
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H Table 5.6 The Relation between Graduate Education and Scholarship 

Psychology from 1987 to 1995 (Little study) 

in School 

Rank University Number of 

Graduates 

Weighted 

Total 

1 Georgia 19 65.98 

2 Indiana 10 52.48 

3 Minnesota 13 40.88 

4 Texas 12 38.61 

5 Wisconsin 11 27.92 

6 Columbia 10 27.60 

7 California, Berkeley 7 27.24 

8 South Carolina 4 22.39 

9 Oregon 5 21.48 

10 Ball State 7 20.32 

11 Ohio State 7 19.56 

12 Kent State 5 19.36 

13 Nebraska 8 18.31 

14 Arizona State 2 16.28 

15 Utah 5 15.90 

16 Temple 5 15.88 

17 Indiana State 4 15.61 

18 Illinois 2 13.43 

19 Southern Mississippi 7 13.36 

20 Connecticut 4 12.75 

21 Michigan State 5 12.38 

22 Pittsburgh 1 11.97 

23 Cincinnati 5 11.91 

24 Pennsylvania 3 11.03 

25 Penn State 4 10.09 
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graduate programs in school psychology. Little’s results were based on empirical data 

gathered over the six major journals publishing school psychology research. US News 

& World Report based its rankings on the reputation of the university. 

Multivariate Relations and Regression 

In our discussion of relations we may have given the impression that scientists and 

researchers are always preoccupied with the relations between two variables. When, 

for instance, we talked about the relations between ethnic match and mental health, 

jargon and perception, graduate institution and production of scholarly works, we 

perhaps erroneously conveyed the idea that scientists are preoccupied with studying 

only two-variable relations. This is not so. Indeed, much research has been two-vari¬ 

able research, but in the behavioral sciences this has changed dramatically. The pre¬ 

occupation of behavioral researchers is today more likely to be with multiple rela¬ 

tions. While modern researchers know that the relation between intelligence and 

achievement is substantial and positive, they also know that there are many determi¬ 

nants of both achievement and intelligence. They know, for instance, that social class 

has a substantial influence on both variables. They also believe, though the evidence 

is conflicting, that self-esteem affects both intelligence and achievement. Moreover, 

methodologists have developed powerful analytical approaches and methods to han¬ 

dle what we will call multivariate problems. Let us look briefly at the logic and sub¬ 
stance of such problems. 

Some Logic of Multivariate Inquiry 

The hidden structure of our argument up to now has been epitomized by the expres¬ 

sion “Ifp, then q”: “If intelligence, then achievement,” “If lower status, then violation 

of space,” “If this type of dressing style, then this perception of intelligence.” These 

are of course implied relations. But they go further: they also imply direction — from 

independent variables to dependent variables. They can all be conceptualized as “Ifp, 

then q” statements. In logic, “Ifp, then q” is called a conditional statement, and it is 

possible to conceptualize most research problems and study the structure of scientific 

arguments using conditional and related statements (Kerlinger, 1969). But the rela¬ 

tions of behavioral research are more complex than simple “If p, then q” statements. 

Contemporary researchers are more likely to say “If p, then q, under conditions r 

and f.” This conditional statement can be written: p —* q\r, t, which is read as in the 

preceding sentence (“|” means “under conditions,” or “given”). Or, somewhat sim¬ 

pler, we can write: (ph p2, p3)~^q which means “If px and p2 and p3, then q.” More 

concretely, this means that the variables px and p2 and p3 influence the variable q in 

certain ways. We might say, for instance, that intelligence, social class, and self¬ 
esteem affect school achievement in such-and-such ways. 

The simplest way to show the relations graphically is with so-called path dia¬ 

grams. A path diagram for the above statement is given in Figure 5.9. In this dia¬ 

gram—in which we use xu x2, and x3 for the independent variables and y for the 
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\M Figure 5.9 

dependent variable specifies, in effect that the three independent variables all directly 

affect the dependent variable. This is what is called a straightforward multiple re¬ 

gression problem (see below), in which k (=3) independent variables mutually influ¬ 

ence a dependent variable. This approach, too, has changed dramatically in the past 

decade. Researchers are now apt to talk about and test both direct and indirect influ¬ 

ences. An alternative model and path analytic diagram is given in Figure 5.10. Here 

Intelligence and Self-esteem influence School Achievement directly, but Social Class 

does not. Instead, it influences School Achievement indirectly through Intelligence 

and Self-esteem, which is quite a different concept. 

M Figure 5.10 
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Multiple Relations and Regression 

The research situation depicted in Figure 5.9 is a multiple regression problem: k 

(=3) independent variables mutually and simultaneously influence a dependent vari¬ 

able. Later in the book we will show how such a problem is solved. (The method is 

technically complex but conceptually simple, but it will give us little trouble.) For 

now, the problem is one of first finding the relation between the three independent 

variables, taken simultaneously, and the dependent variable. The second concerns 

determining how much each independent variable, xu x2, and x3, influences the de¬ 

pendent variable, y. Although now much more complex, the problem is still a rela¬ 

tion, a set of ordered pairs. 

What the method does essentially—and beautifully—is to find the best possible 

combination of xx x2, and x3, given y and the relations among the four variables, so 

that the correlation between the three-variable combination and y is a maximum. In 

the problem shown in Figure 5.9, multiple regression finds those values of bh b2, and 

b3 that will make the correlation between xb x2, and x3, taken together; andy as high 

as possible. (The student of mathematics will recognize this as a calculus problem.) 

The b weights, called regression weights or coefficients, are then used with the three 

variables in predicting the dependent variable, y. The method in effect creates a new 

variable which is a combination of xx x2, and x3. Call this variable y'. Then the multi¬ 

ple correlation is between y, the observed dependent variable, and y', the dependent 

variable predicted from knowledge of xb x2, and x3. 

The alert reader will have seen that relations and correlations are symmetric: it 

often doesn’t matter much which variable is independent and which dependent. In 

regression analysis, however, it does make a difference; regression is asymmetric. We 

say, If*, theny, or: If xb x2, and x3, theny. Many authors talk about “causal analysis,” 

especially when talking about problems such as those given in Figure 5.9 and Figure 

5.10. We prefer to avoid the words cause and causal because they are exceedingly 

sticky ideas — for instance, what is a cause?—and because their use is not necessary. 

Comrey and Lee (1992, p. 338) state “causal inferences cannot be made with any cer¬ 

tainty. The best that can be said is that the data are consistent with the proposed 

causal inference ...” Hence, we can adequately operate with conditional statements, 
though not always easily.3 

Regression, in other words, deals with relations, but the traffic is mostly one-way 

from independent to dependent variables. To further anticipate a later discussion, 
let’s look at a regression equation: 

Y — a + b\Xi + b2X2 

3The language is saturated with words that imply cause, for example, “influence” and “depend 

upon.” Yet we will avoid causal expressions as much as possible, if for no other reason than that it is 

never possible to say unambiguously that one thing causes another. More pragmatically, we don’t 

need the word or concept of “cause”; conditional statements of the if p, then q kind are sufficient for 
scientific purposes. 
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If we ignore the a—it is not important for the argument—we see that Y is the sum 

of X1 and X2, each weighted by its b. When we solve the equation for the bs (and of 

course the a) we use them to produce a score Y' for each person in the sample. Y and 

Y' (keep in mind that Y and Y' represent values for each person in the sample) are 

then a set of ordered pairs and thus a relation. The correlation between them is 

merely an ordinary correlation coefficient, r. But it is labeled R and is called the mul¬ 

tiple coefficient of correlation, or the coefficient of multiple correlation. Later, we 

will examine the use and interpretation of multiple regression, the coefficient of mul¬ 

tiple correlation, and regression weights in greater detail and with actual research ex¬ 

amples. At that time, the student’s natural bewilderment with the presumed mysteries 

of multivariate thinking should be dissipated and replaced by admiration and perhaps 

a bit of awe and excitement at these engaging and very powerful ideas and methods. 

Chapter Summary 

1. Relations are the essence of knowledge. Almost all science pursues and stud¬ 

ies relations. 

2. Relations in science are between classes or sets of objects. 

3. Relations can be expressed as sets of ordered pairs. 

4. Ordered pairs are sets of elements with a fixed order of appearance. 

5. There are two special sets: domain and range from a relation. 

6. A special type of relation is a function. Function connects elements of the 

domain and the range. 

7. Members of one set are mapped to members of the other set using a rule of 

correspondence 

8. The rule of correspondence is a prescription or formula that shows how to 

map the objects. 

9. Ways of studying relations 

a. graphs (two-dimensional plots) 

b. tables 
c. graphs and correlation (here the correlation is a statistical/numerical 

value) 

10. Multiple regression is a statistical method that relates one dependent vari¬ 

able to a linear combination of one or more independent variables. This 

procedure can even tell a researcher how much each independent variable 

explains or relates to the dependent variable. 

Study Suggestions 

1. Discussions of relations appear to be confined to mathematics texts. The best 

discussion we have found, albeit abstract and somewhat difficult, is found in 

Kershner and Wilcox (1974). 
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2. Six examples of relations are given below. Assume that the first-named set is 

the domain and the second the range. Why are all of these relations? 

a. Book pages and page numbers 

b. Chapter numbers and pages of a book 

c. Population table headings or categories and population figures in a census 

report 

d. A class of third-grade children and their scores on a standardized achieve¬ 

ment test 

e. Y — 2x 

f. Y= a+ blXl + b2X2 

3. An educational investigator has studied the relation between anxiety and 

school achievement. Express the relation in set language. 

4. Suppose you wish to study the relations among the following variables: intel¬ 

ligence, socioeconomic status, need for achievement, and school achievement. 

Set up two alternative models that “explain” school achievement. Draw path 

diagrams of the two models. 

5. Determine which of the following relations are functions: 
a. (AC, f?A, AS, TA) 

b. (A®,; A, A&, /A, Ap, qX) 

c. (A#, Z'A, A102, 103A, A a, c A) 

d. Given A = {a, b, c} and B = {4, 5, T} is the Cartesian cross-product A X B a 
function? Explain why or why not. 
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Computer Addendum 

To study scientific problems and answer scientific questions, we must study differ¬ 

ences among phenomena. In Chapter 5, we examined relations among variables; in a 

sense, we were studying similarities. Now we concentrate on differences because 

without differences and without variation, there is no technical way to determine the 

relations among variables. If we want to study the relation between race and achieve¬ 

ment, for instance, we are helpless if we have only achievement measures of white 

American children. We must have achievement measures of children of more than 

one race. In short, race must vary; it must have variance. It is necessary to explore the 

variance notion analytically and in some depth. To do so adequately, it is also neces¬ 

sary to skim some of the cream off the milk of statistics. 
Studying sets of numbers as they are is unwieldy. It is usually necessary to reduce 

the sets in two ways: (1) by calculating averages or measures of central tendency, and 

(2) by calculating measures of variability. The measure of central tendency used in 
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this book is the mean. The measure of variability most used is the variance. Both 

kinds of measures epitomize sets of scores, but in different ways. They are both 

“summaries” of whole sets of scores, summaries that express two important facets of 

the sets of scores: (1) their central or average tendency, and (2) their variability. Solv¬ 

ing research problems without these measures is extremely difficult. We begin our 

study of variance, then, with some simple computations. 

Calculation of Means and Variances 

Take the set of numbers X = {1, 2, 3, 4, 5}. The mean is defined: 

M 
XX 

n 
(6.1) 

n equals the number of cases in the set of scores; X means “the sum of” or “add them 

up” and X represents any one of the scores (each score is an X). The formula then, 

says, “Add the scores and divide by the number of cases in the set.” Thus: 

M = 
1 + 2 + 3 + 4 + 5 

5 

15 

5 
= 3 

The mean of the set X is 3. In this book, “AT will be used to represent the 
mean. Other symbols that are commonly used are X and /x. 

Calculating the variance, while not as simple as calculating the mean, is still sim¬ 
ple. The formula is: 

where V means variance; n and X are the same as in Equation 6.1. X*2 is called the 

sum-of-squares (it needs some explanation). The scores are listed in a column: 

X X X2 

1 -2 4 
2 -1 1 
3 0 0 
4 1 1 
5 2 4 

XX: 15 

M: 3 

Xx2: 10 
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In this calculation x is a deviation from the mean. It is defined: 

x = X - M (6.3) 

Thus, to obtain x, simply subtract from X the mean of all the scores. For example, 

when X = l, x = l — 3 = — 2; when X = 4, x = 4 — 3 = 1; and so on. This has 

been done above in the table. Equation 6.2, however, says to square each x. This has 

also been done above. (Remember, that the square of a negative number is always 

positive.) In other words, St2 tells us to subtract the mean from each score to get x, 

square each x to get x2, and then add up the x2s. Finally, the average of the x2s is 

taken by dividing Sx2 by n, the number of cases. £x2, the sum-of-squares, is a very im¬ 

portant statistic that we will use often. 

The variance, in the present case, is 

(—2)2 + (-1)2 + (0)2 + (l)2 + (2)2 4+1 + 0+1+4 10 

5 "5 5 

“ V” will be used for variance in this book. Other symbols commonly used are a2 and 

s2. The former is a so-called population value; the latter is a sample value. N is used 

to represent the total number of cases in a total sample or in a population. (“Sample” 

and “population” will be defined in a later chapter.) n is used for a subsample or sub¬ 

set of U of a total sample. Appropriate subscripts will be added and explained as nec¬ 

essary. For example, if we wish to indicate the number of elements in a set A, a subset 

of U, we can write nA or na. Similarly we attach subscripts to x, V, and so on. When 

double subscripts are used, such as r^, the meaning will usually be obvious. 

The variance is also called the mean square (when calculated in a slightly different 

way). It is called this because it is obviously the mean of the x^s. Clearly, it is not 

difficult to calculate the mean and the variance.1 
The question is: Why calculate the mean and the variance? The rationale for 

calculating the mean is explained easily. The mean expresses the general level, the 

center of gravity, of a set of measures. It is a good representative of the level of a 

group’s characteristics or performance. It also has certain desirable statistical proper¬ 

ties, and is the most ubiquitous statistic of the behavioral sciences. In much behav¬ 

ioral research, for example, means of different experimental groups are compared to 

study relations, as pointed out in Chapter 5. We may be testing the relation between 

organizational climates and productivity, for instance. We may have used three kinds 

of climates and be interested in the question of which climate has the greatest effect 

on productivity. In such cases, means are customarily compared. For instance, of 

three groups, each operating under one of three climates, Au A2, and A3, which has 

the greatest mean on, say, a measure of productivity? 

1 The method of calculating the variance used in this chapter differs from the methods ordinarily 

used. In fact, the method given above is impracticable in most situations. Our purpose is not to 

learn statistics, as such. Rather, we are pursuing basic ideas. Methods of computation, examples, and 

demonstrations have been constructed to aid this pursuit of basic ideas. 
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The rationale for computing and using the variance in research is more difficult 

to explain. In the usual case of ordinary scores, the variance is a measure of the dis¬ 

persion of the set of scores: It tells us how much the scores are spread out. If a group 

of pupils is very heterogeneous in reading achievement, then the variance of their 

reading scores will be large compared to the variance of a group that is homogeneous 

in reading achievement. The variance, then, is a measure of the spread of the scores; 

it describes the extent to which the scores differ from each other. For descriptive 

purposes, the square root of the variance is ordinarily used. It is called the standard 

deviation. Certain mathematical properties, however, make the variance more useful 

in research. It is suggested that the student supplement this topic of study with the 

appropriate sections of an elementary statistics text (see Comrey & Lee, 1995). It is 

not possible in this book to discuss all the facets of meaning and interpretation of 

means, variances, and standard deviations. The remainder of this chapter and later 

parts of this book will explore other aspects of the use of the variance statistic. 

Kinds of Variance 

Variances come in a number of forms. When you read the research and technical lit¬ 

erature, you will frequently come across the term, sometimes with a qualifying adjec¬ 

tive, sometimes not. To understand the literature, it is necessary to have a good idea 

of the characteristics and purposes of these different variances. And to design and do 

research, one must have a rather thorough understanding of the variance concept as 

well as considerable mastery of statistical variance notions and manipulations. 

Population and Sample Variances 

The population variance is the variance of U, a universe or population of measures. 

Greek symbols are usually used to represent population parameters or measures. For 

the population variance, the symbol cr2 (sigma squared) is used. The symbol a is used 

for the population standard deviation. The population mean is n (mu). If all the mea¬ 

sures of a defined universal set, U, are known, then the variance is known. More 

likely, however, all the measures of U are not available. In such cases, the variance is 

estimated by calculating the variance of one or more samples of U. A good deal of 

statistical energy goes into this important activity. A question may arise: How vari¬ 

able is the intelligence of the citizens of the United States? This is a U or population 

question. If there were a complete list of all the millions of people in the United 

States—and also a complete list of intelligence test scores of these people—the vari¬ 

ance could be simply, if wearily, computed. No such list exists. So samples, represen¬ 

tative samples, of Americans are tested and means and variances computed. The sam¬ 

ples are used to estimate the mean and variance of the entire population-. These 

estimated values are called statistics (in the population they are called parameters). 

The sample mean is denoted by the symbol M and_the sample variance is denoted by 

SD2 or s2. A number of statistics textbooks use the X (X-bar) to represent the sample 
mean. 
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Sampling variance is the variance of statistics computed from samples. The means 

of four random samples drawn from a population will differ. If the sampling is ran¬ 

dom and the samples large enough, the means should not vary too much; that is, the 

variance of the means should be relatively small.2 

Systematic Variance 

Perhaps the most general way to classify variance is as systematic variance and error 

variance. Systematic variance is the variation in measures due to some known or un¬ 

known influences that “cause” the scores to lean in one direction more than another. 

Any natural or man-made influences that cause events to happen in a certain pre¬ 

dictable way are systematic influences. The achievement test scores of children in a 

wealthy suburban school will tend to be systematically higher than scores of the chil¬ 

dren in a city slum area school. Adept teaching may systematically influence the 

achievement of children, as compared to the achievement of children who are ineptly 

taught. 
There are many causes of systematic variance. Scientists seek to separate those in 

which they are interested from those in which they are not interested. They also at¬ 

tempt to separate random variance from systematic variance. Indeed, research may 

narrowly and technically be defined as the controlled study of variances. 

Between-Groups (Experimental) Variance 

One important type of systematic variance in research is between-groups or experi¬ 

mental variance. Between-groups or experimental variance, as the name indicates, is the 

variance that reflects systematic differences between groups of measures. The variance 

discussed previously as score variance reflects the differences between individuals in a 

group. We can say, for instance, that, on the basis of present evidence and current 

tests, the variance in intelligence of a random sample of 11-year-old children is about 

225 points. (This is obtained by squaring the standard deviation reported in a test 

manual. The standard deviation of the California Test of Mental Maturity for 11- 

year-old children, for instance, is about 15, and 152 = 225.) This figure is a statistic 

that tells us how much the individuals differ from each other. Between-groups 

2Unfortunately, in much actual research only one sample is usually available—and this one sample 

is frequently small. We can, however, estimate the sampling variance of the means by using what is 

called the standard variance of the mean. (The term “standard error of the mean” is usually used. The 

standard error of the mean is the square root of the standard variance of the mean.) The formula is 

VM — Vs/ % where VM is the standard variance of the mean, Vs the variance of the sample, and ns, 

the size of the sample. Note an important conclusion that can be reached from this equation: If the 

size of the sample is increased, VM is decreased. In other words, to be more confident that the sam¬ 

ple is close to the population mean, make n large. Conversely, the smaller the sample, the riskier the 

estimate (see Study Suggestions 5 and 6). 
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variance, on the other hand, is the variance due to the differences between groups of 

individuals. If the achievement of northern region and southern region children in 

comparable schools is measured, there would be differences between the northern 

and southern groups. Groups as well as individuals differ or vary, and it is possible 

and appropriate to calculate the variance between these groups. 

Between-groups variance and experimental variance are fundamentally the same. 

Both arise from differences between groups. Between-groups variance is a term that 

covers all cases of systematic differences between groups, experimental and nonex- 

perimental. Experimental variance is usually associated with the variance engendered 

by active manipulation of independent variables by experimenters. 

Here is an example of between-groups variance—in this case experimental vari¬ 

ance. Suppose an investigator tests the relative efficacies of three different kinds of 

reinforcement on learning. After reinforcing the three groups of subjects differen¬ 

tially, the experimenter calculates the means of the groups. Suppose they are 30, 23, 

and 19. The mean of the three means is 24, and we calculate the variance between the 
means or between the groups: 

X 

30 6 36 

23 -1 1 

19 -5 25 

72 

M 24 

Sx2: 62 

62 
Vb = - - 20.67 

3 

In the experiment just described, presumably the different methods of reinforce¬ 

ment tend to “bias” the scores one way or another. This is, of course, the experi¬ 

menter’s purpose. The goal of Method A is to increase all the learning scores of an 

experimental group. The experimenter may believe that Method B will have no ef¬ 

fect on learning, and that Method C will have a depressing effect. If the experimenter 

is correct, the scores under Method A should all tend to go up, whereas under 

Method C they should all tend to go down. Thus, the scores of the groups, as 

wholes — and, of course, their means—differ systematically. Reinforcement is an ac¬ 

tive variable. It is a variable deliberately manipulated by the experimenter with the 

conscious intent to “bias” the scores differentially. Prokasy (1987), for example, helps 

solidify this point by summarizing the number of variations of reinforcement within 

the Pavlovian paradigm in the study of skeletal responses. Thus any experimenter- 

manipulated variables are intimately associated with systematic variance. When 

Camel, Withers, and Greenough (1986) gave their experimental group of rats differ¬ 

ent degrees of early experience—environmental (enriched experiences such as a 

large cage with other rats and opportunities for exploration), and the control group a 
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condition of reduced experience (isolation, kept in individual cages)—they were de¬ 

liberately attempting to build systematic variance into their outcome measures (pat¬ 

tern and number of dendrite branching [dendrites are the branching structures of a 

neuron].) The basic idea behind the famous “classical design” of scientific research in 

which experimental and control groups are used is that, through careful control and 

manipulation, the experimental group’s outcome measures (also called “criterion 

measures”) are made to vary systematically, to all go up or down together, while the 

control group’s measures are ordinarily held at the same level. The variance, of 

course, is between the two groups, that is, the two groups are made to differ. For ex¬ 

ample, Braud and Braud (1972) manipulated experimental groups in a most unusual 

way. They trained the rats of an experimental group to choose the larger of two cir¬ 

cles in a choice task; the control group rats received no training. Extracts from the 

brains of the animals of both groups were injected into the brains of two new groups 

of rats. Speaking statistically, they were attempting to increase the between-groups 

variance and they succeeded: the new “experimental group” animals exceeded the 

new “control group” animals in choosing the larger circle in the same choice task! 

This is clear and easy to see in experiments. In research that is not experimental, 

in research where already existing differences between groups are studied, it is not al¬ 

ways so clear and easy to see that one is studying between-groups variance. But the 

idea is the same. The principle may be stated in a somewhat different way: The 

greater the differences between groups, the more an independent variable (or vari¬ 

ables) can be presumed to have operated. If there is little difference between groups, 

then the presumption must be that an independent variable or variables have not op¬ 

erated. In other words, their effects are too weak to be noticed, or else different in¬ 

fluences have canceled each other out. We judge the effects of independent variables 

that have been manipulated or that have worked in the past, then, by between-groups 

variance. Whether the independent variables have or have not been manipulated, the 

principle is the same. 
To illustrate the principle, we use the well-studied problem of the effect of anxi¬ 

ety on school achievement. It is possible to manipulate anxiety by having two experi¬ 

mental groups and inducing anxiety in one and not in the other. This can be achieved 

by giving each group the same test with differing instructions. We tell the members 

of one group that their grades depend wholly on the test. We tell the members of the 

other group that the test does not matter particularly, that its outcome will not affect 

grades. On the other hand, the relation between anxiety and achievement may also 

be studied by comparing groups of individuals on whom it can be assumed that dif¬ 

ferent environmental and psychological circumstances have acted to produce anxiety. 

(Of course, the experimentally induced anxiety and the already existing anxiety—the 

stimulus variable and the organismic variable, are not assumed to be the same.) A 

study to test the hypothesis that different environmental and psychological circum¬ 

stances act to produce different levels of test anxiety was done by Guida and Ludlow 

(1989). These investigators hypothesized that students in the United States culture 

would show a lower level of test anxiety than students from the Chilean culture. Us¬ 

ing the language of this chapter, the investigators hypothesized a larger between- 

groups variance than could be expected by chance because of the difference between 
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Chilean and American environmental, educational, and psychological conditions. 

(The hypothesis was supported. Chilean students exhibited a higher level of test anx¬ 

iety than students from the United States. However, when considering only the 

lower socioeconomic groups of each culture, the United States students had higher 
test anxiety than the Chilean students.) 

\ 

Error Variance 

Error variance is the fluctuation or varying of measures that is unaccounted for. The 

fluctuations of the measurements in the dependent variable in a research study where 

all participants were treated equally is considered error variance. Some of these fluc¬ 

tuations are due to chance. In this case, error variance is random variance. It is the 

variation in measures due to the usually small and self-compensating fluctuations of 

measures—now here, now there; now up, now down. The sampling variance dis¬ 

cussed earlier in the chapter, for example, is random or error variance. 

To digress briefly, it is necessary in this chapter and the next to use the notion of 

“random” or “randomness.” Ideas of randomness and randomization will be dis¬ 

cussed in considerably more detail in Chapter 8. For the present, however, random¬ 

ness means that there is no known way of correctly describing or explaining events 

and their outcomes in language. In different words, random events cannot be pre¬ 

dicted. A random sample is a subset of a universe. Its members are so drawn that 

each member of the universe has an equal chance of being selected. This is another 

way of saying that if members are randomly selected, there is no way to predict 

which member will be selected on any one selection — other things being equal. 

However, one should not think that random variance is the only possible source 

of error variance. Error variance can also consist of other components as pointed out 

by Barber (1976). What gets “pooled” into the term called error variance can include 

measurement errors within the measuring instrument, procedural errors by the re¬ 

searcher, misrecording of responses, and the researcher’s outcome expectancy. It is 

possible that equal subjects differ on the dependent variable because one may be 

experiencing a different physiological and psychological functioning at the time the 
measurements were taken. 

Returning to our main discussion, it can be said that error variance is the vari¬ 

ance in measurements due to ignorance. Imagine a great dictionary in which every¬ 

thing in the world — every occurrence, every event, every little thing, every great 

thing—is given in complete detail. To understand any event that has occurred, that 

is now occurring, or that will occur, all one needs do is to look it up in the dictionary. 

With this dictionary there are obviously no random or chance occurrences. Every¬ 

thing is accounted for. In brief, there is no error variance; all is systematic variance. 

Unfortunately (or more likely, fortunately), we do not have such a dictionary. Many 

events and occurrences cannot be explained. Much variance eludes identification and 
control. This is error variance as long as identification and control eludes us. 

While seemingly strange and even a bit bizarre, this mode of reasoning is useful, 

provided we remember that some of the error variance of today may not be the error 

variance of tomorrow. Suppose that we conduct an experiment on teaching problem- 

A 
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solving in which we assign pupils to three groups at random. After we finish the ex¬ 

periment, we study the differences between the three groups to see if the teaching 

has had an effect. We know that the scores and the means of the groups will always 

show minor fluctuations, now plus a point or two or three, now minus a point or two 

or three, which can probably never be controlled. Something or other makes the 

scores and the means fluctuate in this fashion. According to the view under discus¬ 

sion, they do not fluctuate for just any reason; there is probably no “absolute ran¬ 

domness.” Assuming determinism, there must be some cause (or causes) for the fluc¬ 

tuations. True, we can learn some of them and possibly control them. When we do 

this, however, we have systematic variance. 
We discover, for example, that gender “causes” the scores to fluctuate, since 

males and females are mixed in the experimental groups. (We are, of course, talking 

figuratively here. Obviously, gender does not make scores fluctuate.) So we do the 

experiment and control gender by using, say, only males. The scores still fluctuate, 

though to a somewhat lesser degree. We remove another presumed cause of the 

perturbations: intelligence. The scores still fluctuate, though to a still lesser extent. 

We continue to remove such sources of variance. We are controlling systematic 

variance and also identifying and controlling more and more unknown variance 

gradually. 
Now note that before we controlled or removed these systematic variances, be¬ 

fore we “knew” about them, we would have to label each such variance as “error vari¬ 

ance”— partly through ignorance and partly through inability to control or do any¬ 

thing about such variance. We could go on and on doing this and there will still be 

variance left over. Finally we give in; we “know” no more; we have done all we can. 

There will still be variance. A practical definition of error variance, then, would be: 

Error variance is the variance left over in a set of measures after all known sources of 

systematic variance have been removed from the measures. This is so important that 

it deserves a numerical example. 

An Example of Systematic and Error Variance 

Suppose we are interested in knowing whether politeness in the wording of 

instructions for a task affects memory of the polite words. Call “politeness” and 

“impoliteness” the variable A partitioned into Ax and A2 (this idea is from 

Holtgraves, 1997). Students are assigned at random to two groups. Treatments 

A i and A2 are assigned at random to the two groups. In this experiment, students 

of A i receive instructions that are worded impolitely, such as, “You must write 

out the full name for each state you remember.” Students of A2, on the other 

hand, receive instructions that are of the same meaning as those received by Ax 

students but the wording of the instructions is in a polite form: “It would help if you 

write out the full name for each state you recall.” After reading the instructions, 

subjects are given a distracter task. This task involves recalling the 50 states of 

the United States. The students are subsequently given a recognition memory test. 

This test is used to determine the overall memory of the polite words. The scores are 

as follows: 
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At a2 

3 6 

5 5 
1 7 

4 8 

2 4 

M 3 6 

The means are different; they vary. There is between-groups variance. Taking the 

difference between the means at face value—later we will be more precise—we may 

conclude that vagueness in lecturing had an effect. Calculating the between-groups 
variance just as we did earlier, we get: 

x x2 

3 1.5 2.25 

6 1.5 2.25 

M: 4.5 

2x2: 4.50 

In other words, we calculate the between-groups variance just as we earlier calculated 

the variance of the five scores 1, 2, 3, 4, and 5. We simply treat the two means as 

though they were individual scores, and go ahead with an ordinary variance calcula¬ 

tion. The between-groups variance, Vb, is, then, 2.25. An appropriate statistical test 

would show that the difference between the means of the two groups is what is called 

a “statistically significant” difference. (The meaning of this will be taken up in an¬ 

other chapter.)3 Evidently, using polite words in instructions helped increase the 
memory scores of the students. 

The method of computation used here is not what would be used to test statistical significance. It 

is used here purely as a pedagogical device. Note, too, that die small numbers of cases in the exam¬ 

ples given and the small size of the numbers are used only for simplicity of demonstration. Actual 

research data, of course, are usually more complex, and many more cases are needed. In actual 

analysis of variance the correct expression for the between sum-of-squares is: SSh = n!,xb2. For peda¬ 
gogical simplicity, however, we retain Xxb2, later replacing it with SSb. 
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If we put the 10 scores in a column and calculate the variance we get: 

X X x2 

3 -1.5 2.25 

5 .5 .25 

1 -3.5 12.25 

4 -.5 .25 

2 -2.5 6.25 

6 1.5 2.25 

5 .5 .25 

7 2.5 6.25 

8 3.5 12.25 

4 -.5 .25 

M: 4.5 

Xx2: 42.50 

Vt = 
42.5 

10 
4.25 

This is the total variance, Vt • Vt = 4.25 contains all sources of variation in the 

scores. We already know that one of these is the between-groups variance, Vb = 2.25. 

Let us calculate still another variance. We do this by calculating the variance of Ax 

alone and the variance of A2 alone and then averaging the two: 

At X x2 a2 X x2 

3 0 0 6 0 0 

5 2 4 5 -1 1 

1 -2 4 7 1 1 

4 1 1 8 2 4 

2 -1 1 4 -2 4 

2X 
M 

Xx2 

1 J 

10 10 

= 2 

The variance of Ax is 2, and the variance of A2 is 2. The average is 2. Since each of 

these variances was calculated separately and then averaged, we call the average vari¬ 

ance calculated from them the 41within-groups variance. We label this variance Vw 

meaning within variance, or within-groups variance. Thus Vw 2. This variance is 

unaffected by the difference between the two means. This is easily demonstrated by 

subtracting a constant of 3 from the scores of A2- This makes the mean of A2 ecjual to 
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U Figure 6.1 

3. Then, if the variance of A2 is calculated, it will be the same as before: 2. Obviously, 
the within-groups variance will be the same: 2. 

Now write an equation: Vt = Vb + Vw. This equation says that the total variance 

is made up of the variance between the groups and the variance within the groups. 

But is it? Substitute the numerical values: 4.25 = 2.25 + 2.00. Our method works — 

it shows us, too, that these variances are additive (as calculated). 

The variance ideas under discussion can perhaps be clarified with a diagram. In 

Figure 6.1, a circle is broken up into two parts. Let the area of the total circle repre¬ 

sent the total variance of the 10 scores, or Vt. The larger shaded portion represents 

the between-groups variance, or Vb. The smaller unshaded portion represents the er¬ 

ror variance, or Vw or Ve. From the diagram one can see that Vt = Vb + Ve. (Note 
the similarity to set thinking and the operation of union.) 

A measure of all sources of variance is represented by Vt and a measure of the 

between-groups variance (or a measure of the effect of the experimental treatment) 

by Vh. But what is Vw, the within-groups variance? Since, of the total variance, we 

have accounted for a known source of variance via the between-groups variance, we 

assume that the variance remaining is due to chance or random factors. We call this 

error variance. But, you may say, surely there must be other sources of variance? How 

about individual differences in intelligence, gender, and so on? Since we assigned the 

students to the experimental groups at random, assume that these sources of variance 

are equally, or approximately equally, distributed between Hi and A2. And because of 

the random assignment we cannot isolate and identify any other sources of variance. 

We call this remaining variance error variance, knowing full well that there are proba¬ 

bly other sources of variance but assuming, and hoping our assumption is correct, 
that they have been equally distributed between the two groups. 

A Subtractive Demonstration: Removing Between-Groups Variance from 
Total Variance 

Let us demonstrate this another way by removing from the original set of scores the 

between-groups variance, using a simple subtractive procedure. First, let each of the 
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means of A1 and A2 be equal to the total mean; we remove the between-groups 

variance. The total mean is 4.5. (See above where the mean of all 10 scores was cal¬ 

culated.) Second, adjust each individual score of Ax and A2 by subtracting or adding, 

as the case may be, an appropriate constant. Since the mean of Ax is 3, we add 

4.5 — 3 = 1.5 to each of the Ax scores. The mean oi A2 is 6, and 6 — 4.5 = 1.5 is 

the constant to be subtracted from each of the A2 scores. 
Study the “corrected” scores and compare them with the original scores. Note 

that they naturally vary less than they did before. We removed the between-groups 

variance, a sizable portion of the total variance. The variance that remains is that 

portion of the total variance due, presumably, to chance. We calculate the variance of 

the “corrected” scores of Au A2, and the total, and note these surprising results: 

Correction: 

XX: 

M: 

Ai X x2 a2 X X2 

4.5 0 0 4.5 0 0 

6.5 2 4 3.5 -1 1 

2.5 -2 4 5.5 1 1 

5.5 1 1 6.5 2 4 

3.5 -1 1 2.5 -2 4 

XX: 22.5 22.5 

M: 4.5 4.5 

X x2: 10 10 

+ 1.5 -1.5 

A i a2 

3 + 1.5 = 4.5 5 - 1.5 = 3.5 

5 + 1.5 = 6.5 5 - 1.5 = 3.5 

1 + 1.5 = 2.5 7 - 1.5 = 5.5 

4 + 1.5 = 5.5 

L
O

 

1! 1 0
0

 

2 + 1.5 = 3.5 

iry
 

C
O

 

II r—
H

 

1 

22.5 22.5 

4.5 4.5 

V. A, VA = 2 

The within-groups variance is the same as before. It is unaffected by the correction 

operation. Obviously, the between-groups variance is now zero. What about the total 

variance, Vt? Calculating it, we obtain Xxt2 = 20, and Cf = 20-^10 = 2. Thus 

the within-groups variance is now equal to the total variance. The reader should 

study this example carefully until he or she has a firm grasp of what has happened 

and why. 
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Although the previous example is perhaps sufficient to make the essential points, 

it may solidify the student’s understanding of these basic variance ideas if we extend 

the example by putting in and pulling out another source of variance. The reader 

may recall that we knew that the within-groups variance contained variation due to 

individual differences. Now assume that, instead of assigning the students to the two 

groups randomly, we had matched them on intelligence — and intelligence is related 

to the dependent variable. That is, we put pair members with approximately equal 

intelligence test scores into the two groups. The outcome of the experiment might 
be: 

A i a2 

3 6 
1 5 
4 7 
2 4 

5 8 

M: 3 6 

Note carefully that the only difference between this setup and the previous one 

is that the matching has caused the scores to covary. The Ax and A2 measures now 

have nearly the same rank order. In fact, the coefficient of correlation between the 

two sets of scores is 0.90. We have here another source of variance: that due to indi¬ 

vidual differences in intelligence which is reflected in the rank order of the pairs of 

criterion measures. (The precise relation between the rank order and matching ideas 

and their effects on variance will be taken up in another chapter. The student should 

take it on faith for the present that matching produces systematic variance.) 

This variance can be calculated and extracted as before, except that there is an 

additional operation. First, equalize the Ax and A2 means and “correct” the scores as 
before. This yields: 

Correction: +1.5 —1.5 

4.5 4.5 
2.5 3.5 
5.5 5.5 
3.5 2.5 
6.5 6.5 

4.5 4.5 

Second, by equalizing the rows (making each row mean equal to 4.5 and “correcting” 
the row scores accordingly) we find the following data: 
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Correction Ax A2 Original Corrected 

Means Means 

0 4.5 + 0 = 4.5 4.5 + 0 = 4.5 4.5 4.5 

+ 1.5 2.5+ 1.5 = 4.0 3.5+ 1.5 = 5.0 3.0 4.5 

-1.0 5.5-1.0 = 4.5 5.5-1.0 = 4.5 5.5 4.5 

+ 1.5 3.5 + 1.5 = 5.0 2.5 +1.5 = 4.0 3.0 4.5 

-2.0 6.5-2.0 = 4.5 6.5-2.0 = 4.5 6.5 4.5 

M 4.5 4.5 4.5 4.5 

The doubly corrected measures now show very little variance. The variance of the 

10 doubly corrected scores is 0.10, very small indeed. There is, of course, no 

between-groups (columns) or between-individuals (rows) variance left in the 

measures. After double correction, all of the total variance is error variance. (As we 

will see later, when the variances of both columns and rows are extracted like this — 

although with a quicker and more efficient method—there is no within-groups 

variance.) 

A Recap of Removing Between-Group Variance from Total Variance 

This has been a long operation. A brief recapitulation of the main points may be use¬ 

ful. Any set of measures has a total variance. If the measures from which this variance 

is calculated have been derived from the responses of human beings, then there will 

always be at least two sources of variance. One will be due to systematic sources of 

variation like individual differences of the subjects whose characteristics or accom¬ 

plishments have been measured and differences between the groups or subgroups in¬ 

volved in research. The other will be due to chance or random error, fluctuations of 

measures that cannot currently be accounted for. Sources of systematic variance tend 

to make scores lean in one direction or another. This is of course reflected in differ¬ 

ences in means. If gender is a systematic source of variance in a study of school 

achievement, for instance, then the gender variable will tend to act in a manner such 

that the achievement scores of females will tend to be higher than those of males. 

Sources of random error, on the other hand, tend to make measures fluctuate now 

this way, now that way. Random errors, in other words, are self-compensating; they 

tend to balance (or cancel) each other out. 
In any experiment or study, the independent variable (or variables) is a source of 

systematic variance—at least it should be. The researcher “wants” the experimental 

groups to differ systematically and usually seeks to maximize such variance while 

controlling or minimizing other sources of variance, both systematic and error. The 

experimental example given above illustrates the additional idea that these variances 

are additive, and because of this additive property, it is possible to analyze a set of 

scores into systematic and error variances. 
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Components of Variance 

The discussion so far may have convinced the student that any total variance has 

“components of variance.” The case just considered, however, included one experi¬ 

mental component due to the difference between Ax and A2, one component due to 

individual differences, and a third component due to random error. We now study 

the case of two components of systematic experimental variance. To do this, we syn¬ 

thesize the experimental measures, creating them from known variance components. 

In other words, we go backwards. We start from “known” sources of variance be¬ 
cause there will be no error variance in the synthesized scores. 

We have a variable X that has three values. Let X = {0, 1, 2}. We also have an¬ 

other variable Y, which has three values. Let Y = {0, 2, 4}. X and Y, then, are known 

sources of variance. We assume an ideal experimental situation where there are two 

independent variables acting in concert to produce effects on a dependent variable, Z. 

That is, each score of X operates with each score of Y to produce a dependent vari¬ 

able score Z. For example, the X score, 0, has no influence. The X score, 1, operates 

with Tas follows: {(1 + 0), (1 + 2), (1 + 4)}. Similarly, the X score, 2, operates with 

Y: {(2 + 0), (2 4 2), and (2 + 4)}. All this is easier to see if we generate Z in clear 
view. 

The set of scores in the 3X3 matrix (a matrix is any rectangular set or table of 

numbers) is the set of Z scores. The purpose of this example will be lost unless the 

reader remembers that in practice we do not know the X and Y scores; we only know 

the Z scores. In actual experimental situations we manipulate or set up X and Y and 

can only hope they are effective. They may not be. In other words, the sets X = (0, 1, 

2} and Y = {0, 2, 4} can never be known like this. The best we can do is to estimate 

their influence by estimating the amount of variance in Z due to X and to Y. 

Y 

0 2 4 

0 0 + 0 0 + 2 0 + 4 
X 1 1 + 0 1 + 2 1 + 4 

2 2 + 0 2 + 2 2 + 4 

The sets X and Thave the following variances: 

X X X2 

0 -1 1 
1 0 0 
2 1 1 

XX: 3 

M: 1 

Xx2: 2 

XL: 

M: 

X/: 

z 

0 2 4 

0 0 2 4 
1 1 3 5 
2 2 4 6 

Y y y2 

0 -2 4 
2 0 0 
4 2 4 

6 

2 

8 

= T = 67 K = — = 2.67 
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The set Z has variance as follows: 

£Z: 

M: 

Zz2: 

z z z2 

0 -3 9 

2 -1 1 
4 1 1 
1 -2 4 

3 0 0 
5 2 4 

2 -1 1 
4 1 1 
6 3 9 

27 

3 
30 

Vz = 
30 

9 
3.33 

Now .67 + 2.67 = 3.34, or Vz= Vx, + Vy, within errors of rounding. 

This example illustrates that, under certain conditions, variances operate addi- 

tively to produce the experimental measures we analyze. While the example is “pure” 

and therefore unrealistic, it is not unreasonable. It is possible to think of X and Y as 

independent variables; they might be level of aspiration and pupil attitudes. And Z 

might be verbal achievement, a dependent variable. That real scores do not behave 

exactly this way does not alter the idea. They behave approximately this way. We 

plan research to make this principle as true as possible, and analyze data as though it 

were true. And it works! 

Covariance 

Covariance is really nothing new. Recall, in an earlier discussion of sets and correla¬ 

tion that we talked about the relation between two or more variables being analogous 

to the intersection of sets. Let X be {0, 1, 2, 3}, a set of attitude measures for four 

children. Let Y be {1, 2, 3, 4}, a set of achievement measures of the same children, 

but not in the same order. Let R be a set of ordered pairs of the elements of X and Y, 

the rule of pairing being: Each individual’s attitude and achievement measures are 

paired, with the attitude measure placed first. Assume that this yields R = {(0, 2), (1, 

1), (2, 3), (3, 4)}. By our previous definition of relation, this set of ordered pairs is a 

relation, in this case the relation between X and Y. The results of the calculations of 

the variance of X and the variance of Y are: 
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XX: 
M: 

Xa2: 

X A A2 Y y 

0 -1.5 2.25 2 -.5 .25 
1 -.5 .25 1 -1.5 2.25 
2 .5 .25 3 .5 .25 
3 1.5 2.25 4 1.5 2.25 

6 

1.5 
10 

2.5 
5 5 

K = j= 1-25 r, = j=i-25 

We now set ourselves a problem. (Note carefully in what follows that we are go¬ 
ing to work with deviations from the mean, as and ys, and not with the original raw 
scores.) We have calculated the variances of X and Y above by using the as and ys; 
that is, the deviations from the respective means of X and Y. If we can calculate the 
variance of any set of scores, is it not possible to calculate the relation between any 
two sets of scores in a similar way? Is it conceivable that we can calculate the variance 
of the two sets simultaneously? And if we do so, will this be a measure of the variance 
of the two sets together? Will this variance also be a measure of the relation between 
the two sets? 

What we want to do is to use some statistical operation analogous to the set 
operation of intersection, X D Y. To calculate the variance of X or of Y, we squared 
the deviations from the mean, the as or the ys, and then added and averaged them. A 
natural answer to our problem is to perform an analogous operation on the as and 
ys together. To calculate the variance of X, we first did this: (a( • a,), . . . , (a4 • a4) = 

x\ ■> . . . , a42. Why then not follow this through with both as andys, multiplying the 
ordered pairs like: (aj • y{), . . . , (a4 • y4)? Then, instead of writing Xa2 or Xy2, we 
write XAy, as follows: 

A y — xy 

-1.5 -.5 = .75 
-.5 -1.5 = .75 

.5 .5 = .25 
1.5 1.5 = 2.25 

Xay = 4.00 

Vxy = CoVxy = J= 1.00 

Let us give names to XAy and Vxy. Xay is called the cross product, or the sum of 
the cross products. is called the covariance. We will write it CoVwith suitable sub¬ 
scripts. If we calculate the variance of these products—symbolized as Vxy, or CoVxy_ 
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we obtain 1.00, as indicated above. This 1.00, then, can be taken as an index of the 

relation between two sets. But it is an unsatisfactory index because its size fluctuates 

with the ranges and scales of different Xs and Fs; that is, it might be 1.00 in this case 

and 8.75 in another case, making case-to-case comparisons difficult and unwieldy. 

We need a measure that is comparable from problem to problem. Such a measure — 

an excellent one, too—is obtained simply by writing a fraction or ratio. It is the co- 

variance, CoV^, divided by an average of the variances of X and F. The average is 

usually in the form of a square root of the product of Vx and Vy. The whole formula 

for our index of relation, then, is 

CoVi 

TV 
This is one form of the well-known product-moment coefficient of correlation. Us¬ 

ing it with our little problem, we obtain: 

R = 
1.00 

1.25 
= .80 

This index, usually written r, can range from +1.00 through 0 to —1.00, as we 

learned in Chapter 5. So we have another important source of variation in sets of 

scores, provided the set elements, the Xs and Fs, have been ordered into pairs after 

conversion into deviation scores. This variation is aptly called covariance and is a mea¬ 

sure of the relation between the sets of scores. 

It can be seen that the definition of relation as a set of ordered pairs leads to sev¬ 

eral ways to define the relation of the above example: 

R = {(r, y); x and y are numbers, x always coming first} 

xRy = the same as above or “x is related to y” 

R = {(0, 2), (1,1), (2,3), (3,4)} 

R = {(-1.5, -.5), (-.5, -1.5), (.5, .5), (1.5, 1.5)} 

CoVv 

TV 
1.00 

1.25 
= .80 

Variance and covariance are concepts of the highest importance in research and 

in the analysis of research data. There are two main reasons. First, they summarize, 

so to speak, the variability of variables and the relations among variables. This is 

most easily seen when we realize that correlations are covariances that have been 

standardized to have values between -1 and +1. But the term also means the covary¬ 

ing of variables in general. In much or most of our research we literally pursue and 

study covariation of phenomena. Second, variance and covariance form the statistical 
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backbone of multivariate analysis, as we will see toward the end of this book. Most 

discussions of the analysis of data are based on variances and covariances. Analysis of 

variance, for example, studies different sources of variance of observations, mostly in 

experiments, as indicated earlier. Factor analysis is in effect the study of covariances, 

one of whose major purposes is to isolate and identify common sources of variation. 

The contemporary ultimate in analysis, the most powerful and advanced multivariate 

approach yet devised, is called analysis of covariance structures because the system stud¬ 

ies complex sets of relationships by analyzing the covariances among variables. Vari¬ 

ances and covariances will obviously be the core of much of our discussion and pre¬ 

occupation from this point on. 

The Computer Addendum 

One of the major problems textbook writers have today when introducing the use of 

computer programs is how quickly the material becomes dated. Within a period of 

one year or less some major producers of statistical computer software may have a 

few updates and changes to the software. These updates and changes will cause a 

mismatch between the software and what is written on how to use the software. For 

example, when the revision of this textbook began, one popular program, Statistical 

Package for the Social Sciences (SPSS) for Windows was at version 6.0. At the time 

of this writing, the current version is 8.0 with 9.0 soon to be released. Hence, to pre¬ 

sent any specific set of programming statements for such programs may quickly be¬ 

come unusable for students and researchers. So the goal is to present some general 

underlying characteristics within all statistical software programs that may have 

greater applicability to later and newer releases of the program. It is also important 

to choose a statistical program that will last the time period between revisions of the 

book (wishful thinking!). For example, in the third edition of this book published in 

1986, the personal computer was still in its infancy. Other than some spreadsheet 

programs, there was little development in terms of programming languages and sta¬ 

tistical software. Among the earliest, as far as desktop or personal computers were 

concerned, were SPSS-PC, STATA, NCSS, and Anderson-Bell STAT. Most of these 

were not competitive in terms of computing flexibility and power when compared to 

the statistical software available on large-scale (mainframe) computers. A number 

of specialized statistical programs were written by a large number of researchers 

who did not use large computers. Some of these programs were written in BASIC 

FORTRAN, C, and COBOL. 

However, today’s researcher is “blessed” with very powerful and flexible statisti¬ 

cal programs that can be used easily for data analysis purposes. From this chapter to 

the end of the book, we will mainly use SPSS for Windows to demonstrate statistical 

computing. Why? Well, in recent years, a number of competing software companies 

(including the second author’s favorite one) have been acquired by SPSS, Inc. 

“Competing” software is still available, but the development that goes into them is 

suspect. Another reason is that SPSS is available at every major university. There 

are student versions of the program that students can purchase and install on their 

home computers. Despite the criticisms leveled at SPSS, they have (since their 
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H Figure 6.2 

Untided - SPSS Data Editor 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

var var var var var var 
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conception) released very easy to use programs for researchers and students. 

Once some general ideas are made clear as to how one’s data should be laid out and 

entered into the computer program, the request for certain statistical routines 

becomes very easy. 

The discussion of SPSS in this book will deal with the Windows version avail¬ 

able for the personal computer. The discussion is not necessarily valid for mainframe 

versions of the program or non-Windows version (such as DOS versions). This dis¬ 

cussion will assume that the reader is using Windows 95 or better and that the reader 

is knowledgeable with Windows commands and functions. Knowledge on how to use 

a mouse (the pointing device) is imperative when dealing with Windows operations 

because all operations are performed by pointing with the mouse, and clicking on 

(highlighting) an object to select that object. 

When executing the SPSS for Windows program, hereafter referred to as SPSS- 

WIN, the first screen to appear on the computer is a table for data entry. It looks 

something like that in Figure 6.2. This data entry table is in the form of a spread¬ 

sheet. The user will need to input the data into this spreadsheet. If the researcher has 

a previously created dataset acceptable for input to SPSSWIN, it can be used directly 

without the researcher reentering the data. 

The general data format for nearly every statistical computer program is the data 

table where variables are the columns of the table and the observations (people, indi¬ 

viduals) are the rows. If we had the following set of data, its entry into SPSSWIN 

would be easy. 
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Variables 

Age Gender Test 

Score 

Person 

1 12 M 60 

2 13 F 75 

3 15 F 45 

4 14 M 80 

5 14 F 85 

6 12 M 39 

7 13 F 62 

Your first step is to define the variables for SPSSWIN. Wherever you see the 

“var” label on the spreadsheet, you change them to reflect your variables. To do this, 

use the mouse and double-click on the cell in the spreadsheet labeled “var.” When 

this action is performed, another screen appears that allows you to specify the vari¬ 

able name and attributes of that variable (e.g., numeric or character data). In the first 

column type (enter) “Age,” then click the “OK” button (see Figure 6.3). Repeat this 

operation for each of your variables. For the variable “Gender” use a “1” for “F” and 

a “2” for “M.” Next, enter the data from your data table. Each value occupies one 

cell of the spreadsheet. After you have entered all the data, your spreadsheet should 

look like that shown in Figure 6.4. 

U Figure 6.3 

Define Variable 

Variable Name Age 

-Variable Description- 

Type: Numeric8.2 
Variable Label: 
Missing Values: None 

Alignment: Right 

OK 

Cancel 

Help 

- Change Settings- 

Type Missing Values 
Labels Column Format 
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ID Figure 6.4 

Untitled - SPSS Data Editor 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

Age Gender Score var var var 

1 12 2 60 

2 13 1 75 

3 15 1 45 

4 14 2 80 

5 14 1 85 

6 12 2 39 

7 13 1 62 

You can save this as a dataset by clicking “FILE” and selecting “SAVE.” When 

you have done this, you will be asked for a dataset name. Your next step is to perform 

the statistical analysis. For this chapter we will do only descriptive statistics. This in¬ 

cludes means and standard deviations. Figure 6.5 shows the SPSS screens that are 

01 Figure 6.5 

Untitled - SPSS Data Editor 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 
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Crosstabs 

List Cases 

Age Gender Score Summmarize ► 
Compare Means ► 
ANOVA Models ► 
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Data Reduction ► 

Scale ^ 
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-► 

1 12 2 60 

2 13 1 75 

3 15 1 45 

4 14 2 80 

5 14 1 85 

6 12 2 39 

7 13 1 62 
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H Figure 6.6 

Descriptives 
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Paste 

Insert 

Cancel 

Help 

Options 

used. First click “Statistics”; that will produce a new menu. From this second menu 

choose “Sumarize.” When you do this you get a third menu from which you choose 

(click on it) “Descriptives.” Choosing “Descriptive” produces the “descriptive statis¬ 

tics” screen (window) shown in Figure 6.6. Your next action will be to move the vari¬ 

ables from the left block to the right block. To accomplish this action, highlight the 

variable with your mouse and click on the right arrow button. This button is located 

between the two blocks. Descriptive statistics will be computed for those in the right 

[H Figure 6.7 
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HI Figure 6.8 

Untitled - SPSS Data Editor 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 
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ANOVA Models ► 
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Regression ► 
Log-linear ► 
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Data Reduction ► 
Scale ► 
Nonparametric Tests ► 
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2 13 1 75 -► Bivariate 

Partial 
3 15 1 45 

4 14 2 80 

5 14 1 85 

6 12 2 39 

7 13 1 62 

block only. Variables that may be of little or no interest for the researcher can remain 

in the left block. Figure 6.7 shows the screen after the three variables have been 

moved to the right block. The purpose of this window is to allow the researcher to 

choose which variables should be used in the analysis. After this is done, select the 

“OK” button; the program will then perform all the necessary computations and dis¬ 

play them on the SPSS Output screen. 

The result of the analysis is shown below. After completion you can save the out¬ 

put to a file if you so desire. With SPSS for Windows, you can perform a number of 

different analyses on the same dataset. 

Variable Mean Std Dev Variance Minimum Maximum N 

Gender 1.43 .53 .29 1 2 7 

Age 13.29 1.11 1.24 12.00 15.00 7 

Score 63.71 17.43 303.90 39.00 85.00 7 

If you want to compute the covariances between the variables, select “Correlate” 

from the menu. This will in turn produce a new menu from which you choose “Bi¬ 

variate” (see Figure 6.8). To obtain the covariances, select the “options” button and 

put a check mark in the box requesting the display of covariances. 
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The computer output is as follows: 

Variables Cases Cross-Prod Dev Variance-Covar 

Age Gender 7 -1.8571 -.3095 

Age Score 7 28.5714 4.7619 

Gender Score 7 -12.1429 -2.0238 

When other chapters cover computations, they will be based on the demonstra¬ 

tion given here. The information here is fundamental and important in order to 

work efficiently with SPSS for Windows. However, this very brief introduction is not 

meant to serve as a substitute for the SPSS manuals that are available. The user of 

statistical computer software should realize that the computer only computes the 

statistics requested. It cannot interpret the output or know if logical errors have 

occurred. 

Chapter Summary 

1. Differences between measurements are needed in order to study the relations 

between variables. 

2. A statistical measure used in studying differences is the variance. 

3. The variance along with the mean is used to solve research problems. 

4. Kinds of variance: 

a. The variability of a variable or characteristic in the universe or population 

is called the population variance. 

b. A subset of the universe is called a sample and that sample also has variabil¬ 

ity. That variability is referred to as sample variance. 

c. Since the statistic computed from sample to sample differs, this difference 

is referred to as sampling variance. 

d. Systematic variance is the variation that can be accounted for. It can be ex¬ 

plained. Any natural or human-made influences that cause events to hap¬ 

pen in a predictable way are systematic variance. 

e. One type of systematic variance is called between-groups variance. When 

there are differences between groups of subjects, and the cause of that dif¬ 

ference is known, it is referred to as between-group variance. 

f. Another type of systematic variance is called experimental variance. Exper¬ 

imental variance is slightly more specific than between-groups variance in 

that it is associated with variance engendered by active manipulation of the 

independent variable. 

g. Error variance is the fluctuation or varying of measures in the dependent 

variable that cannot be directly explained by the variables under study. One 

part of error variance is due to chance. This is also known as random vari- 
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ance. The source of this fluctuation is generally unknown. Other possible 

sources for error variance include the procedure of the study, the measur¬ 

ing instrument and the researcher’s outcome expectancy. 

5. Variances can be broken down into components. In this case, the word vari¬ 

ance is referred to as total variance. The partitioning of total variance into 

components of systematic and error variances plays an important role in sta¬ 

tistical analyses of research data. 

6. Covariance is the relationship between two or more variables: 

a. it is an unstandardized correlation coefficient; 

b. covariance and variance are the statistical foundations of multivariate statis¬ 

tics (to be presented in later chapters). 

Study Suggestions 

1. A social psychologist has done an experiment in which one group, Au was 

given a task to do in the presence of an audience, and another group, A2, was 

given the same task to do without an audience. The scores of the two groups 

on the task, a measure of digital skill, were: 

A! a2 

5 3 

5 4 

9 7 

00
 

4 

3 2 

a. Calculate the means and variances of A\ and A2, using the method de¬ 

scribed in the text. 

b. Calculate the between-groups variance, Vb, and the within-groups vari¬ 

ance, Vw. 

c. Arrange all 10 scores in a column, and calculate the total variance, Vt. 

d. Substitute the calculated values obtained in (b) and (c) above, in the equa¬ 

tion: Vt = Vb + Vw. Interpret the results. 

[Answers: (a) VA{ = 4.8; VAl = 2.8; (b) Vb = 1.0; Vw = 3.8; (c) Vt = 4.8.] 

2. To 1 above, add 2 to each of the scores of Alf and calculate Vt,Vb, and Vw. 

Which of the variances changed? Which stayed the same? Why? 

[Answers: Vt = 7.8; Vb = 4.0; Vw = 3.8.] 

3. To 1 above, equalize the means of Ax and A2, by adding a constant of 2 to each 

of the scores of A2. Calculate Vt,Vb, and Vw. What is the main difference be¬ 

tween these results and those of 1, above? Explain why. 
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4. Suppose a sociological researcher obtained measures of conservatism (A), atti¬ 

tude toward religion (B), and anti-Semitism (C) from 100 individuals. The 

correlations between the variables were: rah = .70; rac = .40; rbc = .30. What 

do these correlations mean? [Hint: Square the rs before trying to interpret the 

relations. Also, think of ordered pairs.] 

5. The purpose of this Study Suggestion and Study Suggestion 6 is to give the 

student an intuitive feeling for the variability of sample statistics, the relation 

between population and sample variances, and between-groups and error vari¬ 

ances. Appendix C contains 40 sets of 100 random numbers 0 through 100, 

with calculated means, variances, and standard deviations. Draw 10 sets of 10 

numbers each from 10 different places in the table. 

a. Calculate the mean, variance, and standard deviation of each of the 10 sets. 

Find the highest and lowest means and the highest and lowest variances. 

Do they differ much from each other? What value “should” the means be 

(50)? While doing this, save the 10 totals and calculate the mean of all 100 

numbers. Do the 10 means differ much from the total mean? Do they dif¬ 

fer much from the means reported in the table of means, variances, and 

standard deviations given after the random numbers? 

b. Count the odd and even numbers in each of the 10 sets. Are they what they 

“should be”? Count the odd and even numbers of the 100 numbers. Is the 

result “better” than the results of the 10 counts? Why should it be? 

c. Calculate the variance of the 10 means. This is, of course, the between- 

groups variance, Vb. Calculate the error variance, using the formula: Ve = 

K - Vb. 
d. Discuss the meaning of your results after reviewing the discussion in the 

text. 

6. As early as possible in their study, students of research should start to under¬ 

stand and use the computer. Study Suggestion 5 can be better and less labori¬ 

ously accomplished with the computer. It would be better, for example, to 

draw 20 samples of 100 numbers each. Why? In any case, students should 

learn how to perform simple statistical operations using existing computer fa¬ 

cilities and programs at their institutions. All institutions own software pro¬ 

grams for calculating means and standard deviations (variances can be ob¬ 

tained by squaring the standard deviations)4 and for generating random 

numbers. If you can use your institution’s facilities, use them for Study Sug¬ 

gestion 5, but increase the number of samples and their ns. 

4 There may be small discrepancies between your hand-calculated standard deviations and variances 

and those of the computer because existing programs and built-in routines of hand-held calculators 

usually use a formula with N minus 1 rather than N in the denominator of the formula. The discrep¬ 

ancies will be small, however, especially if N is large, (The reason for the different formulas will be 

explained later when we take up sampling and other matters.) 
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An Academic Example 

Bayes' Theorem: Revising Probabilities 

Probability is an obvious and simple subject; it is a baffling and complex subject. It is 

a subject we know a great deal about; it is a subject we know nothing about. Kinder- 

gartners and philosophers can study probability. It is dull; it is interesting. Such con¬ 

tradictions are the stuff of probability. 

Take the expression “laws of chance.” The expression itself is seemingly contra¬ 

dictory. Chance or randomness, by definition, is the absence of law. If events can be 

explained lawfully, they are not random. Then why say “laws of chance”? The an¬ 

swer, too, is seemingly contradictory. It is possible to gain knowledge from ignorance 

if we view randomness as ignorance. This is because random events, in the aggregate, 

occur in lawful ways with monotonous regularity. From the disorder of randomness 

the scientist welds together the order of scientific prediction and control. 

It is not easy to explain these disconcerting statements. Indeed, philosophers 

disagree on the answers. Fortunately, there is no disagreement on the empirical 
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probabilistic events — or at least very little. Almost all scientists and philosophers 

agree that if two dice are thrown a number of times, there will probably be more 7s 

than 2s or 12s. They will also agree that certain events like finding a $100 bill or win¬ 

ning a sweepstakes are extremely unlikely. 

Definition of Probability 

What is probability? We ask this question and immediately strike a perplexing prob¬ 

lem. Wang (1993), Brady and Lee (1989a), and Cowles (1989) have stated that his¬ 

torically there seems to be no agreement on the answer. This seems to be because 

there are two broad schools of thought: frequency and nonfrequency. Even among 

the frequency school, there are at least two definitions, among others, which seem 

irreconcilable: the a priori and the a posteriori. The a priori definition we owe to the 

controversial Pierre Laplace and the accomplished mathematician Augustus DeMor- 

gan (Cowles, 1989). Here, the probability of an event is the number of favorable 

cases divided by the total number of (equally possible) cases, or p — f -e (/ + u), 

where p is probability,/the number of favorable cases, and u the number of unfavor¬ 

able cases. The method of calculating probability implied by the definition is a priori 

in the sense that probability is given so that we can determine the probabilities of 

events before empirical investigation. People often make a number of statements 

concerning probabilities without any empirical data. It is rather a statement about 

one’s state of mind. The Laplace-DeMorgan interpretation of probability is referred 

to as the classical definition. This definition is the basis of theoretical mathematical 

probability. 

The a posteriori, or relative long-run frequency, definition is empirical in nature. 

It says that, in an actual series of tests, probability is the ratio of the number of times 

an event occurs to the total number of trials. With this definition, one approaches 

probability empirically by performing a series of tests, counting the number of times 

a certain kind of event happens, and then calculating the ratio. The result of the cal¬ 

culation is the probability of the certain kind of event. Frequency definitions have to 

be used when theoretical enumeration over classes of events is not possible. For ex¬ 

ample, to calculate longevity and horse race probabilities one has to use actuarial ta¬ 

bles and calculate probabilities from past counts and calculations. A statement that a 

diamond cutter is 95% accurate indicates that out of every 100 diamonds this person 

has cut in the past, 95 of them were cut correctly. 

Practically speaking (and for our purposes), the distinction between the a priori 

and a posteriori definition is not too vital. Following Margenau (1950/1977, p. 264), 

we put the two together by saying that the a priori approach supplies a constitutive 

definition of probability, whereas the a posteriori approach supplies an operational 

definition of probability. We need to use both approaches; we need to supplement 

one with the other. 

The nonfrequency approach is attributed to John Maynard Keynes (1921/1979). 

Keynes was a world-class economist who wrote a number of important and often- 

cited publications. An entire economic theory is based on Keynes’s contributions. 
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Those who engage in such research are called Keynesians. Keynes’s contribution to 

probability and statistics is generally not mentioned in most textbooks on probability 

but yet is important for those doing behavioral science research (Brady & Lee, 

1989a). In this approach, there are two values: (1) the probability value itself, and 

(2) the weight of evidence associated with it. The weight of evidence is subjective. It 

involves the perception of the decisionmaker toward the quality and amount of infor¬ 

mation surrounding the probability value that was obtained empirically. Essentially, 

Keynes states that decisionmakers are confronted with the probabilities of the events 

and also the amount and/or quality of information associated with it. The decision¬ 

maker utilizes the information along with the probability in making a decision. 

Keynes defines a coefficient of weight and risk. This coefficient essentially places a 

weight on an empirical probability value. If the weight of evidence is strong, the 

probability is weighted more heavily. A weight closer to zero is assigned if the weight 

of evidence concerning that probability is weak. According to Brady and Lee (1989b, 

1991), Keynes’s approach explains some of the so-called paradoxes in decision mak¬ 

ing that frequency theory could not adequately explain. Bakan (1974) states that 

Keynes’s theory of probability captures the essence of the process faced by clinical 

psychologists who deal with problems of relevancy. When conducting therapy, the 

psychologist hears, reads, and sees many clues and information. However, the psy¬ 

chologist selectively places some as being more relevant than others. Keynes’s devel¬ 

opment has a greater reach of probabilistic explanations. Keynes’s theory can be used 

to explain the outcome of a study by Rosenthal and Gaito reported in Bakan (1974). 

Here, psychology faculty holding a doctorate were asked to judge two different stud¬ 

ies A and B. Studies A and B each had the same statistical test conducted and ob¬ 

tained the same p value. However, the sample size for study A was 10 and 100 for 

study B. Each faculty member was asked which study they would place the greater 

confidence or belief in. Most faculty members placed greater confidence in the 

results of study B. Keynes would explain this in light of the fact that these individuals 

gave a sample size of 100 as having more weight in their judgment than a sample 

size of 10. 

In summary, the long-run relative frequency approach is the most prevalent in 

behavioral science research (Cowles, 1989). Most behavioral research scientists who 

rely on statistical manipulation of their data follow the long-run relative frequency 

school of thought. In almost all elementary statistics textbooks that cover probability, 

only the relative frequency approach and its effect on statistical methods is discussed. 

Sample Space, Sample Points, and Events 

To calculate the probability of any outcome, first determine the total number of pos¬ 

sible outcomes. With a die the outcomes are 1, 2, 3, 4, 5, 6. Call this set U. Uis the 

sample space, or universe of possible outcomes. The sample space includes all possi¬ 

ble outcomes of an “experiment” that are of interest to the experimenter. The pri¬ 

mary elements of U are called elements or sample points. Then let us write U = {1, 

2, 3, 4, 5, 6}, and bring this chapter in line with the set reasoning and method of 
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PI Table 7.1 Matrix of Possible Outcomes with Two Dice 

Second Die 

1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 3 6 7 8 

First 3 4 5 6 7 8 9 
Die 

4 5 6 7 8 9 10 

5 6 7 8 9 10 11 

6 7 8 9 10 11 12 

chapters 4, 5, and 6. Letting xj equal any sample point or element in U, we write U = 

{xh x2, , xn}. Examples of different Us are all possible outcomes of tossing two 

dice (see Table 7.1); all kindergarten children in such-and-such a school system; all 

eligible voters in X county. 

Sometimes the determination of the sample space is easy; sometimes it is diffi¬ 

cult. The problem is analogous to the definition of sets of Chapter 4. Sets can be de¬ 

fined by listing all the members of the set, and by giving a rule for the inclusion of el¬ 

ements in a set. In probability theory, both definitions are used. What is U in tossing 

two coins? We list all the possibilities: U = {(H, H), (H, T), (T, H), (T, T)}. This is 

a list definition of U. A rule definition — although we would not use it—might be: 

U = {x; x is all combinations of H and T}. In this case U is a Cartesian product. Let 

Ax = {Hu Tx}, the outcome of the first coin; \etA2 = {H2, T2}, the second coin. Re¬ 

calling that a Cartesian product of two sets is the set of all ordered pairs whose first 

entry is an element of one set and whose second entry is an element of another set, 

we can diagram the generation of the Cartesian product of this case, Ax X A2, as in 

Figure 7.1. Note that there are four lines connecting Ax and A2. Thus there are four 

possibilities: {(Hx, H2), (Hx, T2), (Tx, H2), (Tx, T2)}. This thinking and procedure can 

be used in defining many sample spaces of Us, although the actual procedure can be 

tedious. 

With two dice, what is 17? Think of the Cartesian product of two sets and you 

will probably have little trouble. Let Ax be the outcomes or points of the first die: 

{1, 2, 3 4, 5, 6}. Let A2 be the outcomes or points of the second die. Then U = Ax X 

d2 = {(1, 1), (1,2),... ,(5, 6), (6, 6)}. We can diagram this as we diagrammed the 

coin example, but counting the lines is more difficult because there are too many of 

them. We can know the number of possible outcomes simply by 6 X 6 = 36, or in 

a formula: mn, where m is the number of possible outcomes of the first set, and n 
is the number of possible outcomes of the second set. 

It is often possible to solve difficult probability problems by using trees. Trees 

define sample spaces, logical possibilities, with clarity and precision. A tree is a 
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[U Figure 7.1 

diagram that gives all possible alternatives or outcomes for combinations of sets by 

providing paths and set points. This definition is a bit unwieldy. Illustration is better. 

Take the coin example (we turn the tree on its side). Its tree is shown in Figure 7.2. 

To determine the number of possible alternatives, count the number of alterna¬ 

tives or points at the “top” of the tree. In this case, there are four alternatives. To 

name the alternatives, read off, for each end point, the points that led to it. For exam¬ 

ple, the first alternative is (HH2). Obviously, three, four, or more coins can be used. 

The only trouble is that the procedure is tedious because of the large number of al¬ 

ternatives. The tree for three coins is illustrated in Figure 7.3. There are eight possi¬ 

ble alternatives, outcomes, or sample points: U = {(H), H2, H3), (Hu H2, T3), . . . , 

(7), T2, T3)} (the elements of this set are called ordered triples). 

[U Figure 7.2 

First Coin Second Coin 
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Sample points of a sample space may seem a bit confusing to the reader because 

two kinds of points have been discussed without differentiation. Another term and its 

use may help clear up this possible confusion. An event is a subset of U. Any element 

of a set is also a subset of the set. Recall that with set A — {ax, a2j, for example, both 

{d]} and {a2} are subsets of A, as well as {ax, a2}, and { }, the empty set. Identically, all 

the outcomes of Figure 7.2 and Figure 7.3, for example, (Hh T2), (7), H2), and (Tu 

H2, T3), are subsets of their respective Us. Therefore they are also by definition 

events. But in standard usage, events are more encompassing than points. Ail points 

are events (subsets), but not all events are points. Or, a point or outcome is a special 

kind of event, the simplest kind. Any time we state a proposition, we describe an 

event. We ask, for instance, “If two coins are thrown, what is the probability of 

getting two heads?” The “two heads” is an event. It so happens, in this case, that it is 

also a sample point. But suppose we asked, “What is the probability of getting at 

least one head?” “At least one head” is an event, but not a sample point because it 

includes, in this case, three sample points: (Hu H2), (Hu T2), and (Tu H2) (see 

Figure 7.2). 

Determining Probabilities with Coins 

Suppose we toss a newly minted coin three times. We write p(H) = 1/2 and p(T) = 

1/2, meaning the probability of heads is 1/2, and similarly for tails. We assume, then, 

equiprobability. The sample space for three tosses of a coin (or one toss of three 

coins) is: U = {(H, H, H), (H, H, T), (H, T, H), (H, T, T), (T, H, H), (T, H, T), (T, T, 

H), (T, T, T)}. Note that if we pay no attention to the order of heads and tails, we ob¬ 

tain one case of 3 heads, one case of 3 tails, three cases of 2 heads and 1 tail, and 

three cases of 2 tails and 1 head. The probability of each of the eight outcomes is ob¬ 

viously 1/8. Thus the probability of 3 heads is 1/8, and the probability of 3 tails is 

1/8. The probability of 2 heads and 1 tail, on the other hand, is 3/8, and similarly for 

the probability of 2 tails and 1 head. 

The probabilities of all the points in the sample space must add up to 1.00. It 

also follows that probabilities are always positive. If we write a probability tree for 

the three-toss experiment, it looks like Figure 7.3. Each complete path of the tree 

(from the start to the third toss) is a sample point. All the paths comprise the sample 

space. The single path sections are labeled with the probabilities, in this case all are 

labeled 1/8. This leads naturally to the statement of a basic principle. If the outcomes 

at the different points in the tree (at the first, second, and third tosses) are indepen¬ 

dent of each other (that is, if one outcome does not influence another in any way), 

then the probability of any sample point (HHH perhaps) is the product of the proba¬ 

bilities of the separate outcomes. For example, the probability of 3 heads is 1/2 X 

1/2 X 1/2 = 1/8. 

Another principle is: To obtain the probability of any event, add the probabilities 

of the sample points that comprise that event. For example, what is the probability of 

tossing 2 heads and 1 tail? We look at the paths in the tree that have 2 heads and 1 

tail. There are three paths (they are checked ih Figure 7.3). Thus, 1/8 + 1/8 + 1/8 = 
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M Figure 7.3 

First Toss 
(first coin) 

SecondToss Third Toss 
(second coin) (third coin) 

_P_ 

1/8 

1/8 

1/8 

1/8 

1/8 

1/8 

1/8 

1/8 

3/8. In set language, we find the subsets (events) of U and note their probabilities. 

The subset of U of the type “2 heads and 1 tail” are, from the tree or the previous de¬ 

finition of U, {(H, H, T), (H, T, H), (T, H, H)}. Call this the set or event A. Then 

Md = 3/8. 
This procedure could be followed with a laborious experiment of 100 tosses. In¬ 

stead, to get the theoretical expectations, merely multiply the number of tosses by 

the probability of any one of them, to arrive at the expected number of heads (or 

tails). This can be done because all the probabilities are the same. An important 

question to ask here is: In actual experiments in which 100 coins are tossed, will we 

get exactly 50 heads if we assume the coins are fair? No, not often; about eight times 

in 100 such experiments. This can be written p = 8/100 or .08. (Probabilities can be 

written in fractional or decimal forms, more usually in decimal form.) 

An Experiment wi th D ice 

We tossed two newly manufactured dice 72 times under carefully controlled condi¬ 

tions. If we add the number of spots on the two dice on all 72 throws, we obtain a set 

of sums from 2 to 12. Some of these outcomes (sums) will turn up more frequently 
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than others simply because there are more ways for them to do so. For example, 

there is only one way for 2 or 12 to turn up: 1 + 1 and 6 + 6, but there are three 

ways for 4 to turn up: 1 + 3, 3 + 1, and 2 + 2. If this is true, then the probabilities 

for getting different sums must be different. The game of craps is based on these dif¬ 

ferences in frequency expectations. 

To solve the a priori probability problem, we must first define the sample space: 

U — {(1, 1), (1, 2), (1,3),..., (6, 4), (6, 5), (6, 6)}. That is, we pair each number of 

the first die with each number of the second die in turn (the Cartesian product 

again). This can easily be seen if we set up this procedure in a matrix (see Table 7.1). 

Suppose we want to know the probability of the event—a very important event 

too — “a 7 turns up.” Simply count the number of 7s in the table. There are six of 

them nicely arrayed along the center diagonal. There are 36 sample points in U, ob¬ 

tained by some method of enumerating them as above, or by using the formula mn. 
This formula says: Multiply the number of possibilities of the first thing by the num¬ 

ber of possibilities of the second thing. This method can be defined as follows. Say 

there are m ways of doing something, A. There are n ways of doing something else, 

B. Then, if the n ways of doing B are independent of the m ways of doing A, there 

are m X n ways of doing both A and B. This principle can be extended to more than 

two things. If, for example, there are three things, A, B, and C, where there are r 
ways of doing C, then the formula is mnr. 

Applied to the dice problem, mn = 6X6 = 36. Assuming equipossibility again, 

the probability of any single outcome is 1/36. The probability of a 12, for instance, is 

1/36. The probability of a 4, however, is different. Since 4 occurs three times in the 

table above, we must add the probabilities for each of these elements of the sample 

space: 1/36 + 1/36 + 1/36 = 3/36. Thus p(4) = 3/36 = 1/12. As we have seen, the 

probability of a 7 is p(7) = 6/36 = 1/6. The probability of an 8 isp(8) = 5/36. Note, 

too, that we can calculate the probabilities of combinations of events. Gamblers often 

bet on such combinations. For example, what is the probability of a 4 or a 10? In set 

language, this is a union question: p(4 U 10). Count the number of 4s and 10s in the 

table. There are three 4s and three 10s. Thusp(4 U 10) = 6/36. 

In Table 7.1, counting the probabilities of each kind of outcome, we lay out a 

table of expected frequencies (f) for 36 throws. Then double these frequencies to 

H Table 7.2 Expected and Obtained Frequencies of Sums of Two Dice Tossed 12 
Times 

Sum of Dice 

f( 36) 

f( 72) 

f( 72) 

Difference 

2 3 4 

1 2 3 

2 4 6 

4 2 6 

2 2 0 

5 6 7 8 9 10 11 12 

4 5 6 5 4 3 2 1 

8 10 12 10 8 6 4 2 

6 10 15 7 11 6 4 1 

2 0 3 3 3 0 0 1 
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get the expected (a priori) frequencies for 72 throws. We juxtapose against these ex¬ 

pected frequencies the frequencies obtained (fg) when two dice were actually thrown 

72 times. The absolute differences between expected and obtained frequencies are 

then apparent (the results are laid out in Table 7.2). The discrepancies are not great. 

In fact, by actual statistical test, they do not differ significantly from chance expecta¬ 

tion. The a priori method seems to have virtue. 

Some Formal Theory 

We have the sample space U, with subsets A, B, ... . The elements of U (and of A, B, 

. . .) are ah b,, . . . , that is, ah a2, ■ ■ . , an and bu b2, . . . , bn, and so forth. A, B, and so 

forth, are events. Actually, although we have often talked about the probability of a 

single occurrence, we really mean the probability of a type of occurrence. When we 

talk about the probability of any single event of U, for instance, we can only do so 

because any particular member of U is conceived as representative of all of U. And, 

similarly, for the probabilities of subsets A, B, . . . , K of U. The probability of U is 1; 

the probability of E (the empty set), is 0. Or p(U) = 1.00; p(E) = 0. To determine the 

probability of any subset of U, a measure of the set must be assigned. In order to as¬ 

sign such a measure, we must assign a weight to each element of U and thus to each 

element of the subsets of U. A weight is defined by Kemeny, Snell, and Thompson 

(1974) as: 

A weight is a positive number assigned to each element, x, in U, and written 

w(x), such that the sum of all these weights, %w(x), is equal to 1. 

This is a function notion; w is called a weight function. It is a rule that assigns weights 

to elements of a set, U, in a way such that the sum of the weights is equal to 1; that is, 

Wi + w2 + W] + . . . + wn = 1.00, and = l/n. The weights are equal, assuming 

equiprobability; each weight is a fraction with 1 in the numerator and the number of 

cases, n, in the denominator. In the previous experiment of the tosses of a coin (Figure 

7.3), the weights assigned to each element of U, U being all the outcomes are 1/8. 

The sum of all the weight functions, wipe), is 1/8 + 1/8 . . . + 1/8 = 1. In probability 

theory, the sum of the elements of the sample space must always equal 1. 

To get from weights to the measure of a set is easy: The measure of a set is the 

sum of the weights of the elements of the set. 

x in U x in A 

(Note that the sum of the weights in a subsetof U does not have to equal 1. In fact, 

it is usually less than 1.) 

We write m(A), meaning “The measure of the set A.” This simply says the sum 

of the weights of the elements in the set A. 
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Suppose we randomly sample children from the 400 children of the fourth grade 

of a school system. Then U is all 400 children. Each child is a sample point of U. 
Each child is an x in U. The probability of selecting any one child at random is 

1/400. Let A equal the males in U, and B equal the females in U. There are 100 

males and 300 females. Each male is assigned the weight 1/400, and each female is 

assigned the weight 1/400. Suppose we wish to sample 100 children all together. Our 

expectation is, then, 25 males and 75 females in the sample. The measure of the set 

A, m(A), is the sum of the weights of all the elements in A. Since there are 100 males 

in U, we sum the 100 weights: 1/400 + 1/400 4 .. . + 1/400 = 100/400 = 1/4, or 

m(A) = 

x in A 

Similarly, 

x in B 

For set B (the females), we sum 300 weights, each of them being 1/400. In short, the 

sums of the weights are the probabilities. That is, the measure of a set is the proba¬ 

bility of a member of the set being chosen. Thus, we can say that the probability that 

a member of the sample of 400 children will be a male is 1/4, and the probability that 

the selected member will be a female is 3/4. To determine the expected frequencies, 

multiply the sample size by these probabilities: 1/4 X 100 = 25 and 3/4 X 100 = 75. 
Probability has three fundamental properties: 

1. The measure of any set, as defined above, is greater than or equal to 0 and less 

than or equal to 1. In brief, probabilities (measures of sets) are either 0, 1, or 
in between. 

2. The measure of a set, m(A), equals 0 if, and only if, there are no members in 
A; that is, A is empty. 

3. Let A and B be sets. If A and B are disjoint, that is, A D B = E, then: 
m{A U B) = m{A) + m(B). 

This equation says that when no members of A and B are shared in common, then 

the probability of either A or B or both is equal to the combined probabilities of A 
and B. 

There is no need to give an example to illustrate (1). We have had several earlier. 

To illustrate (2), assume, in the boys-girls example, that we asked the probability of 

drawing a teacher in the sample. But U did not include teachers. Let C be the set of 

fourth-grade teachers. In this case, the set C is empty, and m(C) = 0. Use the same 

male-female students example to illustrate (3). Let A be the set of males, B the set 

of females. Then m(A U B) = m(A) + m{B). But m(A U B) = 1.00 because they 
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were the only subsets of U. And we learned that m(A) =1/4 and m(B) = 3/4. The 

equation holds. 

Compound Events and Their Probabilities 

We said earlier that an event is a subset of U, but we need to elaborate this. An event 

is a set of possibilities; it is a possible set of events; it is an outcome of a probability 

“experiment.” A compound event is the co-occurrence of two or more single (or 

compound) events. The two set operations of intersection and union — the opera¬ 

tions of most interest to us—imply compound events. If we toss a coin and roll a die, 

the outcome is a compound event, and we can calculate the probability of such an 

event. More interesting, we might ask how certain demographic variables are related. 

One way to do this is to seek answers to such questions as: “What is the probability 

of detecting a drug user who chooses their specific days of drug usage without regard 

for drug testing strategy?” (see Borack, 1997) or, “What is the probability that two 

students in the same classroom have the same month and day of birth?” (see Nun- 

nikhoven, 1992) or, “What is the probability that a graduate student will drop out of 

graduate school?” (see Cooke, Sims, & Peyrefitte, 1995). 
Compound events are more interesting than single events — and more useful in 

research. Relations can be studied with them. To understand this, we first define and 

illustrate compound events and then examine certain counting problems and the 

ways in which counting is related to set theory and probability theory. It will be 

found that if the basic theory is understood, the application of probability theory to 

research problems is considerably facilitated. In addition, the interpretation of data 

becomes less subject to error. 
Assume that a group of elementary schoolchildren has been studied, that there 

are 100 children altogether in the group: 60 fourth graders and 40 sixth graders. The 

numerical function is useful: it assigns to any set the number of members in the set. 

The number of members in A is n(A). In this case n(U ) = 100, n(A) = 60, and 

n(B) = 40, where A is the set of fourth graders and B the set of sixth graders, both 

subsets of U, the 100 elementary schoolchildren. If there is no overlap between two 

sets, A n B = E, then the following equation holds: 

n(A U B) = n(A) + n(B) (7.1) 

Recall that earlier the frequency definition of probability was given as: 

/ 
P f+ u 

(7.2) 

where/is the number of favorable cases, and u the number of unfavorable cases. The 

numerator is n(f) and the denominator n(U), the total number of possible cases. 

Similarly, we can divide through the terms of Equation 7.1 by n(U): 

n(A U B) n(A) n(B) 

n(U) n(U) n(U) 
(7.3) 
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This reduces to probabilities, analogously to Equation 7.2: 

p(A U B) = p(A) + p(B) (7.4) 

Using the example of the 100 schoolchildren, and substituting values in Equation 

7.3, we get 

100 _ _60_ _40_ 

100 ~~ 100 + 100’ 

which yields for Equation 7.4: 

1.00 = .60 + .40. 

In many cases, two (or more) sets in which we are interested are not disjoint. 

Rather, they overlap. When this is so, then A D B ^ E, and it is not true that n(A U 

B) = n(A) + n(B). Look at Figure 7.4. Here A and B are subsets of U; sample points 

are indicated by dots. The number of sample points in A is 8; the number in B is 6. 

There are two sample points in A D B. Thus the equation above does not hold. If we 

calculate all the points in A U B with Equation 7.1, we get 8 + 6 = 14 points; but 

there are only 12 points. This equation has to be altered to a more general equation 
that fits all cases: 

n(A U B) = n(A) + n(B) - n(A Pi B) (7.5) 

It should be clear that the error when Equation 7.1 is used results from counting the 

two points of A n B twice. Therefore, we subtract n(A H B) once, which corrects the 

equation. It now fits any possibility. If, for example, n{A D B) = E, the empty set, 

Equation 7.5 reduces to Equation 7.1. Equation 7.1 is a special case of Equation 7.5. 

Calculating the number of sample points in n(A D B) of Equation 7.4, then, we get: 

n(A U B) = 8 + 6 - 2 = 12. If we divide Equation 7.5 through by n(U), as in (7.3): 

p(A U B) = p(A) + p(B) - p(A n B) (7.6) 

[Ml Figure 7.4 Variables Moved for Right Block for Analysis 
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Substituting our number of dots or sample points, we find that 

12 _ 8 6 2 

24 ~~ 24 + 24 24 

.50 = .33 + .25 - .08 

In a random sample of U, then, the probabilities of an element being a member of A, 
B, A PI B and A U B, respectively, are .33, .25, .08, and .50. 

Independence, Mutual Exclusiveness, 

and Exhaustiveness 

Consider the following questions, variants of which must be asked by researchers. 
Does the occurrence of this event, A, preclude the possibility of the occurrence of 
this other event, B? Does the occurrence of event A have an influence on the occur¬ 
rence of event B? Are the events A, B, and C related? When A has occurred does this 
influence the outcomes of B—and, perhaps, C? Do the events A, B, C, and D exhaust 
the possibilities? Or are there, perhaps, other possibilities E, F, and so on? Suppose, 
for instance, that a researcher is studying board of education decisions and their rela¬ 
tion to political preference, religious preference, education, and other variables. In 
order to relate these variables to board decisions, the researcher has to have some 
method of classifying the decisions. One of the first questions to be asked is “Have I 
exhausted all possibilities in my classification system?” An additional question is “If a 
board makes one kind of decision does this preclude the possibility of making an¬ 
other kind of decision?” Perhaps the most important question the researcher can ask 
is, “If a board makes a particular decision, does this decision influence its action on 

any other decision?” 
We have been talking about exhaustiveness, mutual exclusiveness, and indepen¬ 

dence. We now define these ideas in a more detailed manner and use them in proba¬ 
bility examples. Their general applicability and importance will also become appar¬ 
ent in the chapters when we take up analysis of data. 

Let A and B be subsets of U. We ask the questions: Are there any other subsets 
of U (other than the empty set)? Do A and B exhaust the sample space? Are all the 
sample points of the sample space U included in A or in B? A simple example is: Let 
A = {H, T}; let B = {1, 2, 3, 4, 5, 6}. If we toss a coin and throw a die together, what 
are the possibilities? Unless all the possibilities are exhausted, we cannot solve the 
probability problem. There are 12 possibilities (2 X 6). The sets A and B exhaust the 
sample space. (This is, of course, obvious, since A and B generated the sample space.) 
Now take a more realistic example. Suppose a researcher is studying religious prefer¬ 
ences. The following system is set up to categorize individuals: (Protestants, 
Catholics, and Jews). Implicitly, U is set up so that U equals all people (with or with¬ 
out religious preferences) and subsets of U, A equals Protestants, B equals Catholics, 
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C equals Jews. The set question is: Does A U B U C = U"? Are all religious 

preferences exhausted? How about Buddhists? Muslims? atheists? 

Exhaustiveness, then, means that the subsets of U use up all the sample space, or A 
U B U . . . U K — U, where A, B, . . . , K are subsets of U, the sample space. In proba¬ 

bility language, this means: p(A U B U . . . U K) = 1.00. Unless the sample space, U, 
is used up, so to speak, probabilities cannot be adequately calculated. For example, in 

the religious preference example, suppose we thought that A U B U C = U, but in 

fact there were a large number of individuals with no particular religious preference. 

So, really, AUBUCUD=U, where D is the subset of individuals with no religious 

preference. The probabilities calculated on the assumption of this equation would be 

quite different from those based on the assumption of the earlier equation. 

Two events, A and B, are mutually exclusive when they are disjoint, or when A n 

B = E. That is, when the intersection of two (or more) sets is the empty set—or 

when two sets have no elements in common—the sets are said to be mutually exclu¬ 

sive. This is the same as saying, again in probability language, p(A D B) = 0. It is 

more convenient for researchers when events are mutually exclusive because they can 

then add the probabilities of events. We state a principle in set and probability terms: 

If the events (sets) A, B, and C are mutually exclusive, then p(A U B U C) = p(A) + 
p(B) + p(C). This is the special case of the more general principle we discussed in the 

previous sections (see equations 7.1, 7.4, 7.5, and 7.6 and the accompanying discus¬ 
sion, above). 

One of the chief purposes of research design is to set up conditions of indepen¬ 

dence of events so that conditions of dependence of events can be studied adequately. 

Two events, A and B, are statistically independent if the following equation holds: 

p(A n B) = p(A)-p(B) (7.7) 

which says that the probability of A and B both occurring is equal to the probability 

of A times the probability of B. Easy and clear examples of independent events are 

dice throws and coin tosses. If A is the event of a die throw and B is the event of a 

coin toss, and p(A) = 1/6 and p(B) = 1/2, then, if p(A) • p{B) = 1/6 • 1/2 = 1/12, A 
and B are independent. If we toss a coin 10 times, one toss has no influence on any 

other toss; the tosses are independent, and so are the throws of dice. Similarly, when 

we throw a die and toss a coin simultaneously, the events of throwing a die, A, and 

tossing a coin, B, are independent. The outcome of a die throw has no influence on 

the coin toss and vice versa. Unfortunately, this neat model does not always apply 
in research situations. 

The commonsense notion of the so-called law of averages is utterly erroneous, 

but it illustrates lack of understanding of independence nicely. It says that if there is a 

large number of occurrences of an event, then the chance of that event occurring on 

the next trial is smaller. Suppose a com is being tossed. Heads has come up five times 

in a row. The commonsense notion of the “law of averages” would lead one to be¬ 

lieve that there is a greater chance of getting tails on the next toss. Not so. The prob¬ 
ability is still 1/2. Each toss is an independent event. 
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Suppose students in a college class are taking an examination. They are working 

under the usual conditions of no communication, no looking at each other’s papers, 

and so forth. The responses of any student can be considered independent of the re¬ 

sponses of any other student. Can the within-test responses to the items be consid¬ 

ered independent? Suppose that the answer to one item later in the test is embedded 

in an item earlier in the test. The probability of getting the later item correct by 

chance, say, is 1/4. But the fact that the answer was given earlier can change this 

probability. With some students it might even become 1.00. What is important for 

the researcher to know is that independence is often difficult to achieve and that lack 

of independence when research operations assume independence can seriously affect 

the interpretation of data. 
Suppose we rank order examination papers and then assign grades on the basis of 

these ranks. This is a perfectly legitimate and useful procedure. But it must be real¬ 

ized that the grades given by the rank-order method are not independent (if they 

ever could be). Take five such papers. After reading them one is ranked as the first 

(the best), the second next, and so on through the five papers. We assign the number 

“1” to the first, “2” to the second, “3” to the third, “4” to the fourth, and “5” to the 

fifth. After using up 1, we have only 2, 3,4, and 5 left. After using up 2, only 3, 4, and 

5 remain. When we assign 4, obviously we must assign 5 to the remaining examina¬ 

tion. In short, the assignment of 5 was influenced by the assignment of 4—and also 

1,2, and 3. The assignment events are not independent. One may ask, “Does this 

matter?” Suppose we take the ranks, treat them as scores, and draw inferences about 

mean differences between groups, say between two classes. The statistical test used 

to do this is probably based on the coin-dice paradigm with its pristine indepen¬ 

dence. But we have not followed this model — one of its most important assump¬ 

tions, independence, has been ignored. 
When research events lack independence, statistical tests lack a certain validity. A 

X2 test, for example, assumes that the events (responses of individuals to an interview 

question), recorded in the cells of a crossbreak or crosstab table, are independent of 

each other. If the recorded events are not independent of each other, then the basis 

of the statistical test and the inferences drawn from it are corrupted. 
Consider the research on the relations between perceived self-efficacy and be¬ 

havior. Here, researchers attempt to show the congruency between self-efficacy judg¬ 

ments and actual behavior. In these studies, participants are usually administered self- 

efficacy scales that describe a set of well-defined tasks. Each participant is asked to 

judge whether he or she can accomplish each task. Perception and behavior are con¬ 

gruent when the participant perception matches actual performance, that is, “said she 

could do it and then she did it,” and “said she could not do it and she in reality could 

not do it.” Cervone (1987) reports that a large number of researchers doing work in 

this area have reported exceptionally high congruencies. A number of studies re¬ 

ported congruencies of 80 — 90%. Cervone states, however, that data obtained from 

self-efficacy scales are not independent because each individual participant con¬ 

tributes more than one observation to the analysis. Cervone (1987, p. 710) states “As 

in any area of research, one cannot assume that multiple observations of one subject 

are independent.” 
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Kramer and Schmidhammer (1992) found similar problems of independence in 

animal behavior research. Some studies on animal and human behavior depend on 

frequency-type ethological data. This type of data usually counts the number of en¬ 

counters between organisms (animal or human) or performance of a behavior. 

Kramer and Schmidhammer use the example of measuring frog behavior. To have in¬ 

dependent observations of male frog behavior of vocalizing or not along a section of 

a lake shore, the researcher needs to ascertain that the absence or presence of vocal¬ 

ization of one frog does not have an effect on other frogs. Kramer and Schmidham¬ 

mer observe that many patterns of behavior of interest to the ethologist tend to oc¬ 

cur in clusters and are not independent. Kramer and Schmidhammer cite a number 

of studies that may have a potential independence problem. 

One possible study is by Keane (1990). Keane’s study examined the male prefer¬ 

ences of estrous female white-footed mice. Keane recorded the number of encoun¬ 

ters each estrous female mouse had with each male mouse. Encounters were classi¬ 

fied as either aggressive (fighting, chasing) or amicable (grooming, smelling). The 

male mice’s breeding origins were documented from the time of birth so that the ex¬ 

perimenter knew how each female mouse was related to each male mouse. Keane 

wanted to know if the estrous female mouse preferred a related or unrelated male 

mouse. Keane found that the estrous female mouse exhibited more amicable behav¬ 

iors and fewer aggressive behaviors toward first cousins than toward nonrelatives. 

Using Kramer and Schmidhammer points from their paper, Keane’s study could be 

flawed in that the observations may not be independent. One female mouse may have 

had a special “dislike” for a nonrelative or a special “like” for a first cousin, and the 

frequency counts could be weighted in favor of that one pair of mice. 

Along these lines, consider a dated but still important research study on the ag¬ 

gressive behavior of apes by Hebb and Thompson (1968). The data from their study 

is presented in Table 7.3. The problem was the relation between sex and aggression. 

Samples of the behavior of 30 adult chimpanzees were taken in an effort to study in¬ 

dividual differences in ape temperament. Without going into detail, it can be said 

that one analysis of the observations showed that males and females displayed 

friendly behavior about equally often, but that males were more aggressive. Hebb 

and Thompson’s data on this observation seem to say: “Watch out for males!” But, 

the authors point out, this is quite out of line with the experience of the apes’ care¬ 

takers. Nineteen out of 20 cuts and scratches were inflicted by females! Then Hebb 

<itid Thompson pursued the interesting, if disconcerting idea of tabulating incidence 

of aggressive acts in two ways: when such were preceded by quasi-aggression; that is 

by warning of attack, and when aggressive acts were preceded by friendly behavior. 

The resulting incidences of behavior seem to indicate: “Watch out for female apes 

when they are friendly! Males were the only ones to display quasi-aggressive acts 

before actual agressive acts (37 male acts, 0 female acts). However, only females acted 

aggressively after displaying friendly behavior (15 female acts, 0 male acts). 

These data cannot be validly analyzed statistically, since the numbers indicate 

the frequency of kinds of acts. But all 37 acts by males may have been committed 

by only one or two of them. If one ape had committed all 37 acts, then it should 

be clear that the acts were not independent of each other. That ape might have had 
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a bad temper, and bad tempers notoriously create lack of independence in animal and 

human acts. 

The next example is hypothetical. Suppose a researcher decides to sample 100 

board of education decisions. There is a variety of ways to do this. Many decisions 

can be sampled from a few boards, or many decisions can be sampled from many 

boards, or both. If the researcher wants to be assured of the independence of the de¬ 

cisions, then many decisions should be sampled from many boards of education. 

Theoretically, only one decision should be taken from each board. This gives some 

assurance of independence — at least as much as such assurance is possible. As soon 

as more than one decision is taken from the same board, however, the researcher 

must entertain the notion that decisions of the kind A may influence decisions of the 

kind B. Decision A may influence decision B, for example, because the board mem¬ 

bers may wish to appear consistent. Both decisions may involve expenditures for in¬ 

structional equipment, and since the board adopted a liberal policy on A it must 

adopt a liberal policy on B. 
Suppose an investigator calculated the probability of the difference between two 

means. In this example, the difference was due to chance. This probability was 5/100, 

or .05. This indicates that there were approximately five chances in 100 that the ob¬ 

tained result was due to chance. That is, if the experimental condition is repeated 

100 times without the experimental manipulation, approximately five of those times 

could yield a mean difference as large as the one obtained with the experimental ma¬ 

nipulation. Feeling shaky about the result—after all, there are five chances in 100 

that the result could have been due to chance—the researcher carefully repeated the 

whole experiment. The same result is obtained (luck!). Having controlled everything 

carefully to be sure the two experiments were independent, the probability calculated 

for the two results were due to chance. This probability was approximately .02. Thus 

we see both the values of independence in experimentation and the importance of 

replication of results.1 
Note, finally, that the formula for independence works two ways. (1) It tells us, 

the probability of both events occurring by chance, if events are independent and we 

know the probabilities of the separate events. If it is found that dice repeatedly show 

say 12s, then there is probably something wrong with the dice. If a gambler notes 

that another gambler seems always to win, the losing gambler will of course get sus¬ 

picious. The chances of continually winning a fair game are small. It can happen, of 

course, but it is unlikely to happen. In research, it is unlikely that one would get 

two or three significant results by chance. Something beyond chance is probably 

'The method of calculating these combined probabilities was proposed by Fisher and is described 

in Mosteller and Bush (1954). The astute student may wonder why the set principle applied to 

probability, p(A PI B) = p(A) • p(B), is not applicable. That is, why not calculate .05 X .05 = .0025? 

Mosteller and Bush explain this point. Since it is a rather difficult and moot point, we do not con¬ 

sider it in this book. All the reader need do is to remember that the probability of getting, say, a 

substantial difference between means in the same direction on repeated experiments is considerably 

smaller than getting such a difference once. Thus one can be more sure of one’s data and conclu¬ 

sions, other things being equal. 
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operating—the independent variable, we hope. (2) The formula for independence 

can be turned around, so to speak. It can tell the researchers what to do in order to 

take advantage of the multiplicative probabilities. The researcher must, if it is at all 

possible, plan the research so that events are independent. That this is easier said 

than done will become quite evident before this book is finished. 

Conditional Probability 

In all research—and perhaps especially in social scientific and educational re¬ 

search-events are often not independent. Look at independence in another way. 

When two variables are related they are not independent. Our previous discussion of 

sets makes it clear. If A D B = E, then there is no relation (more accurately, a zero 

relation), or A and B are independent. If A 0 B ^ E, then there is a relation, or A 
and B are not independent. When events are not independent, scientists can sharpen 

their probabilistic inferences. The meaning of this statement can be explicated to 
some extent by studying conditional probability. 

When events are not independent, the probability approach must be altered. 

Here is a simple example. What is the probability that, of any married couple picked 

at random, both mates are Republicans? First, assuming equiprobability and that 

everything else is equal, the sample space U (all the possibilities) is {RR, RD, DR, 
DD}, where the wife comes first in each possibility or sample point. Thus the proba¬ 

bility that both husband and wife are Republicans is p{RR} = 1/4. But suppose we 

know that one of them is a Republican. What is the probability of both being Repub¬ 

licans now? U is reduced to {RR, RD, DR}. The knowledge that one is a Republican 

deletes the possibility DD, thus reducing the sample space. Therefore, p(RR) = 1/3. 

Suppose we have the further information that the wife is a Republican, what is the 

probability that both mates are Republicans? Now U = {RR, RD}. Thus p(RK) = 1/2. 

The new probabilities are, in this case, “conditional” on prior knowledge or facts. 

Definition of Conditional Probability 

Let ^4 and B be events in the sample space, U, as usual. The conditional probability is 

denoted: p(A\B), which is read, “The probability of A, given 5.” For example, we 

might say, The probability that a husband and wife are both Republicans, given that 

the husband is a Republican, or, much more difficult to answer, though more inter¬ 

esting, “The probability of high effectiveness in college teaching, given the Ph.D de¬ 

gree. Of course, we can write p(B\A\ too. The formula for the conditional proba¬ 
bility involving two events is: 

p(A\B) 
p(A n B) 

m (7.8) 

The formula takes an earlier notion of probability and alters it for the conditional 

probability situations. (Please note that the theory of conditional probability extends 
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PI Table 7.3 Probability Matrix Showing Joint 
Probabilities of Two Independent 
Events 

Second Toss 

h2 t2 

Hi 1/4 1/4 1/2 
First Toss 

T 1/4 1/4 1/2 

1/2 1/2 

to more than two events, but will not be discussed in this book.) Remember that in 

probability problems the denominator has to be the sample space. The formula 

above changes the denominator of the ratio and thus changes the sample space. The 

sample space has, through knowledge, been reduced from U to B. To demonstrate 

this point take two examples: one of independence or simple probability and one of 

dependence or conditional probability. 
Toss a coin twice. The events are independent. What is the probability of getting 

heads on the second toss if heads appeared on the first toss? We already know: 1/2. 

Let us calculate the probability using Equation 7.8. First we write a probability ma¬ 

trix (see Table 7.3). For the probabilities of heads (H) and tails (T) on the first toss, 

read the marginal entries on the right side of the matrix. Similarly, for the proba¬ 

bilities of the second toss, they are on the bottom of the matrix. Thus p(Hx) = 1/2, 

p(H2) = 1/2, and p(Hx D H2) = 1/4. Therefore, 

P(H2\H{) 
p(h2 n HQ 

pm 2 

The result agrees with our previous simpler reasoning. If we make the problem a 

bit more complex, however, perhaps the formula will become more useful. Suppose, 

somehow, that the probability of getting heads on the second toss was .60 instead of 

.50, and the events are still independent. Does this change the situation? The new 

situation is set up in Table 7.4. (The .30 in the cell Hx D H2 is calculated with the 

probabilities on the margins: .50 X .60 = .30. This is permissible since we know that 

the events are independent. If they are not independent, conditional probability 

problems cannot be solved without knowledge of at least one of the values.) The for¬ 

mula gives us: 

P(H2\HX) 
p(H2 n hx) 

pm 
JO 

.50 
.60 
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[M Table 7.4 Matrix of Joint Probabilities of Events 

First Toss 

Second Toss 

h2 t2 

bh .30 .20 .50 

T .30 .20 .50 

.60 .40 1.00 

But this .60 is the same as the simple probability of H2. When events are indepen¬ 

dent, we get the same results. That is, in this case: p(H21HJ = p(H2), and in the gen¬ 
eral case: 

p(A | B) = p(A) (7.9) 

We have another definition or condition of independence. If Equation 7.9 holds, the 

events are independent. 

An Academic Example 

There are more interesting examples of conditional probability than coins and other 

such chance devices. Take the baffling and frustrating problem of predicting the suc¬ 

cess of doctoral students in graduate school. Can the coin-dice models be used in 

such a complex situation? Yes, under certain conditions. Unfortunately, these condi¬ 

tions are difficult to arrange. There has been some limited success, however. Pro¬ 

vided that we have certain empirical information, the model can be quite useful. As¬ 

sume that the administrators of a graduate school are interested in predicting the 

success of their doctoral students. They are distressed by the poor performance of 

many of their graduates and want to set up a selection system. The school continues 

to admit all doctoral applicants as in the past, but for three years all incoming stu¬ 

dents take the Miller Analogies Test (MAT), a test that has been found to be fairly 

successful in predicting success in graduate school in a number of areas (e.g., psy¬ 

chology, education, economics). This test has also been used in evaluating personnel 

for high-level jobs in industry. An arbitrary cutoff point of a raw score of 65 is se¬ 
lected. 

The school administration finds that 30% of all the candidates of the three-year 

period score 65 or above. Each is categorized as a Success (S) or Failure (F). The cri¬ 

terion is simple: Does he or she get the degree? If so, this is defined as Success. It is 

found that 40% of the total number succeed. To determine the relation between 

MAT score and Success or Failure, the administration, again using a cutoff point of 

65, determines the proportions shown in Table 7.5. The MAT divides the successful 

group in half (.20 and .20), but sharply differentiates in the failure group (.10 and 
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HD Table 7.5 Joint Probabilities, Graduate 
School Problem 

Success (S) Failure (F) 

MAT >65 .20 .10 .30 

MAT <65 .20 .50 .70 

.40 .60 1.00 

.50). Now, the questions are asked: What is the probability of getting the doctoral 

degree if a candidate receives a MAT score of 65 or higher? What is the probability 

of a candidate’s getting the degree if the MAT score is lower than 65? The computa¬ 

tions are: 

p(S | >65) 
p{S n > 65) _ ^20 

p(>65) " .30 
.67 

p(S\ < 65) 
p(S n < 65) .20 

p(< 65) ~ "70 
.29 

Clearly, it would seem that the MAT is a good predictor of success in the program. 

Note carefully what happens in all these cases. When we write p(A \ B) instead 

of simply p(A), in effect we reduce the sample space from U to B. Take the example 

just given. The probability of success without any other knowledge is a probability 

problem on the whole sample space U. This probability is .40. But given knowledge 

of MAT score, the sample space is reduced from U to a subset of U ^ 65. The actual 

number of occurrences of the success event, of course, does not change; the same 

number of persons succeed. But the probability fraction gets a new denominator. 

Put differently, the probability estimate is refined by knowledge of “pertinent” sub¬ 

sets of U. In this case, > 65 and < 65 are “pertinent” subsets of U. By “pertinent” 

subsets we mean that the variable implied is related to the criterion variable, success 

and failure. 

Maybe the following mode of looking at the problem will help. An area interpre¬ 

tation of the graduate student problem is diagrammed in Figure 7.5. The idea of a 

measure of a set is used here. Recall that a measure of a set or subset is the sum of the 

weights of the set or subset. The weights are assigned to the elements of the set or 

subset. Figure 7.5 is a square with 10 equal parts on each side. Each part is equal to 

1/10 or .10. The area of the whole square is the sample space U, and the measure of 

U, m(U), equals 1.00. This means that all the weights assigned to all the elements of 

the square add up to 1.00. The measures of the subsets have been inserted: m(F) = 
.60, m{<65) = .70, m{S D > 65) = .20. The measures of these subsets can be calcu¬ 

lated by multiplying the lengths of their sides. For example, the area of the upper left 
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M Figure 7.5 

>65 

<65 

Success Failure 

0.30 

0.70 

1.00 

(doubly hatched) box is .5 X.4 = .20. Recall that the probability of any set (or subset) 

is the measure of the set (or subset). So the probability of any of the boxes in Figure 

7.5 is as indicated. We can find the probability of any two boxes by adding the mea¬ 

sures of sets; for example, the probability of success is .20 + .20 = .40. 
These measures (or probabilities) are defined on the whole area, or U = 1.00. 

The probability of success is equal to .40/1.00. We have knowledge of the students’ 

performances on the MAT. The areas indicating the probabilities associated with 

> 65 and < 65 are marked off by horizontal dashed lines. The simple probability of 

— 65 is equal to .20 + .10 = .30, or .30/1.00. The whole shaded area on the top indi¬ 

cates this probability. The areas of the Success and Failure measures are indicated by 
the heavy lines separating them on the square. 

Our conditional probability problem is: What is the probability of success, given 

knowledge of MAT scores, or given > 65 (it could also be < 65, of course)? We have 

a new small sample space, indicated by the whole shaded area at the top of the 

square. In effect U has been reduced to this smaller space because we know the 

“truth” of the smaller space. Instead of letting this smaller space be equal to .30, we 

now let it be equal to 1.00. (You might say it becomes a new 17.) Consequently, the 

measures of the boxes that constitute the new sample space must be recalculated. For 

instance, instead of calculating the probability of p(> 65 Pi S) = .20 because it is 2/10 
of the area of the whole square, we must calculate, since we now know that the ele- 
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ments in the set > 65 do have MAT scores greater than or equal to 65, the probabil¬ 

ity on the basis of the area of ^ 65 (the whole shaded area at the top of the square). 

Having done this, we get .20/.30 = .67, [shaded area for success -f- shaded area for 

success plus shaded area for failure] which is exactly what we got when we used 

Equation 7.8. 

What happens is that additional knowledge makes U no longer relevant as the 

sample space. All probability statements are relative to sample spaces. The basic question, 

then, is that of adequately defining sample spaces. In the earlier problem of husbands 

and wives, we asked the question: What is the probability of both mates being Re¬ 

publican? The sample space was U — {RR, RD, DR, DD}. But when we add the 

knowledge that one of them is certainly a Republican and ask the same question, in 

effect we make the original U irrelevant to the problem. A new sample space, call it 

U', is required. Consequently, the probability that both are Republicans is different 

when we have more knowledge. 

We can calculate other probabilities similarly. Suppose we wanted to know the 

probability of failure, given a MAT score less than 65. Look at Figure 7.5. The prob¬ 

ability we want is the larger box on the right, labeled .50. Since we know that the 

score is < 65, we use this knowledge to set up a new sample space. The two lower 

boxes whose area equals .20 + .50 = .70 represent this sample space. Thus we calcu¬ 

late the new probability: .50/.70 = .71; the probability of failure to get the degree if 

one has a MAT score less than 65 is .71. 

Bayes' Theorem: Revising Probabilities 

No discussion of conditional probabilities would be complete without briefly men¬ 

tioning Bayes’ Theorem and its usefulness in applied behavioral science research. 

Through the manipulation of the conditional probability formula, the Reverend 

Thomas Bayes was able to develop a formula for computing special conditional prob¬ 

abilities. With Bayes’ Theorem, one could update or revise current probabilities 

based on new information or data. This information can be used to realign uncer¬ 

tainty. A number of scientists and researchers advocate the use of Bayes’ Theorem 

(see Wang, 1993). 
Seldom are empirical data conclusive. For example, some very good students 

seeking admission to college will do poorly on a college entrance examination. Yet 

there will be some poor students who will score quite well on the entrance test. 

However, an unfavorable test result can increase the chances of rejecting a poor stu¬ 

dent and a favorable test result can increase the probability of selecting a good stu¬ 

dent. Likewise, in everyday life, we constantly adjust older likelihoods based on new 

information. Bayes’ Theorem, expressed in formula form, is a numerical formula that 

shows how this can be done. 

pm a) 
p(H,)p(A\H,) 
k 

Ww 
j= 1 
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Example 
Using data that currently exist, a researcher has determined that 10% of the popula¬ 

tion have an eating disorder. Such data are generally published and come from estab¬ 

lished sources. What this tells us is that without any additional information, if 100 

people were chosen at random, 10 would have an eating disorder. If D is used to des¬ 

ignate that a person has an eating disorder then ~D is used to indicate no eating dis¬ 

order. Hence p(D) = .10 and p(~D) = .90. These are called “old” probabilities. 

Some psychologists refer to these as base rates. Using these probabilities by them¬ 

selves may not lead to fruitful results. 
To try to enhance one’s ability for detecting eating disorders, a psychological test 

was developed. The test result, even though imperfect, is the new information and 

could help a practicing therapist in making a correct diagnosis. The researcher took 

individuals that were known to have an eating disorder and administered the test. 

Likewise, the test was given to a group that was known not to have an eating disor¬ 

der. The number of people scoring positive on the test who in reality had the disor¬ 

der can be expressed as a conditional probability p(+ \D). The number of people 

scoring negative on the test who in reality did not have the disorder can be written as 

p(— | ~D). These two conditional probabilities are referred to as correct classifica¬ 

tions. Empirically, p(-I-1 D) = .91 andp(— | ~~D) = .95. Hence, using known data, the 

test is able to detect 91% of those with the disorder and 95% of those without the 

disorder correctly. The number of people receiving a positive score but are in reality 

without the disorder is designated p(+ | ~D) and called a false positive. The number 

of people receiving a negative score but who in reality have the disorder is written as 

p(— | D) and called a false negative. These last two conditional probabilities give the 

level of imperfection of the test. It follows that p{+ | ~D) is .05 and p{— \D) = .09. 

Now, using Bayes’ Theorem, one can answer the following questions. What is the 

probability the person actually has the disorder if he or she scored negative: p{D \ —)? 

What is the probability that the person has the disorder given that he or she scored 

positive on the test: p(D\ +)? Hence in using the conditional probabilities, one can 

update the “old” probabilities. Using these numbers, the equation for Bayes’ Theo¬ 
rem, we obtain: 

P(D |+) 
P(+\D)P(D) 

p(+\D)p(D) +p(+\~D)p(~D) 

.91 (. 10) 

.91(.10) + (,05)(.90) 

.091 

.091 + .045 

.091 

.136 
= 0.669 = 0.67 

Similarly, 

P(D |-) 
p(-|P)p(D) 

p(-\D)p(P) + p(-\~D)p(~D) 

•09(.10) .009 

.09(.10) + (,95)(.90) ~~ .009 + .855 

.009 

.864 
0.01 
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Hence, with the use of the test, if a person gets a positive score, there is a 67% 

chance that person has an eating disorder. Using Bayes’ Theorem, we have adjusted 

the probability that the person has an eating disorder from a probability of .10 to .67. 

There is a 1 % chance a person who receives a negative score has an eating disorder. 

Doscher and Bruno (1981) used Bayes’ theorem in place of the usual formula to 

correct for guessing on exams. With Bayes’ Theorem, probability distributions of 

true knowledge levels were developed. Given a student’s actual test score, the calibra¬ 

tion tables developed from Bayes’ Theorem would give a probabilistic estimate of the 

true score. Bayes’ Theorem was used to adjust test scores for guessing. Doscher and 

Bruno found that the Bayes’ method was superior to the usual correction for guess¬ 

ing formula. These researchers found that for inner-city children the use of an unad¬ 

justed test score would usually overestimate the knowledge of the child. This could 

result in the child being placed in a learning situation where tasks are too difficult. 

They found that by using the usual correction for guessing formula, the adjustment 

was too great and would usually place the child in a learning situation with unchal¬ 

lenging tasks. Doscher and Bruno (1981, p. 488) say: 

An analytic procedure based on [Bayes’ Theorem] allows the probabilistic esti¬ 

mation of true scores from an observed test score using prior information about 

the likely true score distribution and the guessing pattern specific to the popula¬ 

tion being studied. 

Similar to Doscher and Bruno’s study, Jones (1991) introduces the use of Bayes’ 

Theorem in conjunction with counselor decisions. Jones advocates the Bayesian 

analysis since a probability statement is made about the person being measured in¬ 

stead of just giving a score and an interpretation. Jones’ research using Bayes’ Theo¬ 

rem was directed at selecting operators for employment on a rehabilitation program 

for the visually challenged. Jones lays out the steps a counselor on the program 

would take to utilize Bayes’ Theorem. The counselor on the program would start 

with an examination of the agency’s records and would locate the psychometric data 

on those candidates hired as operators. The counselor would also determine which 

ones were eventually classified as successful and unsuccessful. Jones labels these as 

the prior beliefs. The records also give the counselor the scores on the Cognitive 

Skills Test. The counselor then determines how many of the successful applicants 

had a mastery or above score. Likewise, the counselor is able to determine how many 

successful applicants had a below master score. Similar data would be obtained for 

those who were unsuccessful. Armed with this information the counselor can now go 

on to estimate (using Bayes’ Theorem) the probability that a given person would be 

successful given that he or she has or does not have a mastery score on the test. Jones 

then goes on to show how to integrate personality profiles into the classification 

process. 
The Bayesian framework permeates many areas of research. Many of the more 

advanced statistical methods such as confirmatory factor analysis, structural equation 

modeling, and discriminant analysis all rely on a Bayesian approach. The reader 

should read one or more of the following for more information. Estes (1991) gives 
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some additional details not mentioned here on the use of Bayes’ Theorem in crimi¬ 

nal law cases. Smith, Penrod, Otto, and Park (1996) conducted an experiment to 

measure the behavior of jurors who are taught the use of Bayes’ Theorem and prob¬ 

abilistic evidence in criminal law cases. Wang (1993) shows the superiority of 

Bayesian method over other methods in business forecasting. Bierman, Bonini, and 

Hausman (1991) give details on the use of Bayes’ theorem in marketing and business 
research. 

Chapter Summary 

1. Probability is not easy to define. 

2. Three broad definitions: 

a. a priori involves the ability of people to give a probability estimate in the 
absence of empirical data. 

b. a posteriori is the most common definition used in statistics, based on 
long-run relative frequency. 

c. Keynes’s weight-of-evidence involves two numbers for probability. One 

is subjective and based on the amount of information available. 

3. Sample space is the total number of possible outcomes of an experiment. 

Any single outcome is called a sample point or element. An event is one or 

more elements arranged in some meaningful way or combination. 

4. The probability of the sample space is 1.00. Sample points and events are 

less than 1.00. The sum of all the probabilities of elements is 1.00. Each 

sample point can be weighted. The sum of the weights used must total to 
1.00. 

5. Probability has three fundamental properties: 

a. The measure of any set, as defined above, is greater than or equal to 0 

and less than or equal to 1. In brief, probabilities (measures of sets) are 
either 0, 1, or in between. 

b. The measure of a set, m(A\ equals 0 if and only if there are no members 
in A; that is, A is empty. 

c. Let A and B be sets. If A and B are disjoint—that is, A n B = E—then 
m{A U B) = m(A) + m(B). 

6. A compound event is the cooccurrence of two or more single (or compound) 
events. 

7. Exhaustiveness refers to the partitioning of the sample space into subsets. 

These subsets when combined will cover the entire sample space. 

8. If the intersection of two or more sets results in an empty set, these sets are 
called mutually exclusive. 

9. Two events are considered independent if the probability of the two events 

both occurring is equal to the probability of one event multiplied by the 
probability of the other. 

I 
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10. There are times when we want to compute the probability of an event after 

receiving additional information that may alter the sample space. This prob¬ 
ability is called conditional probability. 

11. Bayes’ Theorem involves conditional probabilities. Bayes’ probabilities are 

effective for revising probabilities using new or additional information. 

Study Suggestions 

1. Suppose that you are sampling ninth-grade youngsters for research purposes. 

There are 250 ninth graders in the school system: 130 boys and 120 girls. 
a. What is the probability of selecting any youngster? 

b. What is the probability of selecting a girl? a boy? 

c. What is the probability of selecting either a boy or a girl? How would you 

write this problem in set symbols? [Hint: Is it equivalent to set intersection 
or union?] 

d. Suppose you drew a sample of 100 boys and girls. You got 90 boys and 10 
girls. What conclusions might you reach? 

[Answers: (a) 1/250; (b) 120/250, 130/250; (c) 1.] 

2. Toss a coin and throw a die once. What is the probability of getting heads on 

the coin and a 6 on the die? Draw a tree to show all the possibilities. Label the 

branches of the tree with the appropriate weights or probabilities. Now an¬ 

swer some questions. What is the probability of getting: 

a. tails and either a 1, a 3, or a 6? 

b. heads and either a 2 or a 4? 

c. heads or tails and a 5? 

d. heads or tails and a 5 or a 6? 

[Answers: (a) 1/4; (b) 1/6; (c) 1/6; (d) 1/3.] 

3. Toss a coin and roll a die 72 times. Write the results side by side on a ruled 

sheet as they occur. Check the obtained frequencies against the theoretically 

expected frequencies. Now check your answer to each of the questions in 

question 2. Do the obtained results come close to the expected results? (For 

example, suppose you calculated a certain probability for 2(a), above. Now 

count the number of times tails is paired with a 1, a 3, or a 6. Does the ob¬ 

tained fraction equal the expected fraction?) 

4. Suppose that in Figure 7.6, there are 20 elements in U, of which four are in A, 
six in B, and two in A H B. If you randomly select one element, what is the 

probability 

a. that it will be in A? 
b. that it will be in 5? 

c. that it will be in A D 5? 

d. that it will either be in A or B? [Hint: Remember the equation: 

p{A U B)= p(A) + p(B) - p(A n B).] 
e. that it will neither be in A nor in B? 

f. that it will be in B but not in A? 
[Answers: (a) 1/5; (b) 3/10; (c) 1/10; (d) 2/5; (e) 3/5; (f) 1/5.] 
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u Figure 7.6 

5. Using Figure 7.6, answer the following questions: 

a. Given B, what is the probability of A? 
b. Given A, what is the probability of B} 

[Answers: (a) 1/3; (b) 1/2.] 

6. Consider Figure 7.7. There are 20 elements in U, 4 in B, and 8 in A. If an ele¬ 

ment of U is selected at random, what are the probabilities that the element 

will be in 

a. A} 
b. 5? 
c. An B? 
d. A U 5? 

e. U? 
[Answers: (a) 2/5; (b) 1/5; (c) 1/5; (d) 2/5; (e)l.] 

7. Using Figure 7.7, answer the following questions: 

a. Given A (knowing that a sampled element came from A), what is the prob¬ 
ability of B? 

b. Given B, what is the probability of A? 
[Answers: (a) 1/2; (b) 1.] 

8. Suppose you had a two-item, four-choice, multiple-choice test, with the four 

choices of each item labeled a, b, c, and d. The correct answers to the two 
items are c and a. 
a. Write out the sample space. (Draw a tree; see Figure 7.3.) 

b. What is the probability of any testee getting both items correct by 
guessing? 

c. What is the probability of getting at least one of the items correct by 

01 Figure 7.7 
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guessing? (Hint: This may be a bit troublesome. Draw the tree and think 
of the possibilities. Count them.) 

d. What is the probability of getting both items wrong by guessing? 

e. Given that a testee gets the first item correct, what is the probability of 

that person getting the second item correct by guessing? 

[Answers: (b) 1/16; (c) 7/16; (d) 9/16; (e) 1/4.] 

9. Most of the discussion in the text has been based on the assumption of 

equiprobability. This assumption is often not justified, however. What is 

wrong with the following argument, for instance? The probability of one’s dy¬ 

ing tomorrow is one-half. Why? Because one will either die tomorrow or not 

die tomorrow. Since there are two possibilities, they each have a probability of 

occurrence of one-half. How would insurance companies fare with this rea¬ 

soning? Suppose, now, that a political scientist studied the relation between 

religious and political preferences, and assumed that the probabilities that a 

Catholic was Democrat or Republican were equal. What would you think of 

his or her research results? Do these examples have implications for re¬ 

searchers knowing something of the phenomena they are studying? Explain. 



V 
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Sampling and Randomness 

■ Sampling, Random Sampling, and Representativeness 

■ Randomness 
An Example of Random Sampling 

■ Randomization 
A Senatorial Randomization Demonstration 

■ Sample Size 
Kinds of Samples 

Some Books on Sampling 

Imagine the many situations in which we want to know something about people, 

about events, about things. To learn something about people, for instance, we take a 

few people whom we know—or do not know—and study them. After our “study,” 

we reach certain conclusions, often about people in general. Some such method is 

behind much folk wisdom. Common sensical observations about people, their 

motives, and their behaviors derive, for the most part, from observations and experi¬ 

ences with relatively few people. We make such statements as: “People nowadays 

have no sense of moral values”; “Politicians are corrupt”; and “Public school pupils 

are not learning the three Rs.” The basis for making such statements is simple. 

People, mostly through their limited experiences, come to certain conclusions about 

other people and about their environment. In order to come to such conclusions, 

they must sample their “experiences” of other people. Actually, they take relatively 

small samples of all possible experiences. The word experiences here has to be taken in 

a broad sense. It can mean direct experience with other people — for example, first¬ 

hand interaction with, say, Muslims or Asians. Or it can mean indirect experience: 

hearing about Muslims or Asians from friends, acquaintances, parents, and others. 

Whether experience is direct or indirect, however, does not concern us much at this 

point. Let us assume that all such experience is direct. An individual claims to 

“know” something about Asians and says “I ‘know’ they are clannish because I have 
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had direct experience with a number of Asians.” Or, “Some of my best friends are 

Asians, and I know that...” The point is that this person’s conclusions are based on 

a sample of Asians, or a sample of the behaviors of Asians, or both. This individual 

can never “know” all Asians, and must depend, in the last analysis, on samples. 

Indeed, most of the world’s knowledge is based on samples, most often on inade¬ 

quate samples. 

\ 

Sampling, Random Sampling, and Representativeness 

Sampling refers to taking a portion of a population or universe as representative of 

that population or universe. This definition does not say that the sample taken — or 

drawn, as researchers say—is representative. It says, rather, taking a portion of the 

population and considering it to be representative. When a school administrator visits 

certain classrooms in the school system “to get the feel of the system,” that adminis¬ 

trator is sampling classes from all the classes in the system. This person might 

assume that by visiting, say, eight to ten classes out of forty “at random,” he or she 

will get a fair notion of the quality of teaching going on in the system. Another way 

would be to visit one teacher’s class two or three times to sample teaching perfor¬ 

mance. By doing this, the administrator is now sampling behaviors, in this case 

teaching behaviors, from the universe of all possible behaviors of the teacher. Such 

sampling is necessary and legitimate. However, you can come up with some situa¬ 

tions where the entire universe could be measured, so why bother with samples? 

Why not just measure every element of the universe? Take a census? A major reason 

is one of economics. The second author (HBL) worked in a marketing research 

department of a large grocery chain in southern California. This chain consisted of 

100 stores. Research on customers and products occasionally took the form of a con¬ 

trolled store test. These studies were conducted in a real day-to-day grocery store 

operation. Perhaps one was interested in testing a new dog food. Certain stores 

would be chosen to receive the new product while another set of stores would not 

carry the new product. Secrecy is very important in such studies. If a competing 

manufacturer of dog food received information that a marketing test was being done 

at such-and-such store, they could contaminate the results. To conduct controlled 

store tests of cents-off coupons, or new products, or shelf allocation space, a 

research study could be conducted with two groups of 50 stores each. However, the 

labor and administrative costs alone would be prohibitive. It would make a lot more 

sense to use samples that are representative of the population. Choosing 10 stores in 

each group to conduct the research would reduce the costs of doing the study. 

Smaller studies are more manageable and controllable. A study using samples could 

be completed in a timely manner. In some disciplines, such as quality control and ed¬ 

ucation (instructional evaluation), sampling is essential. In quality control there is a 

procedure called destructive testing. One way to determine whether a product meets 

specifications is to put it through an actual performance test. When the product is 

destroyed (fails), the product can be evaluated. In testing tires, for example, it would 

make little sense to destroy every tire just to determine if the manufacturer has ade- 
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quate quality control. Likewise, a teacher who wants to determine if a child has 

learned the material will give an examination. It would be difficult to write an exami¬ 

nation that covers every aspect of instruction and knowledge retention of the child. 

Random sampling is that method of drawing a portion (or sample) of a population 

or universe so that each member of the population or universe has an equal chance of 

being selected. This definition has the virtue of being easily understood. Unfortu¬ 

nately, it is not entirely satisfactory because it is limited. A better definition is given 
by Kirk (1990, p. 8). 

The method of drawing samples from a population such that every possible 

sample of a particular size has an equal chance of being selected is called random 
sampling, and the resulting samples are random samples. 
This definition is general and thus more satisfactory than the earlier definition. 

Define a universe to be studied as all fourth-grade children in X school system. 

Suppose there are 200 such children. They comprise the population (or universe). 

We select one child at random from the population. His (or her) chance of being se¬ 

lected is 1/200, if the sampling procedure is random. Likewise, a number of other 

children are similarly selected. Let us assume that after selecting a child, that child 

(or a symbol assigned to the child) is returned to the population. Then the chance of 

selecting any second child is also 1/200. (If we do not return this child to the popula¬ 

tion, then the chance each of the remaining children has, of course, is 1/199. This is 

called sampling without replacement. When the sample elements are returned to the 

population after being drawn, the procedure is called sampling with replacement.) 
Suppose from the population of the 200 fourth-grade children in X school 

system we decide to draw a random sample of 50 children. This means, if the sample 

is random, that all possible samples of 50 have the same probability of being 

selected—a very large number of possible samples. To make the ideas involved 

comprehensible, suppose a population consists of four children, a, b, c, and d, and we 

draw a random sample of two children. Then the list of all the possibilities, or the 

sample space, is: (a, b), (a, c), (a, d), (b, c), (b, d), (c, d). There are six possibilities. If the 

sample of two is drawn at random, then its probability is 1/6. Each of the pairs has 

the same probability of being drawn. This sort of reasoning is needed to solve many 

research problems, but we will usually confine ourselves to the simpler idea of 

sampling connected with the first definition. The first definition, then, is a special 

case of the second general definition — the special case in which n = 1. 

Unfortunately, we can never be sure that a random sample is representative of 

the population from which it is drawn. Remember that any particular sample of size 

n has the same probability of being selected as any other sample of the same size. 

Thus a particular sample may not be representative at all. We should know what 

“representative” means. Ordinarily, representative means to be typical of a population; 

that is, to exemplify the characteristics of the population. From a research point of 

view, representative must be more precisely defined, though it is often difficult to be 

precise. We must ask: What characteristics are we talking about? So, in research, a 

representative sample means that the sample has approximately the characteristics of 



166 Part Three ■ Probability, Randomness, and Sampling 

the population relevant to the research in question. If sex and socioeconomic class 

are variables (characteristics) relevant to the research, a representative sample will 

have approximately the same proportions of men and women and middle-class and 

working-class individuals as the population. When we draw a random sample, we 
hope that it will be representative. We hope that the relevant characteristics of the 

population will be present in the sample in approximately the same way they are 

present in the population. But we can never be sure. There is no guarantee. 

What we rely on is the fact, as Stilson (1966) points out, that the characteristics 

typical of a population are those that are the most frequent and therefore most likely 

to be present in any particular random sample. When sampling is random, the 

sampling variability is predictable. We learned in Chapter 7, for example, that if we 

throw two dice a number of times, the probability of a 7 turning up is greater than 

that of a 12 turning up (see Table 7.1). 

A sample drawn at random is unbiased in the sense that no member of the popu¬ 

lation has more chance of being selected than any other member. We have here a 

democracy in which all members are equal before the bar of selection. Rather than 

using coins or dice, let’s use a research example. Suppose we have a population of 100 

children. The children differ in intelligence, a variable relevant to our research. We 

want to know the mean intelligence score of the population, but for some reason we 

can only sample 30 of the 100 children. If we sample randomly, there are a large 

number of possible samples of 30 each. The samples have equal probabilities of being 

selected. The means of most of the samples will be relatively close to the mean of the 

population. A few will not be close. If the sampling has been random, the probability 

of selecting a sample with a mean close to the population mean is greater than the 

probability of selecting a sample with a mean not close to the population mean. 

If we do not draw our sample at random, however, some factor or factors 

unknown to us may predispose us to select a biased sample. In this case, perhaps one 

of the samples with a mean not close to the population mean. The mean intelligence 

of this sample will then be a biased estimate of the population mean. If we knew the 

100 children, we might unconsciously tend to select the more intelligent children. It 

is not so much that we would do so; it is that our method allows us to do so. Random 

methods of selection do not allow our own biases or any other systematic selection 

factors to operate. The procedure is objective, divorced from our own predilections 
and biases. 

The reader may be experiencing a vague and disquieting sense of uneasiness. 

If we can’t be sure that random samples are representative, how can we have confi¬ 

dence in our research results and their applicability to the populations from which 

we draw our samples? Why not select samples systematically so that they are repre¬ 

sentative? The answer is complex. First—and again—we cannot ever be sure. 

Second, random samples are more likely to include the characteristics typical of the 

population if the characteristics are frequent in the population. In actual research, we 

draw random samples whenever we can and hope and assume that the samples 

are representative. We learn to live with uncertainty. We try to reduce it whenever 

we can just as we do in ordinary day-to-day living but more systematically 
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and with considerable knowledge of and experience with random sampling and 

random outcomes. Fortunately, our lack of certainty does not impair our research 
functioning. 

Randomness 

The notion of randomness is at the core of modern probabilistic methods in the 

natural and behavioral sciences. But it is difficult to define random. The dictionary 

notion of haphazard, accidental, without aim or direction, does not help much. In 

fact, scientists are quite systematic about randomness; they carefully select random 

samples and plan random procedures. 

The position can be taken that nothing happens at random, that for any event 

there is a cause. The only reason, this position might say, that one uses the word 

random is that human beings do not know enough. To omniscience nothing is 

random. Suppose an omniscient being has an omniscient newspaper. It is a gigantic 

newspaper in which every event down to the last detail — for tomorrow, the next day, 

and the next day, and on and on into indefinite time—is carefully inscribed (see 

Kemeny, 1959, p. 39). There is nothing unknown. And, of course, there is no ran¬ 

domness. Randomness is, as it were, ignorance, in this view. 

Taking a cue from this argument, we define randomness in a backhand way. We 

say events are random if we cannot predict their outcomes. For instance, there is no 

known way to win a penny-tossing game. Whenever there is no system for playing a 

game that ensures our winning (or losing), then the events (outcomes of the game) 

are random. More formally put, randomness means that there is no known law, capa¬ 

ble of being expressed in language that correctly describes or explains events and 

their outcomes. In different words, when events are random we cannot predict them 

individually. Strange to say, however, we can predict them quite successfully in the 

aggregate. That is, we can predict the outcomes of large numbers of events. We 

cannot predict whether a coin tossed will be heads or tails, but if we toss a fair coin 

1,000 times, we can predict, with considerable accuracy, the total numbers of heads 

and tails. 

An Example of Random Sampling 

To give the reader a feeling for randomness and random samples, we will demon¬ 

strate using a table of random numbers. A table of random numbers contains num¬ 

bers generated mechanically so that there is no discernible order or system in them. 

It was said above that if events are random they cannot be predicted. But now we are 

going to predict the general nature of the outcomes of our experiment. We select, 

from a table of random digits, ten samples of ten digits each. Since the numbers are 

random, each sample “should” be representative of the universe of digits. The 

universe can be variously defined. We simply define it as the complete set of digits in 
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[Ml Table 8.1 Ten Samples of Random Numbers 

1 2 3 4 5 6 7 8 9 10 

9 0 8 0 4 6 0 7 7 8 

7 2 7 4 9 4 7 8 7 7 

6 2 8 1 9 3 6 0 3 9 

7 9 9 1 6 4 9 4 7 7 

3 3 1 1 4 1 0 3 9 4 

8 9 2 1 3 9 6 7 7 3 

4 8 3 0 9 2 7 2 3 2 

1 4 3 0 0 2 6 9 7 5 

2 1 8 8 4 5 2 1 0 3 

3 1 4 8 9 2 9 3 0 1 

Mean 5.0 3.9 5.3 2.4 5.7 3.8 5.2 4.4 5.0 4.9 Total Mean = 4.56 

the Rand Corporation table of random digits.1 We now draw samples from the table. 

The means of the ten samples will, of course, be different. However, they should 

fluctuate within a relatively narrow range, with most of them fairly close to the mean 

of all 100 numbers and to the theoretical mean of the whole population of random 

numbers. The number of even numbers in each sample of ten should approximately 

equal the number of odd numbers. There will be fluctuations, some perhaps extreme 
but most comparatively modest. The samples are given in Table 8.1. 

The means of the samples are given below each sample. The mean of U, the the¬ 

oretical mean of the whole population of Rand random numbers, {0, 1, 2, 3, 4, 5, 6, 

7, 8, 9}, is 4.5. The mean of all 100 numbers, which can be considered a sample of U, 

is 4.56. This is, of course, very close to the mean of U. It can be seen that the means 

of the ten samples vary around 4.5, the lowest being 2.4 and the highest 5.7. Only 

two of these means differ from 4.5 by more than 1. A statistical test (later we will 

learn the rationale of such tests) shows that the ten means do not differ from each 

other significantly. (The expression “do not differ from each other significantly” 

means that the differences are no greater than the differences that would occur by 

TlherS TCd W*LRand CorP°ration (1955). This is a large and careful! 
constructed table of random numbers. These numbers were not computer generated. There ar 

ticsText]Tave ft hi ho^’^ en°Ugh ^ Pr3CtlCal PurPoses. Modem statis 

random numbers ^ ^ °f ^ b°°k C°ntamS 4’000 computer-generate, 



CHAPTER 8 b Sampling and Randomness 169 

chance.) And, by another statistical test, nine are “good” estimates of the population 
mean (4.5) and one (2.4) is not. 

Changing the sampling problem, we can define the universe to consist of odd 

and even numbers. Let’s assume that in the entire universe there is an equal number 

of both. In our sample of 100 numbers there should be approximately 50 odd and 50 

even numbers. There are actually 54 odd and 46 even numbers. A statistical test 

shows that the deviation of 4 for odd and 4 for even does not depart significantly 
from chance expectation.2 

Similarly, if we sample human beings, then the numbers of men and women in 

the samples should be approximately in proportion to the numbers of men and 

women in the population, if the sampling is random and the samples are large 

enough. If we measure the intelligence of a sample, and the mean intelligence score 

of the population is 100, then the mean of the sample should be close to 100. Of 

course, we must always bear in mind the possibility of selection of the deviant sam¬ 

ple, the sample with a mean of say 80 or less or 120 or more. Deviant samples do 

occur, but they are less likely to occur. The reasoning is similar to that for coin-toss¬ 

ing demonstrations. If we toss a coin three times, it is less likely that three heads (H) 

or three tails (T) will turn up than it is that two heads and one tail or two tails and 

one head will turn up. This is because U = {HHH, HHT, HTH, HTT, THH, THT, 

TTH, TTT}. There is only one HHH point and one TTT point, while there are three 

points with two Hs and three with two Ts. 

Randomization 

Suppose an investigator wishes to test the hypothesis that counseling helps under¬ 

achievers. The test involves using two groups of underachievers: one to be counseled, 

one not to be counseled. Naturally, the wish is to have the two groups equal in other 

independent variables that may have a possible effect on achievement. One way this 

can be done is to assign the children to both groups at random by, say, tossing a coin 

for each child. The child is assigned to one group if the toss is heads and to the other 

group if the toss is tails. Note that if there were three experimental groups coin toss¬ 

ing would probably not be used. A six-sided die may be used. Outcomes of 1 or 2 

would assign that child to Group 1. Outcomes of 3 and 4 would put the child in 

Group 2, and the outcomes 5 and 6 would designate the child to be in Group 3. Or a 

table of random numbers can be used to assign the children to groups. If an odd 

number turns up, assign a child to one group, and if an even number turns up, assign 

the child to the other group. The investigator can now assume that the groups are 

approximately equal in all possible independent variables. The larger the groups, the 

2 The nature of such statistical tests, as well as the reasoning behind them, will be explained in detail 

in Part Four. The student should not be too concerned if he or she does not completely grasp the 

statistical ideas expressed here. Indeed, one of the purposes of this chapter is to introduce some of 

the basic elements of such ideas. 
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safer the assumption. Just as there is no guarantee, however, of not drawing a deviant 
sample (as discussed earlier), there is no guarantee that the groups are equal or even 
approximately equal in all possible independent variables. Nevertheless, it can be said 
that the investigator has used randomization to equalize the groups, or, as it is said, 
to control influences on the dependent variable other than that of the manipulated 
independent variable. Although we will use the term “randomization,” a number of 
researchers prefer to use the words random, assignment. The procedure calls for 
assigning participants to experimental conditions on a random basis. While some 
believe that random assignment removes variation, in reality it only distributes it. 

An “ideal” experiment is one in which all the factors or variables likely to affect 
the experimental outcome are controlled. If we knew all these factors in the first 
place, and could make efforts to control them in the second place, then we might have 
an ideal experiment. However, the sad case is that we can neither know all the perti¬ 
nent variables, nor could we control them even if we did know them. Randomization, 
however, comes to our aid. 

Randomization is the assignment to experimental treatments of members of a 
universe in a way such that, for any given assignment to a treatment, every member 
of the universe has an equal probability of being chosen for that assignment. The 
basic purpose of random assignment, as indicated earlier, is to apportion subjects (ob¬ 
jects, groups) to treatments. Individuals with varying characteristics are spread 
approximately equally among the treatments so that variables that might affect the 
dependent variable, other than the experimental variables, have “equal” effects in the 
different treatments. There is no guarantee that this desirable state of affairs will be 
attained, but it is more likely to be attained with randomization than otherwise. Ran¬ 
domization also has a statistical rationale and purpose. If random assignment has 
been used, it is then possible to distinguish between systematic or experimental 
variance and error variance. Biasing variables are distributed to experimental groups 
according to chance. The tests of statistical significance (discussed later) logically de¬ 
pend on random assignment. These tests are used to determine whether the 
observed phenomenon is statistically different from chance. Without random assign¬ 
ment the significance tests lack logical foundation. The idea of randomization seems 
to have been discovered or invented by Sir Ronald Fisher (see Cowles, 1989). It was 
Fisher who virtually revolutionized statistical and experimental design thinkino- and 
methods, using random notions as part of his leverage. He has been referred to as 
the lather of analysis-of-variance.” In any case, randomization and what can be 

called the principle of randomization is one of the great intellectual achievements of 
our time. It is not possible to overrate the importance of both the idea and the prac¬ 
tical measures that come from it to improve experimentation and inference. 

Randomization can perhaps be clarified in three ways: by stating the principle of 
randomization by describing how one uses it in practice, and by demonstrating how 
it works with objects and numbers. The importance of the idea deserves all three. 

he principle of randomization may be stated as the following. Since, in. random 
procedures, every member of a population has an equal chance of being selected 
members with certain distinguishing characteristics —male or female, high or low 
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intelligence, conservative or liberal, and so on—will, if selected, probably be offset 

in the long run by the selection of other members of the population with counterbal¬ 

ancing quantities or qualities of the characteristics. We can say that this is a practical 

principle of what usually happens; we cannot say that it is a law of nature. It is simply 

a statement of what most often occurs when random procedures are used. 

We say that subjects are assigned at random to experimental groups, and that ex¬ 

perimental treatments are assigned at random to groups. For instance, in the example 

cited above of an experiment to test the effectiveness of counseling on achievement, 

subjects can be assigned to two groups at random by using random numbers or by 

tossing a coin. When the subjects have been so assigned, the groups can be randomly 

designated as experimental group and control group using a similar procedure. We 

will encounter a number of examples of randomization as we go along. 

Senatorial Randomization Demonstration 

To show how, if not why, the principle of randomization works, we now set up a sam¬ 

pling and design experiment. We have a population of 100 members of the United 

States Senate from which we can sample. In this population (in 1993), there are 56 

Democrats and 44 Republicans. We have selected two important votes: Issue 266, an 

amendment to prohibit higher grazing fees; and Issue 290, an amendment concern¬ 

ing funding for abortions. The data used in this example are from the 1993 Congres¬ 

sional Quarterly. These votes were important because each reflected presidential 

proposals. A nay vote on Issue 266 and a yea vote on Issue 290 indicates support of 

the President. Here we ignore their substance and treat the actual votes or, rather, 

the senators who cast the votes, as populations from which we sample. 

Suppose we do an experiment using three groups of senators, with twenty in 

each group. The nature of the experiment is not relevant here. We want the three 

groups of senators to be approximately equal in all possible characteristics. Using a 

computer program written in BASIC (Microsoft’s GWBASIC or QUICKBASIC 

program source is given at the end of the chapter) we generate approximate random 

numbers between 1 and 100. The first sixty numbers drawn with no repeated num¬ 

bers (sampling without replacement), are recorded in groups of twenty each. Political 

party affiliation for Democrats (d) and Republicans (r) are noted with the senator’s 

name. Also included are the senators’ votes on the two issues, y equals yea and n 

equals nay. These data are listed in Table 8.2. 

How “equal” are the groups? In the total population of 100 senators, 56 are 

Democrats and 44 are Republicans, or 56% and 44%. In the total sample of 60 there 

are 34 Democrats and 26 Republicans, or 57% for Democrats and 43% for Republi¬ 

cans. There is a difference of 1% from the expectation of 56% and 44%. The 

obtained and expected frequencies of Democrats in the three groups (I, II, and III) 

and the total sample are given in Table 8.3. The deviations from expectation are 

small. The three groups are not exactly “equal” in the sense that they have equal 

numbers of Republican and Democratic senators. The first group has 11 Democrats 

and nine Republicans, the second group has 10 Democrats and 10 Republicans, and 
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[Ml Table 8.2 Senatorial Vote per Groups ofn = 20 on Senate Issue 266 and Issue 290 

# Name-party 266 290 # Name-party 266 290 # Name-party 266 290 

73 hatfield-r y n 78 chafee-r y y 58 smith-r y n 

27 coats-r y n 20 coverdell-r y n 95 byrd-d n n 

54 kerrey-d y y 25 mosley- 

brown-d 

n y 83 matthews-d y n 

93 murray-d n y 42 kerry-d n y 52 burns-r y n 

6 mccain-r y n 68 dorgan-d y n 80 thurmond-r y n 

26 simon-d n y 57 gregg-r y n 13 dodd-d y y 
7 bumpers-d n y 11 campbell-d y y 88 hatch-r y n 

81 daschle-d n y 31 dole-r y n 63 moynihan-d y y 
76 specter-r n y 37 mitchell-d n y 89 leahy-d n y 
38 cohen-r n y 30 grassley-r y n 75 wofford-d n y 
32 kasselbaum-r y n 22 inouye-d y y 92 warner-r y n 

44 riegel-d n y 99 simpson-r y n 91 robb-d n y 
98 kohl-d n y 8 piyor-d n ? 34 mcconnell-r y n 

77 pell-d n y 4 stevens-r y n 96 rockefeller-d n y 
61 bingaman-d y n 23 craig-r y n 28 lugar-r y n 

16 roth-r n n 12 brown-r y n 43 levin-d n y 
24 kempthorne-r y n 10 feinstein-d y y 59 bradley-d n y 
100 wallop-r y n 87 bennett-r y n 69 gienn-d n y 
15 biden-d n n 19 nunn-d n n 9 boxer-d n y 
14 lieberman-d n y 45 wellstone-d n y 67 conrad-d y n 

the third group has 13 Democrats and 7 Republicans. This not an “unusual” out- 

COmj.Jat haPPens wlth random sampling. Later we will see that the discrepancies do 
not ditier statistically. 

Remember, we are demonstrating both random sampling and randomization, 

but especially randomization. We therefore ask whether or not the random assign¬ 

ment of senators to the three groups has resulted in “equalizing” the groups in all 

c aractenstics We can never test all characteristics, of course; we can only test those 

available. In the present case, we have only political party affiliation, which we tested 
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[MI TABLE 8.3 Obtained and, Expected, Frequencies of Political Party (Democrats) in 

Random Samples of 20 U.S. Senatorf 

Groups Totals 

I II III 

Obtained 11 10 13 34 

Expected*3 11.2 11.2 11.2 33.6 

Deviation .2 1.2 1.8 .4 

aOnly the larger of the two expectations of the Republican-Democrat split, the Democrats (.56), is 

reported. 

bThe expected frequencies were calculated as follows: 20 X .56 = 11.2. Similarly, the total is calcu¬ 

lated: 60 X .56 = 33.6. 

above, and the votes on the two issues: prohibition to increase grazing fees (Issue 

266), and prohibition of funds for certain types of abortions (Issue 290). How did the 

random assignment work with the two issues? The results are presented in Table 8.4. 

The original vote on Issue 266 of the 99 senators who voted was 59 yeas and 

40 nays. These total votes yield expected yea frequencies in the total group of 59 t 

99 = .596, or 60%. We therefore expect 20 -e .60 = 12 in each experimental group. 

The original vote of the 99 senators who voted on Issue 290 was 40 yeas, or 40% (40 

t 99 = .404). The expected group yea frequencies, then, are: 20 t .40 = 8. The ob¬ 

tained and expected frequencies and the deviations from expectation for the three 

groups of 20 senators and for the total sample of 60 on Issue 266 and Issue 290 are 

given in Table 8.4. 

pi TABLE 8.4 Obtained and Expected Frequencies on Yea Votes on Issue 266 and 

Issue 290 in Random Groups of Senators 

I 

Groups 

II III Total 

266 290 266 290 266 290 266 290 

Obtained 9 10 13 9 11 9 33 28 

Expected3 12 8 12 8 12 8 36 24 

Deviation 3 2 1 1 1 1 3 4 

aThe expected frequencies were calculated for Group I, Issue 266, as follows: there were 59 yeas of a 

total of 99 votes or 59/99 = .60; 20 X .60 = 12. For the total group, the calculation is: 

60 X .60 = 36. 
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It appears that the deviations from chance expectation are all small. Evidently 

the three groups are approximately “equal” in the sense that the incidence of the 

votes on the two issues is approximately the same in each of the groups. The devia¬ 

tions from chance expectation of the yea votes (and, of course, nay votes) are small. 

So far as we can see, then, the randomization has been “successful.” This demonstra¬ 

tion can also be interpreted as a random sampling problem. We may ask, for exam¬ 

ple, whether or not the three samples of 20 each and the total sample of 60 are repre¬ 

sentative. Do they accurately reflect the characteristics of the population of 100 

senators? For instance, do the samples reflect the proportions of Democrats and 

Republicans in the Senate? The proportions in the samples were .55 and .45 (I), .50 

and .50 (II), .65 and .35 (III). The actual proportions are .56 and .44. Although there 

is a 1%, 6%, and 9% deviation in the samples, these deviations are within chance 

expectation. We can say, therefore, that the samples are representative insofar as 

political party membership is concerned. Similar reasoning applies to the samples 
and the votes on the two issues. 

We can now do our experiment believing that the three groups are “equal.” 

They may not be, of course, but the probabilities are in our favor. And as we have 

seen, the procedure usually works well. Our checking of the characteristics of the 

senators in the three groups showed that the groups were fairly “equal” in political 

preference and yea (and nay) votes on the two issues. Thus, we can have greater con¬ 

fidence that if the groups become unequal, the differences are probably due to our 

experimental manipulation and not to differences between the groups before we 
started. 

However, no less an expert than Feller (1967, p. 29), writes: 

In sampling human populations the statistician encounters considerable and of¬ 

ten unpredictable difficulties, and bitter experience has shown that it is difficult 
to obtain even a crude image of randomness. 

Williams (1978) presents a number of examples where “randomization” does not 

work in practice. One such example that influenced the lives of a large number of 

men was the picking of military draft lottery numbers in 1970. Although it was 

never absolutely proven, the lottery numbers did not appear to be random In this 

particular instance, the month and day of birth for all 366 days was each put into a 

capsule. The capsules went into a rotating drum. The drum was turned a number of 

times so that the capsules would be well mixed. The first capsule drawn had the 

ig est draft priority, number 1. The second capsule drawn had the next highest 

and so forth. The results showed that the dates for later months had a lower median 

than earlier months. Hence men with later birthdates were drafted earlier If the 

drawings were completely random, the medians for each month should have 

een much more equal The point to made here is that many statistical analyses are 

dependent on successful randomization. To have one in practice is not such an 
easy task. 
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[U Figure 8.1 

Sample Size 

A rough-and-ready rule taught to beginning students of research is: Use as large a 

sample as possible. Whenever a mean, a percentage, or other statistic is calculated 

from a sample, a population value is being estimated. A question that must be asked 

is: How much error is likely to occur in statistics calculated from samples of differing 

sizes? The curve of Figure 8.1 roughly expresses the relations between sample 

size and error, error meaning deviation from population values. The curve says that 

the smaller the sample the larger the error, and the larger the sample the smaller 

the error. 
Consider the following rather extreme example. Global Assessment Scale (here¬ 

after referred to as GAS) admission score and total days in therapy of 3,166 Los An¬ 

geles County children seeking help at Los Angeles County Mental Health facilities 

from 1983 to 1988, were made available to the second author through the generosity 

of Dr. Stanley Sue. Dr. Sue is Professor of Psychology and Director of the National 

Research Center on Asian American Mental Health at the University of California, 

Davis. Dr. Sue granted the second author permission to use the data. The informa¬ 

tion contained in Table 8.5 and Table 8.6 was created from these data. We express 

our thanks and appreciation to Dr. Stanley Sue. The GAS is a score assigned by a 

therapist to each client based on psychological, social, and occupational functioning. 

The GAS score used here in our example is the GAS score the client received at the 

time of admission or first visit to the facility. 
From this “population,” ten samples of two children were randomly selected. 

The random selection of these samples and of others was done using the “sample” 
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US Table 8.5 Samples (n — 2) of GAS and Total Days in Therapy Scores of 3,166 Children, Mean 

of the Samples, and Deviations of the Sample Means from the Population. (Sue data) 

GAS 

Sample 1 2 3 4 5 6 7 8 9 10 

61 46 65 50 51 35 45 44 43 60 

60 50 35 55 55 50 41 47 50 55 

Mean 60.5 48 50 52.5 53 42.5 43 45.4 46.5 57.5 

Dev. 11.21 -1.29 .71 3.21 3.71 -6.79 -6.29 -3.79 -2.79 8.21 

Total Mean (20) = 49.9 
Population Mean (3,166) = 49.29 

Total Days in Therapy 

Sample 1 2 3 4 5 6 7 8 9 10 

92 9 172 0 3 141 28 189 28 17 

SI 58 38 70 603 110 0 51 72 398 

Mean 74.5 33.5 105 35 303 125.5 14 120 50 207.5 
Dev. -9.04 -50.04 21.46 -48.54 219.46 41.96 -69.54 36.46 -33.54 123.96 

Total Mean (20) = 106.80 

Population Mean (3,166) = 83.54 

function in SPSS (Statistical Package for the Social Sciences [Norusis 1992]) The 

sample means were computed by the “descriptive” routine in SPSS and are given in 

fable 8.5. The deviations of the means from the means of the population are also 
given in that table. 

. . ‘GA_ means ra"Se «-5 » 60.5, and the Total Days means range from 
Tf to 503. 1 he two total means (calculated from the 20 GAS and the 20 Total Days 

scores) are 49.9 and 106.8. These small sample means vary considerably. The GAS 

and lotal Days means of the population (N = 3,166) were 49.29 and 83.54. The de¬ 

viations (Dev.) of the GAS means range a good deal: from -6.79 to 11 21 The Total 

Days deviations range from -69.54 to 219.46. With very small samples like these we 

cannot depend on any one mean to estimate the population value. However, we can 

depend more on the means calculated from all 20 scores, although both have an up- 

fronfZ re, rando™ san’P'es of 20 GAS a"d 20 Total Days scores were draw. 
P°Pul«'°n- The four GAS and the four Total Days means are given h 

• • e deviations (Dev.) of each of the means of the samples of 20 from th< 
population means are also given in the table, as well as the means of the sample of 8< 

an o tie total population. The GAS deviations range from .06 to 1.31, and thi 
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HD TABLE 8.6 Means and Deviations from Population Means of Four GAS and 

Four Total Days Samples (n = 20), Total Sample (n = 80), and 

Population, (N = 3,166) (Sue data) 

Samples (n = 20) Total (n = 80) Population 
(N = 3166) 

GAS 49.35 48.9 49.85 50.6 49.68 49.29 

Dev. .06 .39 .56 1.31 .385 

Total-Days 69.4 109.95 89.55 103.45 93.08 83.54 

Dev. 14.14 26.41 6.01 19.91 9.54 

Total Days deviations from 6.01 to 26.41. The mean of the 80 GAS scores is 49.68, 

and the mean of all 3,166 GAS scores is 49.29. The comparable Total Days means 

are 93.08 (n = 80) and 83.54 (N = 3,166). These means are quite clearly much better 

estimates of the population means. 

We can now draw conclusions. First, statistics calculated from large samples are 

more accurate (other things being equal) than those calculated from small samples. A 

glance at the deviations of Table 8.5 and and Table 8.6 will show that the means of 

the samples of 20 deviated much less from the population mean than did the means 

of the samples of two. Moreover, the means from the sample of 80 deviated little 

from the population means (.39 and 9.54). 
It should now be fairly clear why the research and sampling principle is: Use 

large samples.3 Large samples are not advocated just because large numbers are good 

in and of themselves. They are advocated in order to give the principle of random¬ 

ization, or simply randomness, a chance to “work,” to speak somewhat anthropomor- 

phically. With small samples, the probability of selecting deviant samples is greater 

than with large samples. For example, in one random sample of 20 senators drawn 

some years ago, the first 10 senators (of 20) drawn were all Democrats! Such a run of 

10 Democrats is most unusual, but it can and does happen! Let’s say we had chosen to 

do an experiment with only two groups of 10 each. One of the groups had 10 De¬ 

mocrats and the other had both Democrats and Republicans. The results could have 

been seriously biased, especially if the experiment had anything to do with political 

preference or social attitudes. With large groups, say 30 or more, there is less danger. 

Many psychology departments at major universities have a research requirement for 

students enrolled in an introductory psychology class. For such situations, it may be 

relatively easy to obtain large samples. However, for certain research studies (such as 

those found in human engineering or marketing research), the cost of recruiting par¬ 

ticipants is high. Remember the Williams and Adelson study discussed by Simon 

3The situation is more complex than this simple statement indicates. Samples that are too large can 

lead to other problems; the reasons will be explained in a later chapter. 
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(1987) in Chapter 1. So the rule of getting large samples may not be appropriate for 

all research situations. In some studies, 30 or more elements, participants, or subjects 

may be too little. This is especially true in studies that are multivariate in nature. 

Comrey and Lee (1992), for example, state that samples of 50 or less give very inade¬ 

quate reliability of correlation coefficients. Hence it may be more appropriate to 

obtain an approximation to the sample size needed. The statistical determination of 
sample size will be discussed in Chapter 12 for the various kinds of samples. 

Kinds of Samples 

The discussion of sampling has until now been confined to simple random sampling. 

The purpose is to help the student understand fundamental principles; thus the idea 

of simple random sampling is emphasized, which is behind much of the thinking and 

procedures of modern research. The student should realize, however, that simple 

random sampling is not the only kind of sampling used in behavioral research. 

Indeed, it is relatively uncommon, at least for describing characteristics of popula¬ 

tions and the relations between such characteristics. It is, nevertheless, the model 
upon which all scientific sampling is based. 

Other kinds of samples can be classified broadly into probability and nonproba- 

bility samples (and certain mixed forms). Probability samples use some form of random 

sampling in one or more of their stages. Nonprobability samples do not use random 

sampling; they thus lack the virtues being discussed, but are still often necessary and 

unavoidable. Their weakness can to some extent be mitigated by using knowledge, 

expertise, and care in selecting samples, and by replicating studies with different sam¬ 

ples. It is important for the student to know that probability sampling is not neces¬ 

sarily superior to nonprobability sampling in all possible situations. Also, probability 

sampling does not guarantee more representative samples of the universe under 

study. In probability sampling the emphasis is placed on the method and the theory 

behind it With nonprobability sampling the emphasis relies on the person doing 

the sampling, and that can bring with it an entirely new and complicated batch of 

concerns The person doing the sampling must be knowledgeable of the population 
to be studied and the phenomena under study. 

One form of nonprobability sampling is quota sampling. Here, the knowledge of 

t e strata of the population—sex, race, region, and so on—is used to select sample 

members that are representative, “typical,” and suitable for certain research pur¬ 

poses. A strata is the partitioning of the universe or population into two or more 

nonoverlapping (mutually exclusive) groups. A sample is taken from each partition 

Quota sampling derives its name from the practice of assigning quotas, or propor¬ 

tions of kinds of people, to interviewers. Such sampling has been used a good deal in 

public opinion polls To perform this sampling correctly, the researcher would need 

mustVknnVe A,c°mp ete ^ ^ characteristics for the population. Next, the researcher 

“XJTh fe TportT quota'After knowing thls’the next stepis» ohect the data. Since the proportions might be unequal from quota to quota, the 

pie elements are assigned a weight. Quota sampling is difficult to accomplish 
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because it requires accurate information on the proportions for each quota, and such 

information is rarely available. 

Another form of nonprobability sampling is purposive sampling, which is charac¬ 

terized by the use of judgment and a deliberate effort to obtain representative sam¬ 

ples by including presumably typical areas or groups in the sample. Purposive sam¬ 

pling is used extensively in marketing research. To test the reaction of consumers to a 

new product, the researcher may distribute the new product to people who fit the 

researcher’s notion of what the universe looks like. Political polls are another exam¬ 

ple where purposive sampling is used. On the basis of past voting results and existing 

political party registration, in a given region, the researcher purposively selects a 

group of voting precincts. The researcher feels that this selection will match the 

characteristics of the entire electorate. A very interesting presentation of how this in¬ 

formation was used to help elect a U.S. Senator in California is given in Barkan and 

Bruno (1972). 

So-called accidental sampling, the weakest form of sampling, is probably also the 

most frequently used. In effect, one takes available samples at hand — classes of 

seniors in a high school, sophomores in college, a convenient PTA, and the like. This 

practice is hard to defend. Yet, used with reasonable knowledge and care, it probably 

does not deserve the bad reputation it has. The most sensible advice seems to be: 

Avoid accidental samples unless you can get no others (random samples are usually 

expensive and in some situations, hard to come by). If you do use accidental samples, 

use extreme circumspection in analysis and interpretation of data. 

Probability sampling includes a variety of forms. When we discussed simple ran¬ 

dom sampling, we were talking about one version of probability sampling. Some of 

the other common forms of probability sampling are stratified sampling, cluster sam¬ 

pling, two-stage cluster sampling, and systematic sampling. Other, more unconven¬ 

tional methods, include the Bayesian approach or the sequential approach. The supe¬ 

riority of one method of sampling over another is usually evaluated in terms of the 

amount of reduced variability in parameters estimated and in terms of cost. Cost is 

sometimes interpreted as the amount of labor in data collection and data analysis. 

In stratified sampling, the population is first divided into strata such as men and 

women, African American and Mexican American, and the like. Then random sam¬ 

ples are drawn from each strata. If the population consists of 52% women and 48% 

men, a stratified sample of 100 participants would consist of 52 women and 48 men. 

The 52 women would be chosen randomly from the available group of women and 

the 48 men would be selected randomly from the group of men. This is also called 

proportional allocation. When this procedure is performed correctly it is superior to 

simple random sampling. When compared to simple random sampling, stratified 

sampling usually reduces both the amount of variability and the cost of data collec¬ 

tion and analyses. Stratified sampling capitalizes on the between-strata differences. 

Figure 8.2 conveys the basic idea of stratified sampling. Stratified sampling adds con¬ 

trol to the sampling process by decreasing the amount of sampling error. This design 

is recommended when the population is composed of sets of dissimilar groups. Ran¬ 

domized stratified sampling allows one to study stratum differences. It allows special 

attention to certain groups that would otherwise be ignored because of their size. 
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[U Figure 8.2 

Stratified random sampling is often accomplished through proportional allocation 

procedures (PAP). When using such procedures, the sample’s proportional partition¬ 

ing resembles that of the population. The major advantage in using PAP is that it 
provides a “self-weigh ted” sample. 

Cluster sampling, the most often used method in surveys, is the successive random 

sampling of units, or sets and subsets. A cluster can be defined as a group of things of 

the same kind. It is a set of sample elements held together by some common charac¬ 

teristic^). In cluster sampling, the universe is partitioned into clusters. Then the 

clusters are sampled randomly. Each element in the chosen clusters is then measured. 

In sociological research, the investigator may use city blocks as clusters. City blocks 

are then chosen randomly and interviewers then talk to every family in each block 

selected. This type of cluster sampling is sometimes referred to as area sampling. If a 

researcher were to use simple random sampling or stratified random sampling that 

person would need a complete list of families or households from which to sample. 

uch a list may be very difficult to obtain for a large city. Even with such a list the 

sampling costs would be high because it would involve measuring households over a 

wide area of the city. Cluster sampling is most effective if a large number of smaller 

size clusters are used. In educational research, for example, school districts of a state 

or county can be used as clusters and a random sample of the school districts is taken 

Every school within the school district would be measured. However, school districts 

may orm too large of a cluster. In this case using schools as clusters may be better. 

n two-stage cluster sampling, we begin with a cluster sampling as described above 

1 hen instead of measuring every element of the clusters chosen at random 

we select a random sample of the elements and measure those elements. In the 
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educational example given above, we would identify each school district as a cluster. 

We would then choose k school districts randomly. From these k school districts, in¬ 

stead of measuring every school in the chosen districts (as in regular cluster sam¬ 

pling), we would take another random sample of schools within each district. We 

would then measure only those schools chosen. 

Another kind of probability sampling—if indeed, it can be called probability 

sampling—is systematic sampling. This method is a slight variation of simple random 

sampling. This method assumes that the universe or population consists of elements 

that are ordered in some way. If the population consists of N elements and we want 

to choose a sample of size n, we first need to form the ratio N/n. This ratio is 

rounded to a whole number, k, and then used as the sampling interval. Here the first 

sample element is randomly chosen from numbers 1 through k and subsequent ele¬ 

ments are chosen at every &th interval. For example, if the element selected randomly 

from the elements 1 through 10 is 6, then the subsequent elements are 16, 26, 36, 

and so on. The representativeness of the sample chosen in this fashion is dependent 

upon the ordering of the N elements of the population. 

The student who will pursue research further should, of course, know much 

more about these methods. The student is encouraged to consult one or more of the 

excellent references on the subject presented at the end of this chapter. Williams 

(1978) gives an interesting presentation and demonstration of each sampling method 

using artificial data. 
Another related topic to randomness and sampling is randomization or permuta¬ 

tion tests. We will discuss this topic again when we discuss the data analysis for quasi- 

experimental designs. The proponent of this method in psychology and the behav¬ 

ioral sciences has been Edgington (1980, 1996), who advocates the use of 

approximate randomization tests to handle statistical analyses of data from nonran¬ 

dom samples and single subject research designs. We briefly discuss here how this 

procedure works. Take Edgington’s example of the correlating the IQ scores of foster 

parents and their adopted children. If the sample was not randomly selected, the 

sample may be biased in favor of parents who want to have their IQ and the IQ of 

their adopted child measured. It is likely that some foster parents will lower their 

scores to match those of their adopted child intentionally. One way of handling non- 

random data like this is to first compute the correlation between the parents and 

child. Then one would randomly pair the parents’ scores with the child’s; that is, par¬ 

ent 1 may in a random pairing get matched up with the child from parent number 

10. After such a random pairing, the correlation is again computed. If the researcher 

performs 100 such randomization pairings and computes the correlation each time, 

he or she can then compare the original correlation to the 100 created from random 

pairings. If the original correlation is the best (highest), the researcher will have a 

better idea that the correlation obtained may be credible. These randomizations or 

permutation tests have been quite useful in certain research and data analysis situa¬ 

tions. They have been used to evaluate clusters obtained in a cluster analysis (see Lee 

& MacQueen, 1980), and have proposed as a solution to analyzing self-efficacy data 

that are not independent (see Cervone, 1987). 
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Randomness, randomization, and random sampling are among the great ideas of 

science, as indicated earlier. Although research can, of course, be performed without 

using ideas of randomness, it is difficult to conceive how it can have viability and va¬ 

lidity, at least in most aspects of behavioral scientific research. Modern notions of re¬ 

search design, sampling, and inference, for example, are literally inconceivable with¬ 

out the idea of randomness. One of the most remarkable of paradoxes is that through 

randomness, or disorder, we are able to achieve control over the often-obstreper- 

ous complexities of psychological sociological and educational phenomena. We 

impose order, in short, by exploiting the known behavior of sets of random events. 

One is perpetually awed by what can be called the structural beauty of probability, 

sampling, and design theory, and by its great usefulness in solving difficult problems 
of research design and planning and the analysis and interpretation of data. 

Before leaving the subject, let’s return to a view of randomness mentioned ear- 

liei. To an omniscient being, there is no randomness. By definition such a being 

would “know” the occurrence of any event with complete certainty. As Poincare 

(1952/1996) points out, to gamble with such a being would be a losing venture. 

Indeed, it would not be gambling. When a coin was tossed 10 times, he or she would 

predict heads and tails with complete certainty and accuracy. When dice were 

thrown, this being would know infallibly what the outcomes will be. Every number 

in a table of random numbers would be correctly predicted! And certainly this being 

would have no need for research and science. What we seem to be saying here is 

that randomness is a term for ignorance. If we, like the omniscient being, knew 

all the contributing causes of events, then there would be no randomness. The 

beauty of it, as indicated above, is that we use this “ignorance” and turn it to knowl¬ 

edge. How we do this should become more and more apparent as we go on with 
our study. 

Some Books on Sampling 

Babbie, E. R. (1990). Survey research methods (2nd ed.). Belmont, CA: Wadsworth. 

Babbie, E. R. (1995). The practice of social research (7th ed.). Belmont, CA: Wadsworth. 

Cowles, M. (1989). Statistics in psychology: A historical perspective. Hillsdale, NJ: Erlbaum. 

Demmg, W. E. (1966). Some theory of sampling. New York: Dover. 

Deming, W. E. (1990). Sampling design in business research. New York: Wiley. 
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Chapter Summary 

1. Sampling refers to taking a portion of a population or universe as represen¬ 

tative of that population or universe. 

2. Studies using samples are economical, manageable, and controllable. 

3. One of the more popular methods of sampling is random sampling. 

4. Random sampling is that method of drawing a portion (or sample) of a pop¬ 

ulation or universe so that each member of the population or universe has an 

equal chance of being selected. 

5. A researcher defines the population or universe. A sample is a subset of the 

population. 

6. We can never be sure that a random sampling is representative of the popu¬ 

lation. 
7. With a random sampling, the probability of selecting a sample with a mean 

close to the population mean is greater than the probability of selecting a 

sample with a mean not close to the population mean. 

8. Nonrandom sampling may be biased and the chances increase that the sam¬ 

ple mean will not be close to the population mean. 

9. We say events are random if we cannot predict their outcomes. 

10. Random assignment is another term for randomization. This is where par¬ 

ticipants are assigned to research groups randomly. It is used to control 

unwanted variances. 
11. There are two types of samples: nonprobability and probability. 

12. Nonprobability samples do not use random assignment, whereas probability 

samples do use random sampling. 
13. Simple random sampling, stratified random sampling, cluster sampling, and 

systematic sampling are four types of probability sampling. 

14. Quota sampling, purposive sampling, and accidental sampling are three 

types of nonprobability sampling. 

Study Suggestions 

A variety of experiments with chance phenomena are recommended: games using- 

coins, dice, cards, roulette wheels, and tables of random numbers. Such games, prop¬ 

erly approached, can help one learn a great deal about fundamental notions of mod¬ 

ern scientific research, statistics, probability, and, of course, randomness. Try the 

problems given in the suggestions below. Do not become discouraged by the seem¬ 

ing laboriousness of such exercises here and later on in the book. It is evidently 

necessary and, indeed, helpful occasionally to go through the routine involved in cer¬ 

tain problems. After working the problems given, devise some of your own. If you 

can devise intelligent problems, you are probably well on your way to understanding. 
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1. From a table of random numbers draw 50 numbers, 0 through 9. (Use the 

random numbers of Appendix C, if you wish.) List them in columns of 10 
each. 

a. Count the total number of odd numbers; count the total number of even 

numbers. What would you expect to get by chance? Compare the obtained 
totals with the expected totals. 

b. Count the total number of numbers 0, 1, 2, 3, 4. Similarly count 5, 6, 7, 8, 

9. How many of the first group should you get? the second group? Com¬ 

pare what you do get to these chance expectations. Are you far off? 

c. Count the odd and even numbers in each group of 10. Count the two 
groups of numbers 0, 1, 2, 3, 4 and 5, 6, 7, 8, 9 in each group of 10. Do the 
totals differ greatly from chance expectations? 

d. Add the columns of the five groups of 10 numbers each. Divide each sum 

by 10. (Simply move the decimal point one place to the left.) What would 

you expect to get as the mean of each group if only chance were “operat¬ 

ing”? What did you get? Add the five sums and divide by 50. Is this mean 

close to the chance expectation? [Hint: To obtain the chance expectation, 
remember the population limits.] 

2. This is a class exercise and demonstration. Assign numbers arbitrarily to all 

the members of the class from 1 through TV, N being the total number of 

members of the class. Take a table of random numbers and start with any 

page. Have a student wave a pencil in the air and blindly stab at the page of 

the table. Starting with the number the pencil indicates, choose n two-digit 

numbers between 1 and N (ignoring numbers greater than N and repeated 

numbers) by, say, going down columns (or any other specified way), n is the 

numerator of the fraction n/N, which is decided by the size of the class. If 

A? - 30, for instance, let n = 10. Repeat the process twice on different pages 

of the random numbers table. You now have three equal groups (if A? is not 

divisible by 3, drop one or two persons at random). Write the random num¬ 

bers on the chalkboard in the three groups. Have each class member call out 

his or her height in inches. Write these values on the chalkboard separate 

from the numbers, but in the same three groups. Add the three sets of num¬ 

bers in each of the sets on the chalkboard, the random numbers and the 

heights. Calculate the means of the six sets of numbers. Also calculate the 
means of the total sets. 

a. How close are the means in each of the sets of numbers? How close are the 
means of the groups to the mean of the total group? 

b. Count the number of men and women in each of the groups. Are the sexes 
spread fairly evenly among the three groups? 

C* searchT ^ dem°nstration- do You think is its meaning for re- 

3. In Chapter 6, it was suggested that the student generate 20 sets of 100 ran- 

dom numbers between 0 and 100 and calculate means and variances. If you 

did this, use the numbers and statistics in this exercise. If you did not use the 
numbers and statistics of Appendix C at the end of the book 
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a. How close to the population mean are the means of the 20 samples? Are 

any of the means “deviant”? (You might judge this by calculating the stan¬ 

dard deviation of the means and adding and subtracting two standard devi¬ 

ations to the total mean.) 

b. On the basis of (a), above, and your judgment, are the samples “representa¬ 

tive”? What does “representative” mean? 

c. Pick out the third, fifth, and ninth group means. Suppose that 300 subjects 

had been assigned at random to the three groups and that these were 

scores on some measure of importance to a study you wanted to do. What 

do you think you can conclude from the three means? 

4. Most published studies in the behavioral sciences and education have not used 

random samples, especially random samples of large populations. Occasion¬ 

ally, however, studies based on random samples are done. One such study is 

by Osgood, Wilson, O’Malley, Bachman, and Johnston (1996). This study is 

worth careful reading, even though its level of methodological sophistication 

puts a number of its details beyond your present grasp. Try not to be discour¬ 

aged by this sophistication. Get what you can out of it, especially its sam¬ 

pling of a large population of young men. Later in the book we will return 

to the interesting problem pursued. At that time, perhaps the methodology 

will no longer appear so formidable. (In studying research, it is sometimes 

helpful to read beyond our present capacity—provided one doesn’t do too 

much of it!) 
Another study random samples from a large population is by Voekl (1995). 

In this study the researcher gives some detail about using a two-stage stratified 

random sampling plan to measure student’s perception of school warmth. 

5. Random assignment of subjects to experimental groups is much more com¬ 

mon than random sampling of subjects. A particularly good, even excellent, 

example of research in which subjects were assigned at random to two experi¬ 

mental groups, is by Thompson (1980). Again, don’t be daunted by the 

methodological details of this study. Get what you can out of it. Note at this 

time how the subjects were classified into aptitude groups and then assigned 

at random to experimental treatments. We will also return to this study later. 

At that time, you should be able to understand its purpose and design and be 

intrigued by its carefully controlled experimental pursuit of a difficult sub¬ 

stantive educational problem: the comparative merits of so-called individual¬ 

ized mastery instruction and conventional lecture-discussion-recitation 

instruction. 
6. Another noteworthy example of random assignment is done in a study by 

Glick, DeMorest, and Hotze (1988). This study is noteworthy because it takes 

place in a real setting outside the laboratories of the university. Also the par¬ 

ticipants are not necessarily university students. Participants in this study are 

people in a public eating area within a large indoor shopping mall. Partici¬ 

pants were chosen and then assigned to one of six experimental conditions. 

This article is easy to read and the statistical analysis is not much beyond the 

level of elementary statistics. 
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7. Another interesting study that uses yet another variation of random sampling 

is by Moran and McCullers (1984). In this study, the researchers selected pho¬ 

tographs from school yearbooks randomly. These photographs were then 

grouped randomly into 10 sets of 16 pictures. Students who were not familiar 

with the students in the photos were then asked to rate each person in the 
photo in terms of attractiveness. 

Special Note. In some of the above study suggestions and in those of Chap¬ 

ter 6, instructions were given to draw numbers from tables of random numbers 

or to generate sets of random numbers using a computer. If you have a micro¬ 

computer or access to one, you may well prefer to generate the random numbers 

using the built-in random number generator (function) of the microcomputer. 

An outstanding and fan book to read and learn how to do this is Walter’s (1999) 

“The Secret Guide to Computers.” Walter shows you how to write a simple 

computer program using the BASIC language, the language common to most 

microcomputers. How “good” are the random numbers generated? (“How 

good?” means “How random?”) Since they are produced in line with the best 

contemporary theory and practice, they should be satisfactory, although they 

may not meet the exacting requirements of some experts. In our experience, they 

are quite satisfactory, and we recommend their use to teachers and students. An 

alternative is the use of the Rand Corporation random numbers which are repro¬ 
duced partially in the appendix of this book. 

Computer Program Listing to Generate Table 8.2 

10 DIM N(100),A$(100) 

20 FOR 1=1 TO 100: READ A$(I): N(I)=0 

30 NEXT I 

40 R=0: D=0 

50 RANDOMIZE 

60 1 = 1 

70 X=RND 

80 K=INT(X*100) 

90 IF K=0 THEN K=100 

100 IF N(K)=1 THEN 70 

110 N(K)=1 

120 PRINT K,A$(K) 

140 Z$=RIGHT$(A$(K),1) 

150 IF Z$="d" THEN D=D+1 

160 IF Z$="r" THEN R=R+1 

170 1=1+1 

180 IF I>60 THEN 200 

190 GOTO 70 

200 FOR 1=1 TO 100: PRINT N(I);; NEXT I 

220 PRINT “ ",D,R 



230 

240 

250 

260 

270 

280 

290 

300 

310 

320 

330 

340 

350 

360 

370 

380 

390 

400 
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DATA heflin-d,sheLby-d,murkowski-r,stevens-r,deconcini-d 

DATA mccain-r,bumpers-d,pryor-d,boxei—d,feinstein-d,campbeL L-d 

DATA brown-r ,dodd-d, L i eberman-d,biden-d, roth-r,graham-d,mack-r 

DATA nunn-d,coverdeLL-r,akaka-d,inouye-d,craig-r,kempthorne-r 

DATA mosLey-brown-d,simon-d,coats-r,lugai—r,harkin-d,grass Ley-r 

DATA do Le-r,kasse Lbaum-r,ford-d,mcconne L L-r,breaux-d,j ohnston-d 

DATA mitcheLL-d,cohen-r,mi kulski-d,sarbanes-d,kennedy-d,kerry-d 

DATA Levin-d,riege L-d,we L Lstone-d,durenburger-r,cochran-r 

DATA Lott-r,bond-r,danforth-r,bacus-d,burns-r,exon-d,kerrey-d 

DATA bryan-d,reid-d,gregg-r,smith-r,brad Ley-d,Lautenberg-d 

DATA bingaman-d,domenici-r,moynihan-d,damato-r,faircLoth-r 

DATA heLms-r,conrad-d,dorgan-d,gLenn-d,metzenbaum-d,boren-d 

DATA ni ckLes-r,hatfieLd-r,packwood-r,wofford-d,spectei—r 

DATA peLL-d,chafee-r,hoLLings-d,thurmond-r,dasch Le-d,press Ler-r 

DATA matthews-d,sasser-d,gramm-r,hutchinson-r,bennett-r,hatch-r 

DATA Leahy-d,j effords-r,robb-d,warner-r,murray-d,gorton-r 

DATA byrd-d,rockefeL Lei—d,feingo Ld-d,koh L-d,simpson-r,waLLop-r 

END 
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Principles of Analysis 
and Interpretation 

■ Frequencies and Continuous Measures 

■ Rules of Categorization 

■ Kinds of Statistical Analysis 
Frequency Distributions 

Graphs and Graphing 

Measures of Central Tendency and Variability 

Measures of Relations 

Analysis of Differences 

Analysis of Variance and Related Methods 

Profile Analysis 

Multivariate Analysis 

m Indices 

■ Social Indicators 

b The Interpretation of Research Data 
Adequacy of Research Designs, Methodology, Measurements, and Analysis 

Negative and Inconclusive Results 

Unhypothesized Relations and Unanticipated Findings 

Proof, Probability and Interpretation 

The research analyst breaks down data into constituent parts to obtain answers to 

research questions and to test research hypotheses. The analysis of research data, 

however, does not in and of itself provide the answers to research questions. Inter¬ 

pretation of the data is necessary. To interpret is to explain, to find meaning. It is 

difficult or impossible to explain raw data; one must first analyze the data and then 

interpret the results of the analysis. 

191 
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Data, as used in behavioral research, means research results from which infer¬ 

ences are drawn: usually numerical results, like scores of tests and statistics such as 

means, percentages, and correlation coefficients. The word is also used to represent 

the results of mathematical and statistical analysis; we will soon study such analysis 

and its results. Data can be more, however. Data can be information from newspaper 

and magazine articles, biographical materials, diaries, and so on—indeed, verbal ma¬ 

terials in general. In different words, “data” is a general term with several meanings. 

Think also of research data as the results of systematic observation and analysis used 

to make inferences and arrive at conclusions. Scientists observe, assign symbols and 

numbers to the observations, and manipulate the symbols and numbers to put them 

into interpretable form. Then, from these data, they draw inferences concerning the 

relationships among the variables of research problems. (Data is usually a plural 

noun, and we will so use it in this book; the singular is the seldom-used datum.) 

Analysis means the categorizing, ordering, manipulating, and summarizing of 

data to obtain answers to research questions. The purpose of analysis is to reduce 

data to intelligible and interpretable form so that the relationships of research prob¬ 

lems can be studied and tested. A primary purpose of statistics, for example, is to ma¬ 

nipulate and summarize numerical data and to compare the obtained results to 

chance expectations. A researcher hypothesizes that styles of leadership affect 

group-member participation in certain ways. The researcher plans an experiment, 

executes the plan, and gathers data from the subjects. Then, by ordering, breaking 

down, and manipulating the data an answer to the question “How do styles of leader¬ 

ship affect group-member participation?” will be determined. It should be apparent 

that this view of analysis infers that the categorizing, ordering, and summarizing of 

data should be planned early on in the research. A researcher should lay out analysis 

paradigms or models even when working on the problem and hypotheses. Only in 

this way can it be seen, even if only dimly, whether the data and its analysis can and 
will answer the research questions. 

Interpretation takes the results of analysis, makes inferences pertinent to the 

research relations studied, and draws conclusions about these relations. The re¬ 

searcher who interprets research results searches them for their meaning and impli¬ 

cations. This is achieved in two ways: (1) The relations within the research study and 

its data are interpreted. This is the narrower and more frequent use of the term inter¬ 

pretation. Here, interpretation and analysis are closely intertwined. One almost auto¬ 

matically interprets as one analyzes. That is, when one calculates, say, a coefficient of: 

correlation, one almost immediately infers the existence of a relation. (2) The 

broader meaning of research data is sought. One compares the results and inferences 

drawn from the data to theory and other research results. One seeks the meaning and 

implications of research results within the study results, and their congruence or lack 

of congruence with the results of other researchers. More importantly, one compares i 
results to the demands and expectations of theory. 

An example that may illustrate these ideas is research on the nature and impact 

of self-disclosure on perception. The theory under consideration is interpersonalism. 

Interpersonalism states that one s goals, plans, and strategies provide a means for un¬ 

derstanding people and certain interactions. It can involve the construction of mental 
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models of action. On the basis of this general theoretical framework, Miller, Cooke, 

Tsang, and Morgan (1992) predicted that perceptions or judgments of attribution 

would be determined by the disclosure strategy a person decided to adopt. Miller et 

al. studied the difference between three types of disclosure: negative, positive, and 

boastful. Scenarios were developed with different methods of disclosure. Participants 

of the study were asked to describe their impression of the person in the scenario on 

five attribution dimensions. Each dimension was correlated with scenario type. The 

correlation (computed in the form of i72[eta2]) was very high. This is the analysis. 

The data have been delineated into a series of two sets of measure, which are then 

compared through a statistical procedure.1 

The result of the analysis — a correlation coefficient—now has to be interpreted. 

What is its meaning? Specifically, what is its meaning within the study? What is its 

broader meaning in light of previous related research findings and interpretations? 

And what is its meaning as confirmation or lack of confirmation of theoretical pre¬ 

diction? If the “internal” prediction holds up, one then relates the finding to other 

research findings that may or may not be consistent with the present finding. 

The correlation was substantial. Within the study, then, the correlation data are 

consistent with theoretical expectation. Interpersonalism theory states that different 

strategies of disclosure influence perceptions. Bragging is one strategy of disclosure; 

it should therefore influence perception. The specific inference is that the things you 

say about yourself influence what other people think about you. In certain situations, 

bragging about oneself serves a useful purpose. People will see you as confident and 

successful. Whereas, negative disclosures will tend to make people think you are so¬ 

cially sensitive but not successful. We measure at least two variables and correlate the 

measures. From the correlation coefficient we make an inferential leap to the hy¬ 

pothesis. Since it is substantial (as predicted), the hypothesis is supported. We then 

attempt to relate the finding to other research and theory. 

frequencies and Continuous Measures 

Quantitative data come in two general forms: frequencies and continuous measures. 

Obviously, continuous measures are associated with continuous variables (see the dis¬ 

cussion of continuous and categorical variables in Chapter 3). Although both kinds of 

variables and measures can be subsumed under the same measurement frame of ref¬ 

erence, in practice it is necessary to distinguish them. 

Frequencies are the numbers of objects in sets and subsets. Let U be the universal 

set with N objects. Then N is the number of objects in U. Let U be partitioned into 

'The Miller, Cooke, Tsang, and Morgan (1992) study used more than a correlational analysis. They 

also performed both univariate and multivariate analyses of variance. r\2 measures the relation be¬ 

tween the independent variable — disclosure; and the dependent variable(s)—attribution. 
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Ai, A2, . . ., Ak. Let nh n2,.. . ,nk be the numbers of objects in Au A2,. . . ,Ak. Then 

nh n2, . . . , nk are called frequencies. 

It is helpful to look at this as a function. Let X be any set of objects with mem¬ 

bers frb x2, . . . , xk}. We wish to measure an attribute of the members of the set; call 

it M. Let Y ~ {0,1}. Let the measurement be described as a function: f — {(r, y); 

where x is a member of the set X, and y is either 1 or 0 depending on x’s possessing 

or not possessing M}. This is read: f, a function, or rule of correspondence, equals 

the set of ordered pairs (x, y) such that x is a member of X, y is 1 or 0, and so on. If x 

possesses M (determined in some empirical fashion), assign a 1. If x does not possess 

M, assign a 0. To find the frequency of objects with characteristic M, count the num¬ 

ber of objects that have been assigned 1. 

With continuous measures, the basic idea is the same. Only the rule of corre¬ 

spondence, f, and the numerals assigned to objects change. The rule of correspon¬ 

dence is more elaborate and the numerals are generally 0, 1,2,... and fractions of 

these numerals. In other words, we write a measurement equation: 

f — {(x,y); x is an object, andy = any numeral} 

which is the generalized form of the function. (This equation and the ideas behind it 

will be explained in detail in Chapter 25.) This digression is important because it 

helps us to see the basic similarity of frequency analysis and continuous measure 
analysis. 

Rules of Categorization 

The first step in any analysis is categorization. It was said earlier (Chapter 4) that 

partitioning is the foundation of analysis. We will now see why. Categorization is 

merely another word for partitioning—that is, a category is a partition or a subparti¬ 

tion. If a set of objects is categorized in some way, it is partitioned according to some 

rule. The rule tells us, in effect, how to assign set objects to partitions and subparti¬ 

tions. If this is so, then the rules of partitioning we studied earlier apply to problems 

of categorization. We need only explain the rules, relate them to the basic purposes 

of analysis, and put them to work in practical analytic situations. 

The five rules of categorization are as follows, of which (2) and (3) are the ex¬ 

haustiveness and disjointness rules discussed in Chapter 4. Others, (4) and (5), can 

actually be deduced from the fundamental rules, (2) and (3). For practical reasons, we 
nevertheless list them as separate rules. 

1. Categories are set up according to the research problem and purpose-. 
2. The categories are exhaustive. 

3. The categories are mutually exclusive and independent. 
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4. Each category (variable) is derived from one classification principle. 
5. Any categorization scheme must be on one level of discourse. 

Rule 1 is the most important. If categorizations are not set up according to the 
demands of the research problem, then there can be no adequate answers to the 
research questions. We constantly ask: Does my analysis paradigm conform to 
the research problem? Suppose the research question asked was: What is the influ¬ 
ence of television on the ability to process nonverbal communication of children? It 
has been said that too much television is bad for children; is this so? Whatever data 
are gathered and analyses done must bear on the research problem, which in this case 
is the relation between amount of television and understanding of nonverbal com¬ 
munication. 

The simplest kind of analysis is frequency analysis. Feldman, Coats, and Spiel- 
man (1996), in their study on the amount of television viewing and understanding of 
nonverbal communication, selected a sample of children and determined the fre¬ 
quency of their TV viewing. They then measured each child’s understanding of the 
strategic use of nonverbal emotional displays by the main character in a TV pro¬ 
gram. Feldman, Coats, and Spielman divided the children into three groups of TV 
viewing frequency: light, moderate and heavy. They then counted how many of these 
children were able to offer a complex or simple response to questions concerning the 
display of emotions by the main character in the TV program they viewed. The par¬ 
adigm for the frequency analysis looked like this: 

Level of Television Viewing 

Display Rule Categorization Light Moderate Heavy 

Simple 

Complex 
Frequency 

Since Feldman et al.’s data on the amount of TV viewing were measured on a contin¬ 
uous measure, they could have used this paradigm: 

Display Rule Categorization 

Simple Complex 

Amount of TV Viewing 

It is obvious that both paradigms bear directly on the problem: It is possible in 
both to test the relation between understanding and TV viewing, albeit in different 
ways. The authors chose the first method—and found that those children who 
watched TV less showed a higher level of understanding. In the light viewing group, 
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50% of the children gave complex and heterogeneous explanations. In the group of 

heavy viewers, 0% showed a high level of understanding. The second paradigm 

would undoubtedly have led to the same conclusion. The point is that an analytical 

paradigm is, in effect, another way to state a problem, a hypothesis, a relation. That 

one paradigm uses frequencies whereas another uses continuous measures in no way 

alters the relation tested. In other words, both modes of analysis are logically similar: 

they both test the same proposition but may differ in the data used, in statistical tests, 
and in sensitivity and power. 

There are several things a researcher might do that would be irrelevant to 

the problem. If one, two, or three variables are included in the study with no 

theoretical or practical reason for doing so, then the analytic paradigm would be 

at least partly irrelevant to the problem. Suppose a researcher, in a study of the 

hypothesis that religious education enhances the moral character of children, 

collected achievement test data from public and parochial schoolchildren. This 

would probably have no bearing on the problem. The researcher is interested in 

the moral differences — not the achievement differences — between the two types 

of schools and between religious instruction and no religious instruction. Other 

variables may be brought into the picture that have little or no bearing on the 

problem; for example, differences in teacher experience and training or 

teacher-pupil ratios. If, on the other hand, the researcher thought that certain vari¬ 

ables, like sex, family religious background, and perhaps personality variables, might 

interact with religious instruction to produce differences, then it might be justifiable 

to build such variables into the research problem and consequently into the analytic 
paradigm.2 

Rule 2, on exhaustiveness, means that all subjects, all objects of U, must be used 

up. All individuals in the universe must be capable of being assigned to the cells of 

the analytic paradigm. With the example just considered, each child either goes to 

parochial school or to public school. If, somehow, the sampling had included chil¬ 

dren who attend private schools, then the rule would be violated because there would 

be a number of children who could not be fitted into the implied paradigm of the 

problem. (What would a frequency analysis paradigm look like? Conceive the depen¬ 

dent variable as honesty.) If, however, the research problem called for private school 

pupils, then the paradigm would have to be changed by adding the rubric “Private” 
to the rubrics “Parochial” and “Public.” 

The exhaustiveness criterion is not always easy to satisfy. With some categorical 

variables, there is no problem. If gender is one of the variables, any individual has 

to be either male or female. Suppose, however, that a variable under study was 

In Chaptei 6, elementary consideration is given to frequency analysis with more than one 
independent variable. In later chapters there will be more detailed consideration of both'frequency 
and continuous measure analysis with several independent variables. The reader should not now 
be concerned with complete understanding of examples like those given above. They will be 
clarified later. 
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religious preference and we set up, in a paradigm, Protestant-Catholic-Muslim. 

Now suppose some subjects were atheists or Buddhists. Clearly, the categorization 

scheme violates the exhaustiveness rule: some subjects would have no cells to which 

to be assigned. Depending upon numbers of cases and the research problem, we 

might add another rubric, “Others,” to which we assign subjects who are neither 

Protestants, Catholics, nor Muslims. Another solution, especially when the number 

of Others is small, is to delete these subjects from the study. Still another solution is 

to place these other subjects, if it is possible to do so, under an already existing 

rubric. Examples of other variables where this problem is encountered are political 

preference, social class, and types of education. 

Rule 3 is one that often causes research workers concern. To demand that 

the categories be mutually exclusive means, as we learned earlier, that each object of 

U, each research subject (actually the measure assigned to each subject), must be 

assigned to one cell and one cell only of an analytic paradigm. This is a function of 

operational definition. Definitions of variables must be clear and unambiguous so 

that it is unlikely for any subject to be assigned to more than one cell. If religious 

preference is the variable being defined, then the definition of membership in the 

subsets Protestant, Catholic, and Muslim must be clear and unambiguous. It may be 

“registered membership in a church,” or be “born in the church.” It may simply be 

the subject’s identification of oneself as a Protestant, a Catholic, or a Muslim. What¬ 

ever the definition, it must enable the investigator to assign any subject to one and 

only one of the three cells. 

The independence part of Rule 3 is often difficult to satisfy, especially with con¬ 

tinuous measures — and sometimes with frequencies. Independence means that the as¬ 

signment of one object to a cell in no way affects the assignment of any other object 

to that cell or to any other cell. Random assignment from an infinite or large uni¬ 

verse, of course, satisfies the rule. Without random assignment, however, we run into 

problems. When assigning objects to cells on the basis of the object’s possession of 

certain characteristics, the assignment of an object now may affect the assignment of 

another object later. 

Rule 4, that each category (variable) be derived from one classificatory 

principle, is sometimes violated by the neophyte. If one has a firm grasp of 

partitioning, this error is easily avoided. The rule means that, in setting up 

an analytic design, each variable has to be treated separately because each 

variable is a separate dimension. One does not put two or more variables in one cate¬ 

gory or one dimension. If one were studying, for example, the relations between 

social class, sex, and drug addiction, one would not put social class and sex on one 

dimension. 

Let us illustrate this with a study by Glick, DeMorest, and Hotze (1988). These 

researchers were studying the relations among group membership, personal space, 

and compliance to a request for help. In this study, confederates in the study either 

sought help from a person who was either similar or different in physical characteris¬ 

tics (group membership). Additionally, when asking for help, they were either at a 

near, medium, or far (personal space) distance from the subject. The person they ap¬ 

proached either complied or did not comply with their request for help. In this study 
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an error in Rule 4 stated above might look like this: 

Complied 

Refused 

In-group Out-group Near Medium Far 

Frequencies 

Clearly this paradigm violates the rule: it has one category derived from two 

variables. Each variable must have its own category. A correct paradigm might look 
like this: 

Complied 

Refused 

In-Group Out-Group 

Near Medium Far Near Medium Far 

Frequencies 

Rule 5 is the hardest to explain because the term “level of discourse” is difficult 

to define. It was defined in an earlier chapter as a set that contains all the objects that 

enter into a discussion. If we use the expression “universe of discourse,” we tie the 

idea to set ideas. When talking about Uh do not bring in U2 without good reason 

and without making it clear that you are doing so. For a discussion of levels of dis¬ 

course and relevance, see Kerlinger (1969, pp. 1127-1144, especially p. 1131). 

Research analysis usually measures the dependent variable: for example, take the 

problem of group membership, personal space, and compliance to a request for help. 

Group membership and personal space are the independent variables; compliance to 

a request for help is the dependent variable. The objects of analysis are the compli¬ 

ance measures. The independent variables and their categories are actually used to 

structure the dependent variable analysis. The universe of discourse, U, is the set of 

dependent variable measures. The independent variables can be perceived as the par¬ 

titioning principles used to break down or partition the dependent variable measures. 

If we suddenly switch to another kind of dependent variable measure, then we may 
have switched levels or universes of discourse. 

Kinds of Statistical Analysis 

There are many kinds of statistical analysis and presentation that cannot be discuss¬ 

ed in detail in this book. Eater discussions of certain more advanced forms of statis¬ 

tical analysis have as their purpose basic understanding of statistics and statistical 
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inference and the relation of statistics and statistical inference to research. Here, the 

major forms of statistical analysis are discussed briefly to give the reader an overview 

of the subject; they are discussed, however, only as they relate to research. It is as¬ 

sumed that the reader has already studied the simpler descriptive statistics. Those 

who have not can find good discussions in elementary textbooks (see Comrey & Lee, 

1995; Kirk, 1990; Howell, 1997; Hays, 1994). 

Frequency Distributions 

Although frequency distributions are used primarily for descriptive purposes, they 

can also be used for other research purposes. For example, one can test whether two 

or more distributions are sufficiently similar to warrant merging them. Suppose one 

were studying the verbal learning of boys and girls in the sixth grade. After obtaining 

large numbers of verbal learning scores, one can compare and test the differences be¬ 

tween the boy and girl distributions. If the test shows the distributions to be the 

same — and other criteria are satisfied—they can perhaps be combined for other 

analysis. 
Observed distributions can also be compared to theoretical distributions. The 

best known such comparison is with the so-called normal distribution. It may be im¬ 

portant to know that obtained distributions are normal in form or, if not normal, de¬ 

part from normality in certain specifiable ways. Such analysis can be useful in other 

theoretical and applied work and research. In theoretical study of abilities it is impor¬ 

tant to know whether such abilities are in fact distributed normally. Since a number 

of human characteristics have been found to be normally distributed (see Anastasi, 

1958)3 researchers can ask significant questions about “new” characteristics being 

investigated. 
Applied educational research can profit from careful study of distributions of in¬ 

telligence, aptitude, and achievement scores. Is it conceivable that an innovative 

learning program can change the distributions of the achievement scores, say, of 

third and fourth graders? Can it be that massive early education programs can 

change the shape of distributions, as well as the general levels of scores? 

Allport’s (1947) study of social conformity showed that even a complex behav¬ 

ioral phenomenon like conformity can be studied profitably using distribution analy¬ 

sis. Allport was able to show that a number of social behaviors—stopping for red 

lights, parking violations, religious observances, and so on—were distributed in the 

form of a J curve, with most people conforming, but with predictable smaller num¬ 

bers not conforming in differing degrees. Coren, Ward, and Enns (1994) present a 

number of different distributional shapes for certain human perceptions of physical 

stimuli based on Steven’s psychophysics law. 
Distributions have probably been too little used in the behavioral sciences 

and education. The study of relations and the testing of hypotheses are almost 

3 The student of research in education, psychology, and sociology should study Anastasi’s outstand¬ 

ing contribution to our understanding of individual differences. Her book also contains many exam¬ 

ples of distributions of empirical data. 
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automatically associated with correlations and comparisons of averages. The use of 

distributions is considered less often. Some research problems, however, can be 

solved better by using distribution analysis. Studies of pathology and other unusual 

conditions are perhaps best approached through a combination of distribution analy¬ 
sis and probabilistic notions. 

Graphs and Graphing 

One of the most powerful tools of analysis is the graph. A graph is a two-dimensional 

representation of a relation or relations. It pictorially exhibits sets of ordered pairs in 

a way no other method can. If a relation exists in a set of data, a graph will not only 

clearly show it, it will show its nature: positive, negative, linear, quadratic, and so on. 

While graphs have been used a good deal in the behavioral sciences, they, like distri¬ 

butions, have probably not been used enough. To be sure, there are objective ways of 

epitomizing and testing relations, such as correlation coefficients, comparison of 

means, and other statistical methods. However, none of these so vividly and uniquely 
describes a relation as a graph. 

Look back at the graphs in Chapter 5 (Figures 5.1, 5.4, 5.5, and 5.6). Note how 

they convey the nature of the relations. Later we will use graphs in a more interest¬ 

ing way to show the nature of rather complex relations among variables. To give the 

student just a taste of the richness and interest of such analysis, we anticipate later 
discussion; in fact, we will attempt to teach a complex idea using graphs. 

The three graphs of Figure 9.1 show three hypothetical relations between age, as 

an independent variable, and verbal achievement (labeled “achievement”) as depen¬ 

dent variable, of middle-class children (A), and working-class children (B). One can 

call these growth graphs. The horizontal axis is the abscissa; it is used to indicate the 

independent variable, or X. The vertical axis is the ordinate; it is used to indicate the 

[1] Figure 9.1 
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dependent variable, or Y. Graph (a) shows the same positive relation between age 

and achievement with both A and B samples. It also shows that the A children exceed 

the B children. Graph (b), however, shows that both relations are positive, but that as 

time goes on, the A children’s achievement increases more than the B children’s 

achievement. Graph (c) is more complex. It shows that the A children were superior 

to the B children at an early age and remained the same to a later age, but the B chil¬ 

dren, who started lower, advanced and continued to advance over time until they ex¬ 

ceeded the A children. This sort of relation is unlikely with verbal achievement, but 

it can occur with other variables. 
The phenomenon shown in graphs (b) and (c) is known as interaction. Briefly, it 

means that two (or more) variables interact in their “effect” on a dependent variable. 

In this case, age and group status interact in their relation to verbal achievement. Ex¬ 

pressed differendy, interaction means that the relation of an independent variable to 

a dependent variable differs in different groups, as in this case, or at different levels 

of another independent variable. The study by Behling and Williams (1991) gave re¬ 

sults that could be plotted to look like graph (b). In this study, the researchers exam¬ 

ined student and teacher perceptions of intelligence toward different styles of clothes 

on males and females. A graph of one style of dress is given in Figure 9.2. A graph 

similar to graph (c) can be constructed from the data given in Little, Sterling, and 

Tingstrom (1996). Their study involved the perception of northern and southern 

United States students toward a target person described as either a northern or 

southern person. Here, southern students gave similar semantic differential ratings 

to both northern and southern target persons. However, the northern students gave 

the northern target person much higher ratings than the southern target person. 

This is depicted in Figure 9.3. The notion of an interaction effect will be explained 

in detail and more accurately when we study analysis of variance and multiple regres¬ 

sion analysis. 
While means are one of the best ways to report complex data, complete reliance 

on them can be unfortunate. Most cases of significant mean differences between 

[U Figure 9.2 

Teachers Students 
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H Figure 9.3 

groups are also accompanied by considerable overlap of the distributions. Clear ex¬ 

amples are given by Anastasi (1958) who points out the necessity of paying attention 

to overlapping and gives examples and graphs of sex distribution differences, among 

others. In short, students of research are advised to get into the habit, from the be¬ 

ginning of their study, of paying attention to and understanding distributions of vari¬ 
ables and to graphing relations of variables. 

Measures of Central Tendency and Variability 

There is little doubt that measures of central tendency and variability are the most 

important tools of behavioral data analysis. Since much of this book will be preoccu¬ 

pied with such measures—indeed, a whole section is called “The Analysis of Vari¬ 

ance”—here, we will only characterize averages and variances. The three main aver¬ 

ages (or measures of central tendency) used in research — mean, median, and 

mode — are epitomes of the sets of measures from which they are calculated. Sets of 

measures are too vast and too complex to grasp and understand readily. They are 

“represented” or epitomized by measures of central tendency. They tell what sets of 

measures “are like” on average, but are also compared to test relations. Moreover, in¬ 

dividual scores can be usefully compared to them to assess the status of the individ¬ 

ual. We say, for instance, that individual A’s score is such-and-such a distance above . 
the mean. 

While the mean is the most used average in research, and while it has desirable 

properties that justify its preeminent position, the median (the midmost measure of a 

set of measures) and the mode (the most frequent measure) can sometimes be useful 

in research. For instance, the median, in addition to being an important descriptive 

measure, can be used in tests of statistical significance where the mean is inappropri¬ 

ate (see Bradley, 1968). The study by Allman, Walker, Hart, Laprade, Noel, and 

Smith (1987), which compared the effectiveness and adverse effects of air-fluidized 

beds and conventional therapy for hospitalized patients with pressure sores, serves as 
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a good example of the use of the median as the primary measure of central tendency. 

The mode is used mostly for descriptive purposes, but can be useful in research for 

studying characteristics of populations and relations. Suppose that a mathematical 

aptitude test was given to all incoming freshmen in a college that had just initiated 

open admissions, and that the distribution of scores was bimodal. Suppose, further, 

that only a mean was calculated, compared to means of previous years, and found to 

be considerably lower. The simple conclusion that the average mathematical aptitude 

of incoming freshmen was considerably lower than in previous years conceals the fact 

that because of the open admissions policy many freshmen were admitted whose 

backgrounds were deficient in mathematics. While this is an obvious example, delib¬ 

erately chosen because it is obvious, it should be noted that obscuring important 

sources of differences can be more subtle. It often pays off in research, in other 

words, to calculate medians and modes as well as means.4 

The principal measures of variability are the variance and the standard deviation. 

These have already been discussed and will be discussed further in later chapters. We 

therefore forego discussion of them here, except to say that research reports should 

always include variability measures. Means should almost never be reported without 

standard deviations (and Ns, the sizes of samples) because adequate interpretation of 

research by readers is virtually impossible without variability indices. Another mea¬ 

sure of variability that has in recent years become more important is the range: the 

difference between the highest and lowest measures of a set of measures. It has be¬ 

come possible, especially with small samples (with N about 20 or 15 or less), to use 

the range in tests of statistical significance. 

easures of Relations 

There are many useful measures of relations: the product-moment coefficient of 

correlation (r), the rank-order coefficient of correlation (rho), the correlation ratio 

(eta: 17), the distance measure (D), the phi coefficient ($), the coefficient of multiple 

correlation (R), and so on. Almost all coefficients of relation, no matter how different 

in derivation, appearance, calculation, and use, do essentially the same thing: express 

the extent to which the pairs of sets of ordered pairs vary concomitantly. In effect, 

they tell the researcher the magnitude and (usually) the direction of the relation. 

Some of them vary in value from —1.00 through 0 to +1.00, —1.00 and 1.00 indicat¬ 

ing perfect negative and positive association, respectively, and 0 indicating no dis¬ 

cernible relation. 
Measures of relations are comparatively direct indices of relations in the sense 

that from them one has some direct idea of the degree of the covarying of the vari¬ 

ables. The square of the product-moment coefficient of correlation, for example, is 

a direct estimate of the amount of the variance shared by the variables. One can say, 

4Types of means and other measures of central tendency are exceptionally well discussed in Tate’s 

(1955) old but very valuable book. He also gives a number of good examples of distributions and 

graphs of various kinds. 
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at least roughly, how high or low the relation is. This is in contrast to measures of 

statistical significance which say, in effect, that a relation is or is not “significant” at 

some specified level of significance. Ideally, any analysis of research data should in¬ 

clude both kinds of indices: measures of the significance of a relation and measures of: 
the magnitude of the relation. 

Measures of relations, but especially product-moment coefficients of correla¬ 

tion, are unusual in that they themselves are subject to extensive and elaborate forms 

of analysis, mainly multiple regression analysis and factor analysis (covered in later 

chapters). They are thus extremely useful and powerful tools of the researcher. 

Analysis of Differences 

The analysis of differences, particularly the analysis of differences between means, 

occupies a rather large part of statistical analysis and inference. It is important to 

note two things about difference analysis. First, it is by no means confined to the dif¬ 

ferences between measures of central tendency. Almost any kind of difference — be¬ 

tween frequencies, proportions percentages, ranges, correlations, and variances — can 

be so analyzed. Take variances. Suppose an educational psychologist ascertains 

whether or not a certain form of instruction has the effect of making pupils more 

heterogeneous in concept learning. The difference between the variances of groups 

taught by differing methods can be tested easily. Or one might want to know 

whether or not groups set up to be homogeneous are homogeneous on variables 

other than those used to form the groups (see Comrey & Lee, 1995, pp. 229-234; 
Mattson, 1986, Chapter 10). 

The second point is more important. All analyses of differences are intended for • 

the purpose of studying relations. Suppose one believes that altering the amount off 

narcissism will have an effect on interpersonal consequences. Carroll, Hoeningmann, 

Stovall, and Whitehead (1996) created three protocols with differing levels of narcis¬ 

sism extreme, moderate, and none — and then measured the participants’ attrac- • 

tiveness toward that person. These researchers’ hypothesis was supported in that par¬ 

ticipants reported greater rejection of the person with extreme narcissism than with 

the other levels of narcissism. It is not really these differences that interest us, how¬ 

ever. It is the relation of the study. It is the relation between the changing of levels of' 

narcissism and the effect it has on how people perceive that person. Differences! 

between means, then, really reflect the relation between the independent variable 

and the dependent variable. If there are no significant differences among means, the 

correlation between independent variable and dependent variable is zero. And, 

conversely, the greater the differences the higher the correlation, all other things 
being equal. 

Take the experiment by Strack, Martin, and Stepper (1988) that studied the ef¬ 

fect of people’s facial activity on their affective responses. Here, the persons in the )• 

experimental group received instructions to hold pens in their mouths using only 

their teeth while looking at cartoons. The control group persons received instruc¬ 

tions to hold pens with their lips while viewing the same stimuli. The experimental 

group gave a mean rating of 5.09 on a scale from 0 to 9 in terms of “funniness.” The > 
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[U Figure 9.4 

Dependent 
Variable 

Group Group 

control group, however, gave a mean rating of 3.90. The difference is statistically sig¬ 

nificant, and we conclude from the significant difference that there is a relation be¬ 

tween which facial muscles are used and not used and perceived funniness. In earlier 

chapters, relations between measured variables were plotted to show the nature of 

the relations. It is possible, too, to graph the present relation between the experi¬ 

mental (manipulated) independent variable and the measured dependent variable. 

This has been done in Figure 9.4, where the means have been plotted as indicated. 

While the plotting is more or less arbitrary—for instance, there are no real baseline 

units for the independent variable — the similarity to the earlier graphs is apparent 

and the basic idea of a relation is clear. 
If the reader will always keep in mind that relations are sets of ordered pairs, the 

conceptual similarity of Figure 9.4 to earlier graphs will be evident. In the earlier 

graphs, each member of each pair was a score. In Figure 9.4, an ordered pair consists 

of an experimental treatment and a score. If we assign the value 1 to the experimental 

group and 0 to the control group, two ordered pairs might be: (1, 5.09), (0, 3.90). 

lysis of Variance and Related Methods 

A sizable portion of this book will be devoted to analysis of variance and related 

methods, So there is little need to say much here. The reader need only put this 

important method of analysis in perspective. Analysis of variance is what its name 

implies—and more: a method of identifying, breaking down, and testing for statisti¬ 

cal significance variances that come from different sources of variation. That is, a 

dependent variable has a total amount of variance, some of which is due to the ex¬ 

perimental treatment, some to error, and some to other causes. Analysis of vari¬ 

ance’s role is to work with these different variances and sources of variance. Strictly 

speaking, analysis of variance is more appropriate for experimental than for nonex- 

perimental data, even though its inventor, Fisher (1950), used it with both. We 
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will consider it, then, a method for the analysis of data yielded by experiments in 

which randomization and manipulation of at least one independent variable have 
been used. 

There is probably no better way to study research design than through an analy¬ 

sis of variance approach. Those proficient with the approach almost automatically 

think of alternative analysis of variance models when confronted with new research 

problems. Take the study by Rozin, Nemeroff, Wane, and Sherrod (1989) on the law 

of contagion. The law of contagion states that objects that have been in contact with 

one another, may continue to influence each other through the transfer of some of 

their properties. Rozin et al. constructed six objects (sweater, hamburger, apple, hair¬ 

brush [received], hairbrush [given], and a lock of hair) that have been in contact with 

four different people (friend, lover, dislike, unsavory). The four different people were 

considered as four levels of the categorical variable: source. Participants were asked 

to rate each object on a scale from -100 to +100, where -100 was “the most un¬ 

pleasant thing you can imagine” and +100 was “the most pleasant thing you can 

imagine.” Zero was the neutral point. Rozin et al. (1989) analyzed the data with a 

simple one-way analysis of variance for each object using the source (different people 

M Figure 9.5 

(a) Source (people in contact with the object) 

Friend Lover Dislike Unsavory 

Pleasantness Ratings 

(b) Source (people in contact with the object) 

Objects Friend Lover Dislike Unsavory 

Sweater 

Hamburger 

Apple 

Hairbrush 

(received) 

Hairbrush (given) 

Lock of hair 

Pleasantness Ratings 
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Figure 9.6 

(a) Emergency Care Providers 

Physicians Nurses Prehospital 

Staphylococcal 

bacteria count 

(b) Emergency Care Provider 

Work Shift Friend Lover Dislike 

Day Staphylococcal bacteria 

Night count 

who have been in contact with the object) as the independent variable. The analysis 

would look like the paradigm marked (a) of Figure 9.5. If the researchers used the 

objects as another independent variable, thinking the objects affect people’s 

evaluations, then the paradigm will look like the one marked (b), which is a two-way 

analysis of variance. Clearly, analysis of variance is an important method of studying 

differences. 
Similarly, a study by Jones, Hoerle, and Riekse (1995) compared the extent of 

the presence of staphylococcus bacteria on stethoscopes of emergency care providers. 

A one-way analysis of variance was used to make this comparison between physicians, 

nurses, and prehospital personnel. Here, the independent variable was the type of 

care provider, and the dependent variable was the amount of staphylococcal bacteria 

count. Figure 9.6 (a) gives the paradigm used in this study. If these researchers felt 

that there might be a difference between the providers working different shifts, the 

paradigm would resemble the one given in Figure 9.6 (b). 

Profile Analysis 

Profile analysis is basically the assessment of the similarities of the profiles of individu¬ 

als or groups. A profile is a set of different measures of an individual or group, each 

of which is expressed in the same unit of measure. An individual’s scores on a set of 

different tests constitute a profile, if all scores have been converted to a common 

measure system, like percentiles, ranks, and standard scores. Profiles have been used 

mostly for diagnostic purposes — for instance, the profiles of scores from test 



208 Part Four ■ Analysis, Interpretation, Statistics, and Inference 

batteries are used to assess and advise high school pupils. But profile analysis is be¬ 

coming increasingly important in psychological and sociological research, as we will 

see later when we study, among other things, Q methodology. 

Profile analysis has special problems that require researchers’ careful considera¬ 

tions. Similarity, for example, is not a general characteristic of persons; it is similarity 

only of specified characteristics or complexes of characteristics (see Cronbach & 

Gleser, 1953). Another difficulty lies in what information one is willing to sacrifice 

when calculating indices of profile similarity. When one uses the product-moment 

coefficient of correlation—which is a profile measure — one loses level; that is, dif¬ 

ferences between means are sacrificed. This is loss of elevation. Product—moment rs 

only take shape into account. Further, scatter—differences in variability of profiles— 

is lost in the calculation of certain other kinds of profile measures. In short, informa¬ 

tion can be and is lost. The student will find excellent help and guidance with profile 

analysis in Nunnally and Bernstein’s (1993) book on psychometrics, though the treat¬ 
ment is not elementary. 

Multivariate Analysis 

Perhaps the most important forms of statistical analysis, especially at the present 

stage of development of the behavioral sciences, are multivariate analysis and 

factor analysis. Multivariate analysis is a general term used to categorize a family 

of analytical methods whose chief characteristic is the simultaneous analysis of k 

independent variables and m dependent variables. In this book we will not be 

excessively concerned about the terminology used with multivariate analysis. To 

some, multivariate analysis includes factor analysis and other forms of analysis, like 

multiple regression analysis. Multivariate to these individuals infers more than one 

independent variable or more than one dependent variable, or both. Others in the 

field use multivariate analysis” only in the case of both multiple independent and 

multiple dependent variables. If an analysis includes, for instance, four independent 

variables and two dependent variables handled simultaneously, it is a multivariate 
analysis. 

It can be argued that, of all methods of analysis, multivariate methods are the 

most powerful and appropriate for scientific behavioral research. The argument to 

support this statement is long and involved and would sidetrack us from our main 

pursuit. Basically, it rests on the idea that behavioral research problems are almost all 

multivariate in nature and cannot be solved with a bivariate (two-variable) 

approach that is, an approach that considers only one independent and one depen- j 

dent variable at a time. This has become strikingly clear in much educational 

research where, for instance, the determinants of learning and achievement are 

complex: intelligence, motivation, social class, instruction, school and class atmos¬ 

phere and organization, and so on. Evidently, variables like these work with each 

other, sometimes against each other, mostly in unknown ways, to affect, learning 

and achievement. In other words, to account for the complex psychological and 

sociological phenomena of education requires design and analytic tools that are 

capable of handling the complexity that manifests itself above all in multiplicity of 
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independent and dependent variables. A similar argument can be given for 

psychological and sociological research. 

This argument and the reality behind it impose a heavy burden on those individ¬ 

uals teaching and learning research approaches and methods. It is unrealistic and 

irresponsible to study and learn only an approach that is basically bivariate in con¬ 

ception. Multivariate methods, however, are like the behavioral reality they try to 

reflect: complex and difficult to understand. The pedagogical necessity, as far as this 

book is concerned, is to try to convey the fundamentals of research thinking, design, 

methods, and analysis mainly through a modified bivariate approach. We will extend 

this approach as much as possible to multivariate conceptions and methods, and hope 

that the student will pursue matters further after having received an adequate 

foundation. 
Multiple regression, probably the single most useful form of the multivariate 

methods analyzes the common and separate influences of two or more independent 

variables on a dependent variable. This statement has limitations, especially about 

the separate contributions of independent variables that will be discussed in Chapter 

3 3. The increased use of multiple regression as a behavioral science analytic tool was 

due for the most part to the high-speed digital computer. Ezekiel and Fox (1959) are 

two of the few authors whose books are available on multiple regression prior to 

heavy use of computers. Ezekiel and Fox actually summarized the number of studies 

that used multiple regression prior to the publication of their book in 1959. There 

weren’t very many. Since the ready availability of computers and statistical software, 

the number of studies using multiple regression has increased exponentially. Erlich 

and Lee (1978) had a novel use for regression analysis. They used it on test scores for 

the purpose of assessing educational accountability. Griffiths, Bevil, O’Connor, and 

Wieland (1995) used regression to predict the level of competence on an anatomy 

and physiology exam. Among the predictor variables were grade-point-average 

and the type of college where the prerequisite anatomy and physiology courses 

were taken. The method has been used in hundreds of studies probably because of its 

flexibility, power, and general applicability to many different kinds of research 

problems. (It also has limitations!) We can hardly ignore it, then, in this book. 

Fortunately, it is not too difficult to understand and learn to use—given sufficient 

desire to do so. 
Canonical correlation is a logical extension of multiple regression. Indeed, it is 

a multiple regression method. It adds more than one dependent variable to the 

multiple regression model. In other words, it handles the relations between sets of 

independent variables and sets of dependent variables. As such, it is a theoretically 

powerful method of analysis. It has limitations, however, that can restrict its useful¬ 

ness: in the interpretation of the results it yields and in its limited ability to test theo¬ 

retical models. 
Discriminant analysis is also closely related to multiple regression. Its name 

indicates its purpose: to discriminate groups from one another on the basis of 

sets of measures. It is also useful in assigning individuals to groups on the basis 

of their scores on tests. While this explanation is not adequate, it is sufficient 

for now. 
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It is difficult at this stage to characterize, even at a superficial level, the technique 

known as multivariate analysis of variance because we have not yet covered analysis of 
variance. We will therefore postpone its discussion. 

Factor analysis is essentially different in kind and purpose from other multivariate 

methods. Its fundamental purpose is to help a researcher discover and identify the 

unities or dimensions, called factors, behind many measures. We now know, for exam¬ 

ple, that behind many measures of ability and intelligence lay fewer general dimen¬ 

sions or factors. Verbal aptitude and mathematical aptitude are two of the best 

known such factors. Religious, economic, and educational factors have been found 
when measuring social attitudes. 

The above-mentioned multivariate methods are “standard” in the sense that 

they are usually what is meant by “multivariate methods.” There are, however, other 

multivariate methods of equal, even greater, importance. As said in the Preface, 

it is not possible in a book of this kind to give adequate and correct technical 

explanations of all multivariate methods. While enormously important, for example, 

analysis of covariance structures and log-linear models analysis may be far too 

complex and difficult to describe and explain adequately and completely. Similarly, 

multidimensional scaling and path analysis cannot be adequately presented. Then 

what are we to do? Some of these approaches and procedures are so powerful 

and important—indeed, they are revolutionizing behavioral research—that a book 

that ignores them will be sadly deficient. The solution to the problem was also 

outlined in the Preface. It is worth repeating. The most common and accessible 

approaches analysis of variance, multiple regression, and factor analysis—will 

be presented in sufficient technical detail to enable a motivated and diligent stu¬ 

dent to at least use them and interpret their results. Certain other highly complex 

methods (like analysis of covariance structures and log-linear models) will be 

described and explained “conceptually.” That is, their purpose and rationale will 

be explained, with generous citation and description of fictitious and actual re¬ 

search use. Such an approach will be used in later chapters with the following three 
methodologies. 

Path analysis is a graphic method of studying the presumed direct and indirect 

influences of independent variables on each other and on dependent variables. It is 

3 method, in other words, of portraying and testing “theories” (see Kerlinger & 

Pedhazur, 1973; Pedhazur, 1996). Perhaps its main virtue is that it requires re¬ 

searchers to make explicit the theoretical framework of research problems. To ac¬ 

complish its goals, path analysis uses so-called causal or path diagrams and regression 

analysis. Readers can assuage a little of their curiosity by turning to Chapter 34 and 

examining one or two of the path analytic examples given there. Path analysis has 

been a useful conceptual framework for explaining the relations between variables. 

The person credited with the development of path analysis was Wright (1921). 

Wright’s applications were in the field of genetics. Duncan (1966) and Blalock (1971) 

made Wright’s work popular in the behavioral sciences. It is helpful to study path 

analysis because it makes understanding the analysis of covariance structure easier. In 

fact, path analysis is a part of analysis of covariance structures, as we will see in a later 
chapter. 
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Analysis of covariance structures—or causal modeling,5 or structural equation 

models — is the ultimate approach to the analysis of complex data structures. It 

means, essentially, the analysis of the varying together of variables that are in a struc¬ 

ture dictated by theory. For example, we can test the adequacy of theories of intelli¬ 

gence mentioned in earlier chapters by fitting the theories into the analysis of covari¬ 

ance structure framework and then testing how well they account for actual 

intelligence test data. The method — or rather, methodology—is an ingenious math¬ 

ematical and statistical synthesis of factor analysis, multiple regression, path analysis, 

and psychological measurement into a single comprehensive system that can express 

and test complex theoretical formulations of research problems. This creation is usu¬ 

ally attributed to Joreskog (1970) and his associates, although Bender (1989) has 

been a strong proponent of the method, having created a different algorithm (EQS) 

to that of Joreskog’s (LISREL). 
Log-linear models are the ultimate multivariate method — or again, methodol¬ 

ogy—of analyzing frequency data. The above-mentioned multivariate methods are 

for the most part geared to analyzing data obtained from continuous measures: test 

scores, attitude and personality scale measures, measures of ecological variables, and 

the like. As we will see in the next chapter, however, behavioral research data are oc¬ 

casionally in the form of frequencies, mostly counts of individuals. Examples would 

include numbers of males and females, ethnic minority and nonethnic minority, 

teachers and nonteachers, middle- and working-class individuals, Catholics, Protes¬ 

tants, and Muslims. Log-linear analysis makes it possible to study complex combina¬ 

tions of such nominal variables and, like analysis of covariance structures, to test the¬ 

ories of the relations and influences of such variables on each other. We will briefly 

characterize the methodology in a later chapter, though space constraints and techni¬ 

cal difficulties will force us to limit the discussion to the basic ideas involved. We will 

at least see, however, that, like analysis of covariance structures, it is one of the most 

powerful and important methodological developments in the latter part of the twen¬ 

tieth century. 

Indices 

Index can be defined in two related ways. First, an index is an observable phenome¬ 

non that is substituted for a less-observable phenomenon. A thermometer, for exam¬ 

ple, gives readings of numbers that represent degrees of temperature. The numerals 

on a speedometer indicate how many miles per hour a vehicle is traveling. Test scores 

indicate achievement levels, verbal aptitudes, degrees of anxiety, and so on. 

A second, perhaps more useful definition to the researcher is: an index is a 

number that is a composite of two or more numbers. An investigator makes a series of 

5 The term “causal modeling” is no longer in vogue since it was pointed out by a number of promi¬ 

nent statisticians that analyses based on correlation in the social and behavioral sciences could not 

establish cause and effect. 
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observations, for example, and derives some single number from the measures of the 

observations to summarize the observations, to express them succinctly. By this defi¬ 

nition, all sums and averages are indices: they include in a single measure more than 

one measure. But the definition also includes the idea of indices as composites of dif¬ 

ferent measures. Coefficients of correlation are such indices. They combine different 
measures in a single measure or index. 

There are indices of social-class status. For example, one can combine income, 

occupation, and place of residence to obtain a rather good index of social class. An 

index of cohesiveness can be obtained by asking members of a group whether or not 

they would like to remain part of the group. Their responses can be combined in a 

single number. In business and economics, the buying power of the American dollar 

varies over time. As such it is necessary to adjust other values in order to make mean¬ 

ingful comparisons. Take, for example, the comparison of the cost of an automobile 

in 1997 with the cost in 1950. One of the first steps is to determine the buying power 

of the U.S. dollar in 1997 with that of the buying power in 1950. The Bureau of La¬ 

bor Statistics computes and publishes regularly the consumer price index (CPI). The 
CPI is viewed as a cost-of-living measure. 

Indices are most important in research because they simplify comparisons. In¬ 

deed, they enable researchers to make comparisons that otherwise cannot be made or 

that can be made only with considerable difficulty. Raw data are usually too complex 

to be grasped and used in mathematical and statistical manipulations. They must be 

reduced to manageable form. The percentage is a good example. Percentages trans¬ 
form raw numbers into comparable form. 

Indices generally take the form of quotients: one number is divided by another 

number. The most useful such indices range between 0 and 1.00 or between -1.00 

through 0 to +1.00. This makes them independent of numbers of cases and aids 

comparison from sample to sample and study to study. (They are generally expressed 

in decimal form.) There are two forms of quotients: ratios and proportions. A third 
form, the percentage, is a variation of the proportion. 

A ratio is a composite of two numbers that relates one number to the other in 

fractional or decimal form. Any fraction, any quotient, is a ratio. Either or both the 

numerator and denominator of a ratio can themselves be ratios. The chief purpose 

and utility of a ratio is relational: it permits the comparison of numbers. In order to 

do this, it is perhaps best to put the larger of the two numbers of the quotient in the 

denominator. This of course satisfies the condition mentioned above of having the 

ratio values range between 0 and 1.00, or between -1.00 through 0 to +1.00. This is 

not absolutely necessary, however. Let’s say we wished to compare the ratio of male 

and female high school graduates to the ratio of male and female graduates of junior 

high school over several years. The ratio will sometimes be less than 1.00 and some¬ 

times greater than 1.00, since it is possible tha^t the preponderance of one sex over 
the other in one year may change in another year. 

Sometimes ratios give more accurate information (in a sense) than the parts from 

which they are composed. If one were studying the relation between educational 

variables and tax rate, for instance, and used actual tax rates, an erroneous notion 

of the relation might be obtained. This is because tax rates on property are often 
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misleading. Some communities with high rates actually have relatively low levels of 

taxation. The assessed valuation of property may be low. To avoid the discrepancies 

between one community and another, one can calculate, for each community, the ra¬ 

tio of assessed valuation to true valuation. Then an adjusted tax rate, a “true” tax rate, 

can be calculated by multiplying the tax rate in use by this fraction. This will yield a 

more accurate figure to use in calculations of relations between the tax rate and other 

variables. The odds-ratio is one type of index that is valuable when considering fre¬ 

quency data in contingency tables. We will examine this type of statistical index in 

greater detail when we discuss the analysis of frequency data and log-linear analysis. 

A proportion is a fraction with the numerator one of two or more observed fre¬ 

quencies and the denominator the sum of the observed frequencies. The probability 

definition given earlier, p = s/(s +/), where s equals number of successes and /equals 

number of failures, is a proportion. Take any two numbers, say 20 and 60. The ratio 

of the two numbers is 20/60 = .33. (It could also be 60/20 = 3.) If these two num¬ 

bers were the observed frequencies of the presence and lack of presence of an at¬ 

tribute in a total sample, where N = 60 + 20 = 80, then a proportion would be: 

20/(60 + 20) = .25. Another proportion, of course, is 60/80 = .75. 
A percentage is simply a proportion multiplied by 100. With the above example, 

20/80 X 100 = 25%. The main purpose of proportions and percentages is to reduce 

different sets of numbers to comparable sets of numbers with a common base. Any 

set of frequencies can be transformed to proportions or percentages in order to facil¬ 

itate statistical manipulation and interpretation. 
A word of caution is in order. Because they are often a mixture of two fallible 

measures, indices can be dangerous. The old method of computing IQ is a good ex¬ 

ample. The numerator of the fraction is itself an index since MA, mental age, is a 

composite of a number of measures. A better example is the so-called Achievement 

Quotient: AQ = 100 X EA/MA, where EA equals Educational Age, and MA equals 

Mental Age. Here, both the numerator and the denominator of the fraction are com¬ 

plex indices. Both are mixtures of measures of varying reliability. What is the mean¬ 

ing of the resulting index? How can we interpret it sensibly? It is hard to say. In 

short, while indices are indispensable aids to scientific analysis, they must be used 

with circumspection and care. 

Social Indicators 

Indicators, although closely related to indices—indeed, they are frequently indices as 

defined above—form a special class of variables. Variables like income, life ex¬ 

pectancy, fertility, quality of life, educational level (of people), and environment can 

be called social indicators. It is evident that these are variables because statistics on 

them are usually calculated. Social indicators are both variables and statistics. Before 

continuing, it is necessary to mention that Bauer (1966) did the pioneering work on 

social indicators. Unfortunately, it is difficult to define “social indicators,” and no 

formal attempt will be made here to do so. The article by Jaeger (1978) documents 

the difficulties in defining social indicators. Readers should know, however, that the 
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idea of social indicators is important and is likely to become increasingly important 

in the future. Their use is expanding into all fields and will eventually be systemati¬ 

cally studied from a scientific viewpoint, as well as from a “public” and social 
viewpoint. 

In this book we are interested in social indicators as a class of sociological and 

psychological variables that in the future may be useful in developing and testing sci¬ 

entific theories of the relations among social and psychological phenomena. Certain 

social indicators are now used in so-called causal modeling studies of educational and 

occupational achievement. Duncan, Featherman, and Duncan (1972) use social class, 

parents’ occupation, and earnings, to name a few. Psychological indicators, such as 

perceived quality of life, or “happiness,” have also been used. An example of this can 

be found in Campbell, Converse, and Rodgers (1976). In general, however, there ap¬ 

pears to have been little systematic methodological work done to categorize and 

study social indicators, their relations to each other, and their relations to other vari¬ 

ables. Most of the work can be called demographic and narrowly pragmatic—in 

essence, descriptive. Nevertheless, the field, after problems of reliability and validity 

are addressed and perhaps solved, is richly promising. It should offer behavioral sci¬ 

entists more than such statistics as “51.2% of the population was female in 1996, or 

54% of the population over age 18 had 9-12 years of education.” Among some of 

the more promising studies are the ones by researchers Vickie Mays and Susan 

Cochran concerning risks of sexual practices. In one study by Cochran, DeLeeuw, 

and Miays (1995), the researchers used two statistical methods—homogeneity analy¬ 

sis and latent class analysis — to provide an optimal scaling of sexual behavior pat¬ 

terns. The use of these methods effectively reduces multiple indicators into a single 

score that can then be used as an outcome variable in human immunodeficiency virus 

(HIV)-related research. With such research, we can continue to look forward to fac¬ 

tor analytical studies of indicators, analysis of covariance studies in which indicators 

are variables of the analyzed structures. We also look forward to an increasing gen- 

ei al use of the idea of indicators in social and psychological research. One can easily 

see this in educational research where the achievement of children appears to be af¬ 

fected in complex ways by different kinds of variables, some of which are of the social 

indicator genre. One of the virtues of the social indicator movement is that these in¬ 

fluences on achievement will be more consciously and systematically used in studying 
and testing theories of achievement. 

The Interpretation of Research Data 

Scientists, when evaluating research, can disagree on two broad fronts: data and the 

interpretation of data. Disagreements on data focus on problems such as the validity 

and reliability of measurement instruments, an^ the adequacy and inadequacy of re¬ 

search design, methods of observation, and analysis. Assuming competence, however, 

major disagreements ordinarily focus on the interpretation of data. Most psycholo¬ 

gists, for example, will agree on the data of reinforcement experiments, but disagree 

vigoiously on the interpretation of the data from the experiments. Such disagree- 
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ments are in part a function of theory. In a book like this we cannot belabor interpre¬ 

tation from theoretical standpoints. We must content ourselves with a more limited 

objective: the clarification of some common precepts of the interpretation of data 

within a particular research study or series of studies. 

Adequacy of Research Design, Methodology, 

Measurement, and Analysis 

One of the major themes of this book is the appropriateness of methodology to the 

problem under investigation. The researcher usually has a choice of research designs, 

methods of observation, methods of measurement, and types of analysis. All of these 

must be congruent; they must fit together. One does not use, for example, an analysis 

appropriate to frequencies with, say, the continuous measures yielded by an attitude 

scale. Most important, the design, methods of observation, measurement, and statis¬ 

tical analysis must all be appropriate to the research problem. 
Investigators must scrutinize the technical adequacy of methods, measurements, 

and statistics carefully. The adequacy of data interpretation depends on such scrutiny. 

A frequent source of interpretative weakness, for example, is neglect of measurement 

problems. It is urgently necessary to pay particular attention to the reliability and va¬ 

lidity of the measures of variables, as we will see in later chapters. Even the best re¬ 

search organizations and individuals sometimes falter. For many years, for example, 

the measurement in sociology and psychology of the social attitudes commonly 

called “liberalism” and “conservatism” has been in question. For one thing, it has 

been assumed — even in the face of contrary evidence—that liberalism and conser¬ 

vatism form a single continuum. For another, social attitudes have been measured 

with far too few items. Even some highly respected and competent organizations, in¬ 

stitutions, and individuals have made errors (Barber, 1976). It is not a grievous sin so 

to err. The real sin is in drawing sweeping conclusions as to the characteristics of 

people on the basis of measurements with questionable reliability and validity (see 

Dawes, 1994). 
Simply to accept without question the reliability and validity of the measure¬ 

ments of variables, then, is a gross error. Researchers must be especially careful to 

question the validity of their measurements, since the whole interpretative frame¬ 

work can collapse on this one point alone. If a psychologist’s problem includes the 

variable anxiety, for instance, and the statistical analysis shows a positive relation be¬ 

tween anxiety and achievement, the investigator must ask himself or herself and the 

data whether the anxiety measured (or manipulated) is the type of anxiety germane to 

the problem. The researcher may, for example, have measured test anxiety when the 

problem variable was really general anxiety. Similarly, one must ask whether the 

chosen measure of achievement is valid for the research purpose. If the research 

problem demands application of principles but the measure of achievement is a stan¬ 

dardized test that emphasizes factual knowledge, the interpretation of the data can be 

erroneous. 
In other words, we face here the obvious, but too easily overlooked fact that ade¬ 

quacy of interpretation is dependent upon each link in the methodological chain, as 
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well as on the appropriateness of each link to the research problem and the congru¬ 

ence of the links to each other. This is clearly seen when faced with negative or in¬ 
conclusive results. 

Negative and Inconclusive Results 

Negative or inconclusive results are much harder to interpret than positive results. 

When results are positive, when the data support the hypotheses, one interprets the 

data along the lines of the theory and the reasoning behind the hypotheses. Although 

one carefully asks critical questions, upheld predictions are evidence for the validity 
of the reasoning behind the problem statement. 

This is one of the great virtues of scientific prediction. When we predict some¬ 

thing and plan and execute a scheme for testing the prediction, and things turn out as 

we said they would, then the adequacy of our reasoning and our execution seems 

supported. We are never completely sure, of course. The outcome, though pre¬ 

dicted, may be as it is for reasons quite different from than those we fondly espouse. 

Still, the fact that the whole complex chain of theory, deduction from theory, design, 

methodology, measurement, and analysis has led to a predicted outcome is cogent 

evidence for the adequacy of the whole structure. We make a complex bet with the 

odds against us, so to speak. We then throw the research dice or spin the research 

wheel. If our predicted number comes up, the reasoning and the execution leading to 

the successful prediction would appear to be adequate. If we can repeat the feat, then 
the evidence of adequacy is even more convincing. 

But now take the negative case. Why were the results negative? Why did the re¬ 

sults not come out as predicted? Note that any weak link in a research chain can 

cause negative results. These can be due to any one, or several, or all of the follow¬ 

ing: incorrect theory and hypotheses, inappropriate or incorrect methodology, inade¬ 

quate or poor measurement, and faulty analysis. Barber (1976) says that it could even 

be the lesult of incorrect wording. All must be carefully examined, scrutinized, and 

the negative results laid at the door of one, several, or all. If we can be fairly sure that 

the methodology, the measurement, and the analysis are adequate, then negative re¬ 

sults can be definite contributions to scientific advancement. It is with such results 
that we have some confidence that our hypotheses are not correct. 

Unhypothesized Relations and Unanticipated 
Findings 

The testing of hypothesized relations is strongly emphasized in this book. This does 

not mean, however, that other relations in the data are not sought and tested. Quite 

the contrary. Practicing researchers are always teen to seek out and study relations in 

their data. The unpredicted relation may be an important key to a deeper under¬ 

standing of the theory. It may throw light on aspects of the problem not anticipated 

when the problem was formulated. Therefore, researchers—while emphasizing hy¬ 

pothesized relations should always be alert to unanticipated relations in their data. 
• A 
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Suppose we hypothesize that a homogeneous grouping of pupils will be benefi¬ 

cial to bright pupils but not beneficial to pupils of lesser ability. The hypothesis is up¬ 

held, say. But we note an apparent difference between suburban and rural areas. The 

relation seems stronger in the suburban areas and is reversed in some rural areas! We 

analyze the data using the suburban-rural variable. We find that homogeneous 

grouping seems to have a marked influence on bright children in the suburbs, but 

that it has little or no influence in rural areas. This would indeed be an important 

finding. 
One of the strongest and best-supported of findings in modern psychology has 

been that positive reinforcement strengthens response tendencies (see Hergenhahn, 

1996). For example, it has been believed that to enhance the learning of children 

their correct responses to problems should be positively reinforced. Unexpectedly, 

however, it has also been found that external motivation sometimes has deleterious 

effects. The work of Lepper, Greene, and Nisbett (1973) found that extrinsic positive 

reinforcement undermined children’s intrinsic interest in a drawing activity, a result 

certainly not predictable from reinforcement theory.6 
Unpredicted and unexpected findings must be treated with more suspicion than 

predicted and expected findings. Before being accepted, they should be substantiated 

in independent research in which they are specifically predicted and tested. Only 

when a relation is deliberately and systematically tested with the necessary controls 

built into the design can we have much faith in it. The unanticipated finding may be 

fortuitous or spurious. 
Tukey (1977) developed methods for investigating one’s data. The use of these 

methods is called exploratory data analysis. Tukey as well as Hoaglin, Mosteller, and 

Tukey (1985) have presented a number of easy-to-construct diagrams that summarize 

and describe the data. These diagrams can provide useful information to the re¬ 

searcher for further consideration. One of the more popular is the stem-and-leaf dia¬ 

gram. This diagram is similar to the histogram but has the advantage of not losing 

the original data. The stem-and-leaf method works best when the sample size is less 

than 100. The principle behind the stem-and-leaf method is that a stem and a leaf is 

used to represent each score or value. The stem is placed to the left of the vertical 

line and the leaf to the right of the vertical line. 
Let’s take, for example, the data presented in Table 9.1. The leaf for each score is 

the last digit and the stem is the remaining digits of a number. For example the num¬ 

ber 81 from Table 9.1 would look like the following. 

Stem Leaf 

8 1 

Figure 9.7 shows what happens when we put it all together to form the final 

stem-and-leaf diagram. With this diagram we can get a good idea of what the 

6Lepper et al.’s work as well as others on the intrinsic and extrinsic motivation is reviewed in 

Cameron and Pierce (1994, 1996). 
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\M Table 9.1 Fictitious Data Used to Demonstrate the Stem-and-Leaf Method 

(N = 46) 

81 54 91 74 88 78 90 77 88 90 69 94 74 76 96 50 93 93 70 77 58 60 75 

53 81 73 66 86 81 64 77 56 71 71 56 53 83 85 70 71 76 80 87 62 57 73 

distribution looks like. It gives a more detailed description of the data than do ordi¬ 

nary frequency distributions or histograms. The development of such methods can 
help researchers generate hypotheses to be tested. 

Proof, Probability, and Interpretation 

The interpretation of research data culminates in conditional probabilistic state¬ 

ments of the “If p, then q" kind. We enrich such statements by qualifying them in 

some such way as: If p, then q, under conditions r, s, and t. Ordinarily we eschew 

causal statements, because we are aware that they cannot be made without grave risk 
of error. 

Perhaps of greater practical importance to the researcher interpreting data is the 

problem of proof. Let us flatly assert that nothing can be “proved” scientifically. All 

one can do is to bring evidence to bear that such-and-such a proposition is true. 

Proof is a deductive matter. Experimental methods of inquiry are not methods of 

proof, they are controlled methods of bringing evidence to bear on the probable 

truth or falsity of relational propositions. In short, no single scientific investigation 

ever proves anything. Thus the interpretation of the analysis of research data should 
never use the word proof. 

Fortunately, for practical research purposes, it is not necessary to worry exces¬ 

sively about causality and proof. Evidence at satisfactory levels of probability is suffi¬ 

cient for scientific progress. Causality and proof were discussed in this chapter to 

sensitize the reader to the danger of loose usage of the terms. The understanding of 

Stem Leaf 

5 0 3 3 46 6 7 8 

6 02469 \ 

7 0011133445667778 
8 0111356788 

9 0013346 

\M Figure 9.7 
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scientific reasoning, and practice and reasonable care in the interpretation of re¬ 

search data, while no guarantees of the validity of one’s interpretations, are helpful 

guards against inadequate inference from data to conclusions. 

Chapter Summary 

1. Analysis is the process of categorizing, ordering, manipulating, and summa¬ 

rizing data in order to answer research questions. 

2. Purpose of analysis is to reduce data to interpretative form so that relations 

can be studied and tested. 
3. Interpretation takes the results of analysis and makes inferences and dis¬ 

cusses relations. 
4. Data comes in the form of frequencies and continuous measures. 

5. Categorization or partitioning is the first step of any analysis. 

6. Kinds of statistical analyses: 

a. graphs 
b. measures of central tendency and variability 

c. measures of relations 

d. analysis of differences 

e. analysis of variance 

f. profile and multivariate analyses 
7. Indices are used to simplify comparisons. Examples of indices are percent¬ 

ages, quotients, and ratios. 
8. Data and interpretation of data are two areas where scientists disagree. 

9. When interpreting research data, one needs to consider the technical ade¬ 

quacy of the research methodology, measurement process, and the statistics 

used. 
10. Negative or inconclusive results are much harder to interpret than positive 

results. 
11. In conducting a research study, unhypothesized relations and unanticipated 

findings may emerge. 
12. Unpredicted and unexpected findings must be treated with more suspicion 

than predicted and expected findings. 

Study Suggestions 

1. Suppose you wish to study the relation between social class and test anxiety. 

What are the two main possibilities for analyzing the data (omitting the 

possibility of calculating a coefficient of correlation)? Set up two analytic 

structures. 
2. Assume that you want to add sex as a variable to the problem above. Set up 

the two kinds of analytic paradigms. 
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3. Suppose an investigator has tested the effects of three methods of 
teaching reading on reading achievement. He had 30 subjects in each 
group and a reading achievement score for each subject. He also included 
gender as an independent variable: half the subjects were male and half 
were female. What does his analytic paradigm look like? What goes into 
the cells? 

4. Study Figure 9.3. Do these analysis of variance designs or paradigms repre¬ 
sent partitioning of variables? Why or why not? Why is partitioning impor¬ 
tant in setting up research designs and in analyzing data? Do the rules of cate¬ 
gorization (and partitioning) have any effect on the interpretation of data? If 
so, what effects might they have? (Consider the effects of violations of the two 
basic partitioning rules.) 

\ 
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Computer Addendum 

So far, we have talked mostly about analysis. Now we learn how to do analysis. The 

simplest way to analyze data to study relations is by cross-partitioning frequencies. A 

cross partition, as we learned in Chapter 4, is a new partitioning of the set U by 

forming all subsets of the form A Cl B. That is, we form subsets of the form A Cl B 

from the known subsets A and B of U. Examples were given in Chapter 4; more will 

be given shortly. The expression “cross partition” refers to an abstract process of 

set theory. Now, however, when the cross partition idea is applied to the analysis of 

frequencies to study relations between variables, we call the cross partitions crosstabs. 
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(Hi Table 10.1 Relation between Political Pany Affiliation and Budget- 

Reconciliation Vote, U.S. Senate, 1995 

Republican Democrat 

Nay 1 46 47 

2% 100% 

Yea 52 0 52 

98% 0% 

53 46 99 

Source: Data from Congressional Quarterly (1996). 

They are also sometimes called crossbreaks. The kind of analysis to be shown is called 
contingency analysis, or contingency table analysis. 

Because we can no longer get along without statistics, we introduce a form of 

statistical analysis commonly associated with frequencies, the y2 (chi-square) test, 

and the idea of statistical “significance.” This study of crosstabs and \2 should help 
ease us into statistics. 

The political struggle between Republicans and Democrats is often shown dra¬ 

matically by votes in the Congress. One of these important recent votes in the U.S. 

Senate was taken on the Fiscal 1996 Budget-Reconciliation bill. The Republican- 

Democrat struggle during the winter of 1995 centered on proposals to balance the 

budget by year 2002: Republicans being generally for these proposals and the 

Democrats, including President Clinton, being against. One of these proposals was 

to reduce spending on certain welfare services and reduce taxes. The bill was passed, 

52 to 47. This was a defeat for the President. More interesting to us is how the Re¬ 

publican-Democrat vote turned out, which is given in Table 10.1. It is clear from 

the frequencies (in this case) that there is a strong relation between political party 

membership and vote on the budget bill: Democrats voted Nay and Republicans Yea. 

IK Table 10.2 

Yea 

Nay 

Vote of the U.S. Senate to Impose Penalties on Physicians 

Performing Certain Late-Term Abortions, 1995 

Republican Democrat 

45 9 

85% 20% 

8 36 

15% 80% 

53 45 98 
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Not all frequency crosstabs are this clear. It is common practice, therefore, to calcu¬ 

late percentages. If we do so in a way to be described later, the percentages are those 

given in the lower right of each cell. We see the strength of the relation between 

political party membership and vote: 98% of the Republicans voted Yea, and 100% 

of the Democrats voted Nay. 

Studies of similar votes at about the same time show the same general relation. 

For instance, the vote to impose penalties on physicians who perform certain late- 

term abortions is given in Table 10.2. The relation is again strong, though not as 

strong as in the Budget-Reconciliation vote (note the percentages). A “nay” vote on 

this bill supports the President’s position. 

Data and Variable Terminology 

In Chapter 3 a distinction was made between active and attribute variables, the for¬ 

mer meaning an experimental or manipulated variable and the latter a measured vari¬ 

able. The term “attribute” was used because it is general and can cover the properties 

of an object, animate or inanimate. Unfortunately, however, “attribute” has some¬ 

times been used to mean what have been called categorical variables in this book. In 

this usage, for example, sex, race, religion, and similar categorical variables have been 

called attributes. They have also been called “qualitative variables.” Both usages seem 

ill-advised. An attribute is any property of any object, whether the object is measured 

in an all-or-none way or with a set of continuous measures. We so use it in this book 

not to upset any conventional usage, if that were possible, but rather to clarify the 

distinction between experimental and measured variables. 

What we have called categorical variables are also called, perhaps more accu¬ 

rately, “nominal variables.” This is because they belong to what we will later learn is 

the level of measurement called “nominal.” Since in this and later chapters we have 

to be quite clear about the difference between continuous and categorical variables, 

let us briefly anticipate a later discussion and define measurement. When the numbers 

or symbols assigned to objects have no number meaning beyond presence or absence 

of the property or attribute being measured, that measurement is called “nominal.” A 

variable that is nominal is, of course, what we have been calling “categorical.” To 

name something (“nominal”) is to place it into a category (“categorical”). Some cate¬ 

gorical data occur naturally like gender (female-male) or eye-color (blue, brown, 

grey, hazel). Other categorical data are created by categorizing data measured on a 

continuous scale. 
All this is perhaps clarified by the following set equation, which is a general defi¬ 

nition of measurement: 

f — {{x,y):x = any object, andy = any numeral} 

which is read: /is a rule of correspondence that is defined as a set of ordered pairs, 

(x, y), such that x is some object and y is some numeral assigned to x. This is a gen¬ 

eral definition that covers all cases of measurement. Obviously, y can be a set of con¬ 

tinuous measures or simply the set {0, 1}. Categorical or nominal variables are those 
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variables where y — {0, 1}, 0 and 1 being assigned on the basis of the object x either 

possessing or not possessing some defined property or attribute. Continuous vari¬ 

ables are those variables wherey = {0, 1, 2, or some numerical system where 

the numbers indicate more or less of the attribute in question. (It is mathematically 

difficult to define continuous measures, and the definition just given is not satisfactory. 

Nevertheless, the reader will know what is meant.) 

The level of measurement of this chapter is mostly nominal. Even when contin¬ 

uous variables are used, they are converted to nominal variables. If this conversion 

results in categories that can be ordered in terms of “importance,” “quantity,” or sim¬ 

ilar hierarchical attributes, these data are called ordinal. One category can be thought 

of as possessing more of some attribute than the other categories. In general, the 

conversion of continuous data to nominal or ordinal should not be done because it 

throws away (discards) information (variance). Nevertheless, there are times when, in 

the judgment of the researcher, it is necessary or desirable to treat a continuous vari¬ 

able as a nominal variable. For example, it may be possible to measure a potentially 

continuous variable in only a crude way by, say, having an observer judge whether or 

not objects possess or do not possess an attribute. While there are degrees of aggres¬ 

sive behavior, it may only be possible to say that an individual did or did not exhibit 
aggressive behavior. 

Crosstabs: Definitions and Purpose 

A crosstab is a numerical tabular presentation of data, usually in frequency or percent¬ 

age form, in which variables are cross partitioned. A common form of the crossbreak 

or crosstabulation is cross partitions used to study the relations between the vari¬ 

ables. It is a common form of analysis that can be used with almost any kind of 

data. Its principal use, however, is with categorical or nominal data. Apart from its 

actual research use, the crosstab is a valuable pedagogical device. Its clarity and sim¬ 

plicity make it an effective tool for learning how to structure research problems and 

how to analyze data. Crosstabs are cross partitions, as indicated earlier. Therefore 

the partitioning rules and the set notions already learned can be applied to their 
analysis easily. 

Crosstabs are also used in descriptive ways. The investigator may not be inter¬ 

ested in relations. The interest may be only to describe a situation that exists. For 

instance, take the case where a table breaks social-class membership against posses¬ 

sion of TV sets, refrigerators, and so on. This is a descriptive comparison rather than 

a variable crosstab, even though we might conceivably call possession of a TV set by 

some variable name. Our concern is exclusively with the analysis of data gathered to 
test or explore relations. 

Crosstabs enable the researcher to determine the nature of the relations between 

variables, but also have other side purposes: They can be used to organize data in 

convenient form for statistical analysis. A statistical test is then applied to the data. 
Indices of association, too, are readily calculated. 

Another purpose of crosstabs is to control variables. As we shall see later, 

crosstabs enable one to study and test a relation between two variables while control- 
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ling a third variable. In this way “spurious” relations can be unmasked and the 

relations between variables can be “specified” — that is, differences in degree of rela¬ 

tion at different levels of a control variable can be determined. 

Yet another purpose of crosstabs was alluded to above: their study and use sensi¬ 

tize the student and practicing researcher to the design and structure of research 

problems. There is something salutary about reducing a research problem to a 

crosstab. In fact, if you cannot write a diagrammatic paradigm of your research prob¬ 

lem in either analysis of variance or crosstab form, then the problem is not clear in 

your mind, or you do not really have a research problem. 

Simple Crosstabs and Rules for Crosstab Construction 

The simplest form a crosstab can take is a 2-by-2 (or 2X2) table. Two examples 

were given above. A third example is given in Table 10.3. The data are from a study 

by Payette and Clarizio (1994). This study examined the influence of student charac¬ 

teristics on the misclassification of students as learning disabled (LD) or not. The 

student characteristics under study were Race, Gender, Intellectual and Achieve¬ 

ment, and Grade-Level Status. Each student in the study was classified as eligible or 

ineligible for LD placement. Under the current guidelines mentioned by Payette and 

Clarizio, severe discrepancy was defined as underachievement. The tabled data are 

the number of male and female students who did not show severe discrepancy but 

were classified as eligible or ineligible. Payette and Clarizio found the number of 

males and females classified as eligible to be very close. However, females were more 

likely to be classified as “eligible” than males (.40 versus .21). Although we can get 

into a discussion about why this difference emerged, our main purpose here is to 

show how this table was set up. 

[Ml TABLE 10.3 Frequencies of Students Not Showing a Severe Discrepancy Under¬ 

current Guidelines by Gender and Eligibility Decision (Payette & 

Clarizio study f 

Gender 

Eligibility Female Male 

Eligible 17 (.40) 16 (.21) 33 

Ineligible 26 (.60) 60 (.79) 86 

43 76 119 

aThe figures in the center of each cell are frequencies. The figures in parentheses of each cell are 
percentages calculated from Gender to Eligibility, for example, 17/43 = 40, and 60/76 = .79. The 
latter are written as proportions: multiply by 100 and the proportions become percentages. We fol¬ 
low this convention of writing proportions henceforth. 
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[H Figure 10.1 

A_5, 
A\B] AB, 

a7b, a?b7 

There appear to be no generally accepted rules on how to set up crosstabs. We 

know, however, that they are cross partitions and thus must follow the rules of parti¬ 

tioning or categorization discussed earlier. Those rules were (1) categories are set up 

according to the research hypotheses; (2) categories are independent and mutually 

exclusive; (3) categories are exhaustive; (4) each category is derived from one and 

only one classification principle; and (5) all categories are on one level of discourse. 

In studies where there is a clear-cut distinction between which variable is the inde¬ 

pendent variable and which is the dependent variable, we will report the levels of the 

independent variable in columns and the outcome responses of the dependent vari¬ 

able as rows in the contingency table. 

A 2 X 2 crosstab, in variable symbols, is given in Figure 10.1. Al and A2 are the 

partitions of the variable A-, Bx and B2 are the partitions of the variable B. The cells 

A\B\, AxB2, A2B1? A2B2 are simply the intersections of the subsets of A and B: AXBX, 

AxB2, A2Bu A2B2. Any object in U, the universe of objects, can be categorized as AxBh 

A \B2j A2Bh A2B2. If U is a sample of children, and B is Gender and A is Delinquency, 

then an AXBX member is a delinquent male, whereas an A2B2 child is a nondelinquent 

10 Figure 10.2 
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female. In Table 10.3, B would be Gender; A would be Eligibility; A\ equals Eligibile; 

A2 equals Ineligible; Bx equals female; B2 equals male. Then A{Bi is a female who is 

eligible for LD, and A2B2 is a male who is classified as ineligible. Larger tables 

2X3,2X4, 3X2, and so on, are merely extensions of this idea. 

In the three-variable case, strictly speaking, a cube is necessary. Let there be 

three dichotomized (for simplicity) variables A, B, C. The actual situation would re¬ 

semble that shown in Figure 10.2. Each cell is a cube with a triple label. All visible 

cubes have been properly labeled. If the variables A, B, and C were Sex, Social Class, 

and Delinquency, respectively, then, for example, an A2B2CU cell member might be a 

working-class female who is delinquent. Since handling cubes is cumbersome, we use 

a simpler system. The three-variable crosstab table can resemble that shown in 

Figure 10.3. We will return to three-variable crosstabs later. 

Calculation of Percentages 

Percentages are calculated from the independent variable to the dependent variable. In stud¬ 

ies where it is not possible to label the variables as independent and dependent, the 

rule, of course, does not apply; but in most cases it does apply. In Table 10.1 and 

Table 10.2, the percentages were calculated from Republican and Democrat to Yea 

and Nay, for example., 51/52 = .98 and 1/52 = .02 in Table 10.1, and 9/45 = .20 and 

36/45 = .80 in Table 10.2. In the three tables above, the convention used was to put 

independent variables at the top of the table and dependent variables on the side of 

the table. It could just as well have been the other way around, however. Indeed, 

when there are more than one independent variable, published contingency tables 

are frequently printed from the top down. In Figure 10.3, for example, B and C 

would be the independent variables and A the dependent variable. 

Let’s return to Table 10.3, the data from the Payette and Clarizio study. Does 

this table indicate a relation greater than chance expectation between gender and 

learning disability eligibility? Do the proportions in the four cells of the table depart 

significantly from the proportions to be expected by chance? If they do, we say that 

there is a relation between the variables. Suppose a statistical test has been performed 

and its result indicated a greater than chance departure of the proportions. (We will 

see how to perform such a test shortly.) We then say that there is a statistically signif¬ 

icant relation between Gender and Learning Disability Eligibility. 

HI Figure 10.3 

C, c2 
b2 

C, c7 
A AlBlCl aac2 A b2c} A{B2C2 

A A2BlCl A7B\C7 A b2c, A2B2C2 
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But what is the nature of the relation? This is determined by study of the table, 

especially the percentages (proportions). The weightiest part of the relation seems to 

be the Eligible column: 40% of the females are eligible even though they did not 

show severe discrepancy whereas only 21% of the males were placed here. As a 

result, fewer females are considered ineligible when compared to males. 

Crosstabs with frequencies can sometimes be interpreted without converting 

them to percentages, but it is usually advisable to convert them following the rule 

given above: calculate from the independent variable to the dependent variable one 

column (or row) at a time. To do this, first add the frequencies in the rows and in the 

columns and enter the resulting sums at the bottom and side of the table. In Table 

10.3, these sums have been entered and are called “marginal frequencies,” or “mar¬ 

ginals.” (Actually, to calculate the percentages, only the column sums of Table 10.3 

need be calculated. Both row and column sums will be needed later.) In the relations 

of Table 10.1 and Table 10.2, the independent variable is clearly Political Party Affili¬ 

ation and the dependent variable is Vote on the Issue. In Table 10.3, the independent 

variable is Gender and the dependent variable Eligibility. Sometimes, however, de¬ 

termining which variable is which is not so simple. At any rate, in all three tables we 

calculate the percentages down the columns, or from the independent variable 

(columns) to the dependent variable (rows). 

To be sure we know what we are doing, let’s calculate the percentages of Table 

10.3. Take the rows separately: the Female row: 17 43 = .40, and 26 -u 43 = .60. 

These are the proportions. Multiplying by 100 (by moving the decimal point two 

places to the right) yields, of course, 40% and 60%. Now the Male column: 16 -r- 

76 = .21, and 60 ^ 76 = .79, or 21% and 79%. (Note that each column must total 

1.00, or 100%.) The relation is now clear. The Females are (proportionally) more 

likely to be classified as eligible than males. Notice how the percentage crosstab high¬ 

lights the relation, which was not clear in the frequencies because of unequal numbers 

of Females (43) and Males (76). In other words, the percentage calculation transforms 

both rows to a common base and enhances the comparison—and the relation. 

The reader may suggest two things: (1) Why not calculate the percentages the 

other way: from the dependent variable to the independent variable? (2) Why not 

calculate the percentages over the whole table? There is nothing inherently wrong 

with either of these suggestions. In the first case, however, we would be asking the 

data a different question. In the second case, we would merely be transforming the 

frequency data to percentage or proportion data without changing the pattern of 
the frequencies. 

The Payette-Clarizio problem is pointed toward the misclassification of children 

as eligible or ineligible for learning disability treatment. A hypothesis implied by the 

problem is: Decisionmakers are biased in their decisions about female children. This 

is a statement of the “If p, then q” kind: If female, then they are most likely eligible for 

learning disable considerations. There can be no doubt of the independent and de¬ 

pendent variables. Therefore the calculation of the percentages is determined since 

we must ask: Given the child is female, what proportion of them will be classified as 

eligible? The question is answered in the first column of Table 10.3: .40, or 40%. 

(The second column is, of course, also important in the overall relation.) 
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If percentages are calculated across the rows, it is tantamount to the hypothesis: 

If eligible for learning disabilities, then the gender is female. But we are not trying to 

account for Gender, gender is not the dependent variable. If we went ahead anyway 

and calculated the percentages, they would be misleading (see Study Suggestion 3). 

The theoretical rationale for the percentage calculation from the independent vari¬ 

able to the dependent variable is based on the consideration that percentages calcu¬ 

lated in this way are conditional probabilities (see Chapter 7), whose correct state¬ 

ments are derived from the research problem. For example, for Table 10.1 we can 

say: “If Republican, then vote Nay,” which is a conditional statement. In set and 

probability theory language, this is: the probability of Bu a Nay vote, given Ah 
Republican, or: 

mao = 
p(4i n B,) 

P(41) 

1/99 

53/99 
- .02 

and this is the conditional probability: the probability of Bu given A h It is also the 

percentage in thqAxBx [Republican-Nay] cell of Table 10.1. 

tatistical Significance and the x1 Test 

We must now interrupt our study of crosstabs to learn a little about statistics and 

thus anticipate the work and study of the next chapter. While it is possible to discuss 

about crosstabs and how they are constructed without using statistics, it is not really 

possible to go into the analysis and interpretation of frequency data without using at 

least some statistics. So we examine one of the simplest and yet most useful of statis¬ 

tical tests, the x2 (chi-square) test. 

Look at the frequencies of Table 10.3. Do they really express a relation between 

gender and learning disability eligibility? Or could they have happened by chance? 

Are they one pattern among many patterns of frequencies that one would get picking 

numbers from a table of random numbers, such selection being limited only by the 

given marginal frequencies? Such questions have to be asked of every set of fre¬ 

quency results obtained from samples. Until they are answered, there is little or no 

point in going further with data interpretation. If our results could have happened by 

chance, of what use is our effort to interpret them? 

What does it mean to say that an obtained result is “statistically significant” — 

that it departs “significantly” from chance expectation? Suppose that we were to do 

an actual experiment 100 times (toss a coin 100 times). Each experiment is like a coin 

toss or a throw of the dice. The outcome of each experiment can be considered a 

sample point. The sample space, properly conceived, is an infinite number of such 

experiments or sample points. For convenience, we conceive of the 100 replications 

of the experiment as the sample space U. This is nothing new. It is what we did with 

the coins and the dice. 

Take a simple example. A university administration is considering the wisdom 

of changing its marking system, but wants to know faculty attitudes toward the 
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proposed change. The administration has found from past experience, that if most of 

the faculty do not approve a change, a new system can run into serious trouble. By 

means of a suitable procedure, 100 faculty members selected at random are ques¬ 

tioned to discern their attitudes toward the proposed change. Sixty faculty members 

approve the change, and 40 disapprove. The administration now has to ask: Is this a 

“significant” majority? The administration reasons as follows: If the faculty members 

were completely indifferent, their responses would be like chance—now this way, 

now that way. The expected frequency on an indifference hypothesis would of course 

be 50/50, the result to be expected by chance. 

To answer the question whether 60/40 differs significantly from indifference or 

chance, a \2 statistical test is performed. A table (Table 10.4) is set up to obtain the 

necessary terms for the calculation of x2■ The term f represents “frequency ob¬ 

tained” and/) represents “frequency expected.” The function of statistical tests is to 

compare obtained results with those to be expected on the basis of chance. Here, 

then, we compare/) with/). On the indifference or chance assumption, we write 50 

and 50; but 60 and 40 were obtained. The difference is 10. Could a difference as 

large as 10 have occurred by chance? Another way to put the question is: If we per¬ 

formed the same experiment 100 times and only chance were operating—that is, the 

faculty members answered the questions indifferently or, in effect, randomly—how 

many times in the 100 could we expect to get a deviation as large as 60/40? If 

we tossed a coin 100 times, we know that sometimes we would get 60 heads and 40 

tails and 40 heads and 60 tails. How many times would such a large discrepancy, if 

it is a large discrepancy, happen by chance? The x2 test is a convenient way to get 
an answer. 

We now write a x2 formula: 

a2-! 
-q-/e)2~ 
- f . 

which simply says: “Subtract each expected frequency,/,, from the comparable ob¬ 

tained frequency, f, square this difference, divide the difference squared by the 

[Ml Table 10.4 Calculation of x2' Faculty Approval and Disap¬ 

proval of Proposed Change in Marking System 

Approve Disapprove 

f 60 40 

f 50 50 

f-f 10 -10 

(f -f)2 100 100 

(f -m. 100/50 = 2 100/50 = 2 
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expected frequency/I, and then add up these quotients.” This was done in Table 

10.4. To make sure the reader knows what is happening, we write it out: 

, (60 - 50)2 (40 - 50)2 100 100 „ 

* 50 50 50 50 

But what does y2 = 4 mean? y2 is a measure of the departure of obtained frequencies 

from the frequencies expected by chance. Provided we have some way of knowing 

what the chance expectations are, and provided the observations are independent, we 

can always calculate y2. The larger the y2, the greater the obtained frequencies devi¬ 

ate from the expected chance frequencies. The value of y2 ranges from 0, which indi¬ 

cates no departure of obtained from expected frequencies via a large number of 

increasing values. 

In addition to the formula above, it is necessary to know the degrees of freedom 

(df) of the problem, and to have a y2 table. Chi-square tables are found in almost any 

statistics text, together with instructions on how to use them. Table 10.5a gives an 

abbreviated y2 table. Explanations of degrees of freedom are also given in statistics 

textbooks (see Walker, 1951; Graziano & Raulin, 1993). We may say here that “de¬ 

grees of freedom” defines the latitude of variation contained in a statistical problem. 

In the problem above, there is one degree of freedom because the total number of 

cases is fixed, 100, and because as soon as one of the frequencies is given, the other is 

immediately determined. That is, there are no degrees of freedom when two num¬ 

bers must sum to 100, and one of them, say 40, is given. Once 40, or 45, or any other 

number is given, there are no more places to go. The remaining number has no free¬ 

dom to vary. 

p| Table 10.5a x2 Distribution Probabilities 

df .25 level .10 level .05 level .01 level 

1 1.32 2.71 3.84 6.63 

2 2.77 4.61 5.99 9.21 

3 4.11 6.25 7.81 11.3 

4 5.39 7.78 9.49 13.3 

5 6.63 9.24 11.1 15.1 

6 7.84 10.6 12.6 16.8 

7 9.04 12.0 14.1 18.5 

8 10.2 13.4 15.5 20.1 

9 11.4 14.7 16.9 21.7 

10 12.5 16.0 18.3 23.2 

11 13.7 17.3 19.7 24.7 
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HD TABLE 10.5b Frequencies and Corresponding \2 a 

Frequencies x2 
40/60 4.00 

41/59 3.24 

42/58 2.56 

43/57 1.96 

44/56 1.44 

45/55 1.00 

46/54 .64 

47/53 .36 

48/52 .16 

49/51 .04 

50/50 0 

aThe values of \2 for 51/49,...., 60/40 are, of course, the same as those in the 
table but in reverse order. 

To understand more about what is going on here, suppose we calculate all the 

*2s for all possibilities: 40/60, 41/59, 42/58,. . . , 50/50, . .., 60/40. Doing so, we get 

the set of values given in Table 10.5b. (When reading the table, it is helpful to con¬ 

ceive of the first frequency of each pair as “Heads,” or “Agrees with,” or “Male,” or 

any other variable.) Only two of these *2s, the values of 4.00 associated with 40/60 

and 60/40, are statistically significant. They are statistically significant because by 

checking the y2 table (Table 10.5a) for one degree of freedom we find an entry of 

3.84 at what is called the .05 level of significance. All the other \2 values in Table 

10.5b are less than 3.84. Take, for example, the *2 for 42/58, which is 2.56. If we 

consult the table, 2.56 falls between the values of *2 with probabilities of .10 and .25, 

or 2.71 and 1.32, respectively. This is actually a probability of about .14. In most 

cases, we do not need to bother finding out where it falls. All we need to do is to note 

that it does not make the .05 grade of 3.84. If it does not, we say that it is not statisti¬ 

cally significant—at the .05 level. The reader may now ask: “What is the .05 leveP” 

and “Why the .05 level?” “Why not .10 or even .15?” To answer these questions, we 
must digress a little. 

Levels of Statistical Significance 

The .05 level means that an obtained result that is significant at the .05 level could 

occur by chance no more than five times in 100 trials. With our responses to the 
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administration’s question of 60 Agrees and 40 Disagrees, we can say that a discrep¬ 

ancy as large as this will happen by chance about five times or less in 100 trials. 

A level of statistical significance is to some extent chosen arbitrarily. Some have 

attributed this choice to Fisher (1950), but it is certainly not completely arbitrary. 

Another level of significance frequently used is the .01 level. The .05 and .01 levels 

correspond fairly well to two and three standard deviations from the mean of a 

normal probability distribution. (A normal probability distribution is the symmetric 

bell-shaped curve that the student has probably often seen. We discuss this later.) 

Think back to the coin-tossing experiment when a coin was tossed 100 times. 

Heads turned up 52 times and tails 48 times (consult Table 10.5b, \2 = -16, a result 

clearly not significant.) But suppose the coin had been tossed not one set of 100 

tosses but 100 sets of 100 tosses, which would be tantamount to 100 experiments. 

From these 100 experiments we would get a variety of results: 58 -h 42, 46 54, 

51 -r- 49, and so on. About 95 or 96 of these experiments would yield heads within 

the bounds of 40 and 60. That is, only four or five of the experiments would yield 

less than 40 or greater than 60 heads. Similarly, if we perform an experiment and find 

a difference between two means which, after an appropriate statistical test, is at the 

.05 level of significance, then we have reason to believe that the obtained mean dif¬ 

ference is not merely a chance difference. It could be a chance difference, however. If 

the experiment were done 100 times and there really are no real differences between 

the means, at most five of these 100 replications might show mean differences large 

enough to be considered “significant.” 
While this discussion may help to clarify the meaning of statistical significance, 

it does not yet answer all the questions asked before. The .05 level was originally 

chosen—and has persisted with researchers—because it is considered a reasonably 

good gamble. It is neither too high nor too low for most social scientific research. 

Many researchers prefer the .01 level of significance. This is quite a high level of cer¬ 

tainty; indeed, it is “practical certainty.” Some researchers say that the .10 level may 

sometimes be used. Still others say that 10 chances in 100 are too many, so that they 

are not willing to risk a decision with such odds. Others say that the .01 level, or 1 

chance in 100, is too stringent, that “really” significant results may be discarded in 

this manner. 
Should a certain level of significance be chosen and adhered to? This is a diffi¬ 

cult question. The .05 and .01 levels have been advocated widely. There is a newer 

trend of thinking that advocates reporting the significance levels of all results. That 

is, if a result is significant at the .12 level, say, it should be reported accordingly. 

Some practitioners object to this practice. They say that one should make a bet and 

stick to it. Another school of thought advocates working with what are called “confi¬ 

dence intervals.” Many investigators say that the results are not significant if they do 

not make the .05 or .01 grade. Rozeboom (1960) advocates the use of confidence in¬ 

tervals and the reporting of precise probability values of experimental outcomes. 

However, Brady (1988) states that such precision is generally meaningless in the so¬ 

cial and behavioral sciences because of the inaccuracy of measurements. The basic 

idea is that, instead of categorically rejecting hypotheses if the .05 grade is not 

achieved, we say the probability is .95 that the unknown value falls between .30 
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and .50. Now, if the obtained empirical proportion is, say, .60, then this is evidence 

for the correctness of the investigator’s substantive hypothesis or, in null hypothesis 

language, the null hypothesis is rejected. A convenient and excellent source of these 

and similar problems is Kirk (1972). This book by Kirk contains a number of impor¬ 

tant essays dealing with these issues. Cohen (1994), Simon (1976, 1987), and Simon 

and Roscoe (1984) have argued against using tests of significance. The issues here are 

deep and complex and cannot be adequately discussed here. 

In this book the statistical “levels” approach will be used because it is simpler. 

For the student who does not plan to do any research, the matter is not serious. But 

it is emphasized that those who will engage in research should study other proce¬ 

dures, such as statistical estimation methods, confidence intervals, and exact proba¬ 

bility methods. A statistically significant result does not imply personal or practical 

significance. Babbie (1990) has mentioned four important points concerning why he 

is against the use of significance tests in social science research. For one, he states 

that the assumptions underlying statistical tests are generally not met in certain types 

of social research studies. These assumptions center around the sampling methods 

used in research. Babbie also feels that there is a tendency for researchers to interpret 

a statistically significant test as a strength of association or substantive significance. 

To illustrate the calculation and use of the \2 test with crosstabs, we now apply it 

to the frequency data of Table 10.1. The formula given previously is used, but with 

crosstab tables its application is more complicated than its use in Table 10.4. The 

main difference is the calculation of the expected frequencies. The necessary calcula- 

HD Table 10.6 Calculation of\2, Data of Table 10.1 

25.16163 27.8384 
1 52 53 

—24.1616b 24.1616 

21.8384 24.1616 
46 0 46 

-24.1616 24.1616 

47 52 99 

f (53 X 47)/99 — 25.616; (53 X 52)/99 — 27.8384; and so on. 

b f ~ fi~ 1 ~ 25.1616 = —24.1616; and so on. 

_ (1 ~ 25.1616)2 (52 - 27.8384)2 (46 - 21.8384)2 (0 - 24.1616)2 

25-1616 27.8384 + 21.8384 + 24.1616 

= 23.2013 + 20.9704 + 26.7319 + 24.1616 = 95.0653 
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tions are given in Table 10.6. The expected frequencies,// are in the upper-left cor¬ 

ner of each cell; they are calculated as shown in footnote a of the table. The obtained 

frequencies, f0 terms, are given in the right center of each cell. The f — f terms, 

required by the formula, are given in the lower left corner of the cells. They are the 

same in all cells, except for sign. This will be true in 2 X 2 tables. The y2 formula 

simply requires squaring these differences, dividing the squares by the expected fre¬ 

quencies, and summing the results. These calculations are indicated below: y2 = 

95.0653, at one degree of freedom. (Why one degree of freedom?) Looking up the 

tabled y2 value, one degree of freedom at the .01 level, we read 6.635. Since our 

value exceeds this substantially, it can be said that y2 is statistically significant, the 

obtained results are probably not chance results, and the relation expressed in the 

table is a “real” one in the sense that it is probably not due to chance. Note that y2 

needs a correction if N is small. The approximate rule is that the so-called correction 

for continuity is used — it consists merely of subtracting .5 from the absolute differ¬ 

ence between fB and / in the y2 formula before squaring—when expected frequencies 

are less than 5 in 2 X 2 tables. This correction is called the “Yates correction” (see 

Comrey & Lee, 1995). 
X2, like other statistics that indicate statistical significance, tells us nothing about 

the magnitude of the relation. It is a test of the independence of the variables in the 

sense of independence discussed in Chapter 9. It is not, strictly speaking, a measure 

of association. One of the oldest problems of statistics is indexing the strength or 

magnitude of association or relation between categorical variables. Its complexity 

forbids discussion here. But we give one statistic that is easily applicable and can be 

used with any size contingency or crosstab table. It is Cramer’s V, a measure of asso¬ 

ciation based on the chi-square value. The formula is: 

Cl 
V N(k - 1) 

The value of k is determined from either the number of rows or the number of 

columns in the contingency table. Whichever is smaller, the number of rows or the 

number of columns, is used for the value of k. N is the total frequency. In this case it 

is 99, since only 99 senators voted. If we substitute the value of \2 calculated above 

and insert it, N, and k in the equation, we obtain: 

F= = ^02 = .9799 - .98 

which is an index of the strength of the relation. 
Cramer’s V is the generalization of the phi-coefficient (/>). In 2 X 2 tables, 

Cramer’s V and (/>) phi are identical. Occasionally the coefficient of contingency, C, 

appears in the literature. The general consensus is that this value C is not as adequate 

as Cramer’s V. For one, it is not really comparable across different sized contingency 
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tables. For another, it can never reach the value of 1.00, which is the value of a per¬ 

fect association. These same criticisms are not true for Cramer’s V or (<£) phi. How¬ 

ever, as pointed out by Comrey and Lee (1992), these measures of association, espe¬ 

cially the phi coefficient are subject to other problems. Hays (1994) is a strong 

advocate of using measures of association along with tests of significance. Generally 

speaking, the best advice for handling categorical data is to calculate \2 (to determine 

statistical significance), calculate V, calculate the percentages as outlined earlier, and 
then interpret the data using all the information. 

Types of Crosstabs and Tables 

In general there are three types of tables: one-dimensional, two-dimensional, and 

^-dimensional. The number of variables determines the number of dimensions of a 

table: a one-dimensional table has one variable, a two-dimensional table has two vari¬ 

ables, and so on. It makes no difference how many categories any single variable has; 

the number of variables always fixes the dimensions of a table. We have already con¬ 

sidered the two-dimensional table where two variables — one independent and one 

dependent are set against each other. It is often fruitful and necessary to consider 

more than two variables simultaneously. Theoretically, there is no limit to the num¬ 

ber of variables that can be considered at one time. The only limitations are practical 

ones: insufficient sample size and difficulty of comprehension of the relations 
contained in a multidimensional table. 

One-Dimensional Tables 

There are two kinds of one-dimensional tables. One is a “true” one-dimensional 

table; it is of little interest to us because it does not express a relation. Such tables oc¬ 

cur commonly in newspapers, government publications, magazines, and so forth. In 

reporting the number or proportion of males and females in San Francisco, the num¬ 

ber of cars of different makes produced in 1992, the number of children in each of 

the grades of X school system, we have “true” one-dimensional tables. Only one 
variable is used in the table. 

Social scientists sometimes choose to report their data in tables that look one- 

dimensional but are really two-dimensional. Consider a table reported by Walker 

and Andrade (1996). This study sampled school-aged children who participated in a 

replication of the 1956 Asch conformity study. In the Asch study, the participant was 

placed in a group of “confederates” of the experimenter who behaved as if they were 

also participants in the study. The task involved choosing one of three lines that was 

of the same length as the test line. On the key trial, a confederate purposely chose 

the incorrect line. The interest was then on whether or not the participant would 

now conform and choose the same incorrect line when the choice was supported by 

the other confederates. Table 10.7 shows the percentage of instances in each age 

group where the participant conformed. (In the original table, only the row of per- 
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m Table 10.7 Replication of the Asch Conformity Study (Walker & Andrade data) 

Age Groups (years) 

3-5 6-8 9-11 12-14 15-17 

% conforming 85 42 38 9 0 

% not conforming 15 58 62 91 100 

centages on the top row was given.) The table looks one dimensional, but really 

expresses a relation between two variables: Age and Conformity. 

The key point is that tables of this kind are not really one-dimensional. In Table 

10.7, one of the variables, Conformity, is incompletely expressed. To make this clear, 

simply add another row of percentages beside those in the original table (this has 

been done in Table 10.7). This row can be labeled “Not Conforming.” Now we have 

a complete two-dimensional table, and the relation becomes obvious. (Sometimes 

this cannot be done because data for “completing” the table are missing.) 

As another example, consider the data presented in Table 10.8. The data were 

from a study by Child, Potter, and Levine (1946). In this study, the values expressed 

in third grade children’s textbooks were content analyzed. Table 10.8 shows the per¬ 

centages of instances in which rewards were given for various modes of acquisition. 

Like the Walker and Andrade study, only one response level was given. We have 

added the other response level into Table 10.8. It is the last row and the values are in 

parentheses. 

Two-Dimensional Tables 

Two-dimensional tables or crosstabs have two variables, each with two or more 

subclasses. The simplest form of a two-dimensional table, as we have seen, is called 

two-by-two, or simply 2X2. Two-dimensional tables are by no means limited to the 

2X2 form. In fact, there is no logical limitation on the number of subclasses that 

each variable can possess. Let us look at a few examples of m X. n tables. 

[U TABLE 10.8 Incomplete Data (presented in the Child, Potter, & Levine study) 

Buying, Asking Dominance, 

Effort Selling, Wishing, Taking Aggression, 

Trading What Is Offered Stealing, Trickery 

% in which rewarded 93 80 68 41 

(% in which not rewarded) (7) (20) (32) (59) 
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GU Table 10.9 Effect of Request Size on Donation Size (Doob & McLaughlin 

study)3 

Request Size 

No Specific 

Amount 

Smaller Request 

($5, $10, $25) 

Larger Request 

($50, $100, $250) 

Donation Size 

<$30 52% 36% 44% 

$30-$49 19% 38% 8% 

$50-$74 21% 16% 29% 

$75-$99 1% 1% 4% 

$100 7% 8% 12% 

>$100 0% 1% 3% 

aX2 = 111.3 (p < .01); V = .26. 

Doob and McLaughlin (1989) studied the relation between the Donate-Not 

Donate dimension and request size. Participants in this study were asked to make a 

monetary donation. The amount of money asked for was manipulated to examine its 

effect on whether people will donate or not donate. In their article they presented a 

table relating donation size and request size. They reported the 6 X 3 crosstab of 

Table 10.9. The results showed that donation size is related to request size. The ob¬ 

tained chi-square value was y2 = 111.3, which is highly significant and V = .26, a 

medium relation. (The authors did not calculate a measure of association.) We see 

here a simple but effective method of testing the hypothesis and analyzing the data. 

The researchers found that larger requests were more effective. This study is also 

noteworthy in that it juxtaposes a continuous variable (donation amount) with an or¬ 

dinal variable (amount requested). This table also illustrates a point that seems to 

confuse students; namely, that the m and n numbers of an m X n crosstab tell the 

number of subclasses or subcategories, and not the number of variables iyn represents 

the number oi categories of the first variable, and n the number of categories of the 
second variable). 

Another example of a two-dimensional table that affords interesting data to 

study, is from Stouffer’s (1955) classic study1 on conformity and tolerance. Stouffer 

This book contains exhaustive crosstab analyses. It can almost be considered a text and model of 

i m a"ayze relatlons via crosstabs. Stouffer’s untiring specifications of his data are especially 
valuable. For example, see Chapter 4 where Stouffer juxtaposes age, education, tolerance, and other 
vcirid n pc 
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[Ml TABLE 10.10 Relation between Education and Tolerance (Stouffer study) 

Percentage of 

Distribution of 

Scores on Scale of 

Tolerance 

College 

Graduates 

Some 

College 

Education 

High 

School 

Graduates 

Some 

High 

School 

Grade 

School 

Less tolerant 5 9 12 17 22 

In between 29 38 46 54 62 

More tolerant 66 53 42 29 16 

N 308 319 768 576 792 

studied the relation between tolerance, on the one hand, and several other sociologi¬ 

cal variables, on the other hand. One of the latter was Education. Stouffer sought an 

answer to the question: What is the relation between the amount of education and 

degree of tolerance? The crosstab given in Table 10.10 is instructive. A study of the 

table shows that a relation between the two variables exists: evidently the more edu¬ 

cation, the more tolerance. 
Let’s look briefly at a similar analysis of a different kind of research problem. 

Shaw, Borough, and Fink (1994) studied the relation between perceived sexual orien¬ 

tation and helping behavior. These researchers essentially asked: Is there a relation 

between receiving help and the sexual orientation of the person requesting help? Us¬ 

ing the “wrong number technique” the researchers obtained a nonreactive measure 

of homophobia. Table 10.11 presents a partial finding. The main numbers in the 

cells are frequencies. Percentages (proportions) are given in the parentheses. It is evi¬ 

dent from the percentages that people are more likely to help a person who is het¬ 

erosexual than one who is homosexual. The y2 was 18.34 and was statistically 

significant at the a = .01 level. Cramer’s V = .48. However, it is interesting to note 

[Ml TABLE 10.11 Relation between Perceived Sexual Orientation and Sex of 

Respondent (Shaw, Borough, & Fink study) 

Orientation of Caller 

Heterosexual Homosexual Total Response 

Help 32(80) 13(33) 45 

No help 8(20) 27(67) 35 

Total 40 40 80 
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that there is no significant relation between sex of the respondent and the perceived 

sexual orientation of the requester. The \2 was 0.33. 

Two-D imensional Tables, "True" Dichotomies, and 

Continuous Measures 

Many two-dimensional tables report “true” nominal data, data of variables that are 

truly dichotomous: sex, alive-dead, and the like. Yet many such tables have one or 

both variables presumably continuous and artificially dichotomized or trichotomized. 

In their study of the self-esteem of African American children in the Baltimore public 

schools, Rosenberg and Simmons (1971) showed that African American self¬ 

esteem was not, as thought, lower than white American self-esteem. The independent 

variable, Race, is at the top of the table, and the dependent variable, Self-esteem, at 

the side. (Thus, the percentages are calculated down the columns.) Note, too, that a 

continuous variable, Self-esteem, has been converted into an ordinal variable. 

Three- and ^-Dimensional Tables 

It is theoretically possible to crosstab any number of variables, but in practice the 

limit is three or four, more often three. The reasons for such limitation are obvious: 

very large Ns are required and, more important, the interpretation of data becomes 

considerably more difficult. Another point to bear in mind is: Never use a complex 

analysis when a simpler one will accomplish the analytic job. Still, three- and four¬ 

dimensional tables can be useful and can supply indispensable information. 

The analysis of three or more variables simultaneously has two mam purposes. 

First, is to study the relations among three or more variables. Take a three-dimen¬ 

sional example, and call the variables A, B, and C. We can study the following rela¬ 

tions: between A and B, between A and C, between B and C, and between A, B, 

0 Table 10.12 Relation of Self-esteem and Race, Baltimore Schoolchildven (Rosen¬ 

berg & Simmons study) 

Self-esteem African 

American (%) 

Race 

White 

American (%) 

Low 19 37 

Medium 35 30 

High 46 33 

100 100 ' 

N 1213 682 
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and C. The second purpose is to control one variable while studying the relation be¬ 

tween the other two variables. For instance, we can study the relation between B and 

C while controlling/!. An important use of this notion is to help detect spurious rela¬ 

tions. Another use is to “specify” a relation, to tell us when or under which condi¬ 

tions a relation is more or less pronounced. 

Specification 

Specification is a process of describing the conditions under which a relation does or 

does not exist, or exists to a greater or a lesser extent. An example will help to clarify 

this statement. We also take this opportunity to introduce ^-dimensional contin¬ 

gency tables and multivariate analysis of frequency data. 

Suppose you are an investigator interested in the hypothesis that Level of Aspi¬ 

ration is positively related to Success in College. Specifically, the hypothesis is that 

the higher the level of aspiration, the greater the probability of graduating. Suppose, 

further, that you had a relatively crude dichotomous measure of level of aspiration 

and measure of success in college. This measure would be whether the student grad¬ 

uated or not. The variables and categories, then, are Hi LA (high level of aspiration), 

Lo LA (low level of aspiration), SC (success in college), and NSC (not successful in 

college). Let’s say you drew a random sample of 400 sophomores from a college and 

obtained level of aspiration measures from them. The 400 students are divided into 

halves on the basis of the level-of-aspiration measures. At the end of three years you 

categorized the students on the basis of having graduated or not. Suppose the results 

were those shown in Table 10.13.2 There is evidently a relation between the vari¬ 

ables: x1 = 64, significant at the .001 level, and V = .40. 
You show the results to a male colleague, a rather sour individual, who says they 

are questionable, that if social class were brought into the picture the relation might 

be quite different. He reasons that social class and level of aspiration are strongly 

[M] TABLE 10.13 Relation between Level of Aspiration and School 

Achievement, Hypothetical Data 

Hi LA Lo LA 

SC 140 60 200 

NSC 60 140 200 

200 200 (400) 

2 The marginal totals of Table 10.13 (and those of Table 10.14) have been made equal to simplify the 

discussion and to highlight certain points to be made here and later. This is of course unrealistic: 

frequency tables are rarely this obliging. 
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related, and that the original relation might hold for middle-class students, but not 

for working-class students. Fortunately, when you go back and review the collected 

data, you notice that you do have indices of social class for all the subjects. The 

results of using the three variable crosstab are shown in Table 10.14. Inspection of 

the data shows that the your colleague was correct. The relation between level of 

aspiration and success in college is considerably more pronounced in middle-class 
(MC) students than in working-class (WC) students. 

The investigator can study the relations in more depth by calculating percent¬ 

ages separately for the middle-class and working-class sides of Table 10.14. In this 

case, since the frequencies in each row of the halves of the table total to 100, the fre¬ 

quencies are, in effect, percentages. It can be seen that the relation between level of 

aspiration and college success is stronger with middle-class students than it is with 
working-class students. 

In the above analysis, the data were specified: it was shown, by introducing the 

social-class variable, that the relation between level of aspiration and success in col¬ 

lege was stronger in one group (middle class) than in another group (working class). 

This is similar to the phenomenon of interaction discussed in Chapter 9, where we 

stated that interaction infers that an independent variable affects a dependent vari¬ 

able differently at different levels or facets of another independent variable. Strictly 

speaking, interaction is a term used in experimental research and analysis of vari¬ 

ance, as we shall see in subsequent chapters. There is some question, therefore, 

whether the term can be applied in nonexperimental research and in the kind of 

analyses we are now examining. The position taken in this book is that interaction is 

a general phenomenon of great importance occuring in both experimental and non¬ 

experimental research. The “validity” of interaction in nonexperimental research, 

however, is much harder to establish than in experimental research. Indeed, this is 

true of the “validity” of all relations in nonexperimental research, as we will see 

clearly detailed in Chapter 22 and Chapter 23. In sum, the specified relations of 

Table 10.13 can be viewed as interaction or simply as specification of relations. The 

main thing, of course, is that we understand what is going on: Relations are stronger, 

weaker, or even zero at differing levels of other independent variables. In the above 

U Table 10.14 Relations among Level of Aspiration, Social Class, and School 
Achievement, Hypothetical Data 

MC 

Hi LA Lo LA 
WC 

Hi LA Lo LA 

SC 80 20 60 40 200 

NSC 20 80 40 60 200 

100 100 100 100 ' (400) 

(200) (200) 

i 
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example, the relation between level of aspiration and college success is different in 

the two social classes. With such multivariate statements, we are getting closer to the 

heart and spirit of scientific investigation, analysis, and interpretation. 

rosstabs, Relations, and Ordered Pairs 

A relation is a set of ordered pairs. Two of the ways in which we can express a set of 

ordered pairs are (1) by listing the pairs, and (2) by graphing them. A coefficient 

of correlation is an index that expresses the magnitude of a relation. A crosstab 

expresses the ordered pairs in a table of frequencies. 

To show how these ideas are related, take the fictitious data of Table 10.15. The 

relation studied is between state control of the economic system and political democ¬ 

racy. In a study of political democracy in modern countries, Bollen (1979) hypothe¬ 

sized that the greater the control of the economic system of a country, the lower its 

level of political democracy. Suppose that of a sample of 23 countries, we count 12 

countries with low economic control (Low EC), and 11 countries with high eco¬ 

nomic control (High EC). We also count 13 countries with high political develop¬ 

ment (High PD) and 10 countries with low political development (Low PD). This 

gives us the marginal totals of a 2 X 2 crosstab. It does not tell us how many coun¬ 

tries are in each of the cells, however. 
We now count the number of Low EC countries that have High PD and the 

number of High EC countries that have Low PD. These counts are entered in the 

appropriate cells of the 2 X 2 crosstab of Table 10.15. We find that the cell frequen¬ 

cies depart significantly from chance expectation. There is thus a significant relation 

between state economic control and political development. 
For 2X2 tables where the expected frequencies are small (<10), one should use 

the exact test of significance developed by Fisher (1950). Other alternatives would be 

to use Yates correction on a y2 test, or to use Finney’s Tables (see Pearson & Hart¬ 

ley, 1954; Ferguson, 1971; Comrey & Lee, 1995). 
So that we can see the ordered pairs clearly, let’s change the variable notation. 

Let By equal Low EC, B2 equal High EC, Ay equal Low PD, and A2 equal High PD. 

n Table 10.15 Relation between State Control of Economic System and Political 

Development, Fictitious Data 

B! B2 

Low EC High EC 

(0,0) 2 (0, 1) 8 

(1,0) 10 (LI) 3 

Ay Low PD 

A2 High PD 

12 11 

13 
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OH Table 10.16 Ordered Pair Arrangement of the Data from Table 10.15 

Countries A B Crosstab 

Intersections 

1 1 0 

2 1 0 

3 1 0 

4 1 0 

5 1 0 A2Bx 
6 1 0 

7 1 0 

8 1 0 
9 1 0 

10 1 0 

11 1 1 
12 1 1 a2b2 
13 1 1 

14 0 0 axb{ 
15 0 0 

16 0 1 
17 0 1 
18 0 1 
19 0 1 axb2 
20 0 1 
21 0 1 
22 0 1 
23 0 1 

The A and B labels have been appropriately inserted in Table 10.15. Now, how do 

we set up the ordered pairs of the crosstab? We do so by assigning each of the 23 

countries one of the following subset combinations: (1, 1), (0, 1), (1, 0), (0, 0) (see the 

designations in Table 10.15). In other words, Ax and Bx are assigned 0s, and A2 and B2 

are assigned Is. If a country has Low EC and High PD, then it is A,BX- consequently, 

the ordered pair assigned to it is (1, 0). The first 10 countries of Table 10.16 belong 

to the A2BX category and are thus assigned (1, 0). Similarly, the remaining countries 

are assigned ordered pairs of numbers according to their subset membership The 

full list of 23 ordered pairs is given in Table 10.16. The categories or crosstab (set) 
intersections have been indicated. 
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Figure 10.4 

^i(O) A2( 1) 

A 

The relation is the set of ordered pairs of Is and Os. Table 10.16 is merely a dif¬ 
ferent way of expressing the same relation shown in Table 10.15. We can calculate a 
coefficient of correlation for both tables. If, for example, we calculate a coefficient of 
correlation, a product-moment r of the Table 10.16 data, we obtain .56. (The prod¬ 
uct-moment r calculated with Is and 0s is called a phi (0) coefficient.) 

Graph the relation. Let there be two axes, A and B, at right angles to each other, 
and let A and B represent the two variables contained in Table 10.15 and Table 10.16. 
We are interested in studying the relation between A and B. Figure 10.4 shows the 
graphed ordered pairs, and also shows a “relation” line running through the larger 
clusters of pairs. We ask: Where is the relation? Is there a set of ordered pairs that 
defines a significant relation between A and 5? We have paired each country’s score 
on A with that country’s “score” on B and plotted the pairs on the A and B axes. Go¬ 
ing back to the substance of the relation, we pair each individual country’s “score” on 
economic control with its “score” on political development. In this manner we obtain 
a set of ordered pairs and this set is a relation. Our real question, however, is not: Is 
there a relation between A and B} but rather: What is the nature of the relation 

between A and 5? 
We can see from Figure 10.4 that the relation between A and B is fairly strong. 

This is determined by the ordered pairs: the pairs are mostly (AXB2) and (A^j). 
There are comparatively few (AXBX) and (A2B2) pairs. Explicating in words, Low EC 
scores pair with High PD scores (1); and High EC scores pair with Low PD (0); with 
comparatively few exceptions (five cases out of 23). We cannot name this relation 
succinctly, as we can relations such as “marriage,” “brotherhood,” and the like. We 
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might, however, call it “state economic control-political development,” meaning 
that there is a relation of these variables in the ordered pair sense. 

The Odds Ratio 

A highly useful statistic that can be computed from 2X2 contingency tables is the 

odds ratio. This statistic is one of those that is'difficult to define verbally, but easy to 

illustrate. By definition, it is the ratio of two odds. Odds are computed as the ratio of 

the probability that the event will occur to the probability that it will not occur. For 

example, take a deck of 52 playing cards; if we wanted to know the probability of 
drawing a queen, we would form the ratio 

Prob {Queen) — 
4 

52 13 
= 0.077 

The probability of not drawing a queen is 

48 12 
Prob(Afor Queen) = -jy = -yy = 0.923 

The odds ratio of drawing a queen would be 

Odds (Queen) = 
4/52 1 

48/52 12 
= 0.083 

If we use the data presented in Table 10.13, we can see how the odds ratio works and 

why it is useful in many situations. To remain consistent with the example above, we 

change the frequencies to probabilities or proportions. The table below reflects this. 

HiLA LoLA 

SC .7 .3 

NSC .3 .7 

The odds of success if the student is in the High Level of Aspiration group is 

7 
Odds(Success\High) =\~ = 2.33 

This tells us that students in the high aspiration level group are 2.33 times more 

r C ^ t0r Abe successful ln college. The odds of success if the student is in the Low 
Level of Aspirations group is 
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Odds(SWcm | Low) 
3_ 

.7 
- .43 

One would interpret this as being a less than half a chance that a student in the low 

aspiration group will succeed in college. If we form the ratio between these two odds, 

we arrive at the odds ratio. 

2.333 
Odds Ratio =-= 5.444 

0.429 

The odds ratio tells us that students in the high aspirations group are 5.444 times 

more likely than the low aspiration group to succeed in college. 

The odds ratio gives useful information. It helps in trying to explain what has 

happened. The Chi-square statistic is still the preferred method; however, it is unable 

to give the type of information that odds ratios can give. The concept behind the 

odds ratio is somewhat more difficult for students. However, learning about this sta¬ 

tistic is important when dealing with categorical data. It is especially useful when one 

is considering multiway contingency tables or analyses using the logistic function. 

We will see more of this statistic when we get to Chapter 35. At that time we will 

also see a different Chi-square statistic. Howell (1997) presents an interesting exam¬ 

ple concerning the effectiveness of aspirin in lowering incidence of heart attack. The 

individual odds were very small; however, the odds ratio was quite large. A person in 

the no aspirin group is 1.83 times more likely to have a heart attack than the person 

who takes a low dosage of aspirin. 

Multivariate Analysis of Frequency Data 

Most of the above discussion was limited to two variables: an independent variable 

and a dependent variable. Many frequency data analyses, however, are of three and 

more variables. A fictitious example with three variables was given earlier in Table 

10.14. While most three-variable cases can be analyzed and interpreted using per¬ 

centages, study data with four or more variables are not so amenable to analysis and 

interpretation. Another approach is needed. Even with three variables another ap¬ 

proach is often needed because the data are too complex and subtle for simple inter¬ 

pretation. With a two-variable crosstab there is only one relation: between A and B. 
With three variables, however, there are four relations of possible interest: AB, AC, 
BC, and ABC. The three two-variable crosstabs are the kind we have been studying. 

The one three-variable crosstab, ABC, is like that shown in Table 10.14, and in this 

case can be viewed most fruitfully as follows. Study of the relation between Level of 

Aspiration and Success in College in two samples: middle class and working class. 

That is, we study whether the relation between Level of Aspiration and College Suc¬ 

cess is the same in the middle class as it is in the working class. If it is the same, 

we have “established” an invariance. If it is different, however, we have an interaction: 
the relation is such-and-such in the middle class, but it is so-and-so in the working- 

class. 
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Since the early 1970s remarkable changes in conceptualization of research prob¬ 

lems and in data analysis have taken place. Some of the noted works that have 

contributed to the area of multi-way contingency tables with frequency data are 

Grizzle, Starmer, and Koch (1969); Bishop, Fienberg, and Holland (1976); Goodman 

(1971) and Clogg (1979). Before the development of multivariate analysis of both 

continuous measures and frequencies, analysis — and the conceptualization of analy¬ 

sis—was mostly bivariate. Investigators studied the relations between pairs of vari¬ 

ables, as we have pretty much done in this chapter. While the idea of studying the 

operation of several variables simultaneously was well-known, the practical means of 

doing so had to wait for both the computer and a different way of thinking. Later in 

this book we will examine the nature of the computer and its important role in re¬ 

search. We will also give a more complete description on the multivariate analysis of 

frequency data. In the previous edition of this book, a brief discussion was introduced 

in this chapter concerning log-linear models for multiway frequency/contingency ta¬ 

bles. Since that time the field has expanded enough to warrant a larger section, and 

will be presented in the chapters dealing with multivariate statistics. 

mputer Addendum 

Two-dimensional crosstabs can be performed using' the SPSS computer program. 

There are two different setups that the user should be aware of. The first involves a 

dataset of raw values. An example of such a set of raw values is given in Table 10.16. 

With the raw data, we will need to instruct SPSS to process the data by first creating 

a contingency table followed by the analysis. The second setup is used when the 

researcher has already constructed the contingency table and needs only to obtain 

the statistical analysis for that table. Such a table is shown in Table 10.14 and 
Table 10.15. 

To dlustrate the first setup we will use the data given in Table 10.16. We will as¬ 

sume that the reader has read the computer addendum in Chapter 6 and knows how 

to navigate SPSS for Windows program. This would include knowing how to define 

the variables and how to enter the data into SPSS’s data spreadsheet. Figure 10.5 

shows the SPSS screen after the data have been entered and the proper statistical 

analysis is about to be selected. Note that Table 10.16 has 23 observations, but in 

Figuie 10.5 we show only the first 14 cases due to space constraints. Also note the 

similarities between Table 10.16 and Figure 10.5 in terms of the data layout. 

Next, select “Statistics” by clicking it, then from the next menu select 

Crosstabs,” arriving at the screen shown in Figure 10.6. This screen allows you to 

select which variable will be the row (dependent) variable in the contingency table 

and which will serve as the column (independent) variable. You will also need to click 

the “Statistics” button so that you can select the statistics you want to display in your 

output. To select the row variable, highlight the “a” variable in the left-most box and 

click the top arrow. This will effectively move the variable “a” to the “Row(s)” box. 

Next, highlight the “b” variable and click on the bottom arrow. When this is done, 

the “b” variable will be moved from the left box to the “Column(s)” box. Figure 10.7 
will show the end result of those operations. 
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ID Figure 10.5 

Untitled - SPSS Data Editor 

File Edit View Data Transform Stat sties Graphs Utilitie Windows Hein. 
Frequencies 

Descriptives 

Crosstabs 

List Cases 

a b Summmarize ► 
Compare Means ► 
ANOVA Models ► 
Correlate ► 
Regression ► 
Log-linear ► 
Classify ► 
Data Reduction ► 
Scale ► 
Nonparametric Tests ► 

—► 

1 1 0 

2 1 0 

3 1 0 

4 1 0 

5 1 0 

6 1 0 

7 1 0 

8 1 0 

9 1 0 

10 1 0 

11 1 1 

12 1 1 

13 1 1 

14 0 0 

[U Figure 10.6 

CROSSTABS 

a 

b 

Row(s) 

Column(s) 

Statistics Cells Fonts 

OK 

Paste 

Insert 

Cancel 

Help 
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ID Figure 10.7 

CROSSTABS 

Row(s) 

Column(s) 

Statistics Cells Fonts 

OK 

Paste 

Insert 

Cancel 

Help 

Next, click the “Statistics” button, which produces another screen. From this 

screen and for your purposes, select “chi-square” and the “Phi & Cramer’s V” statis¬ 

tics. These are selected by clicking the box that is adjacent to these statistics. Once 

you have done that, click the “Continue” button. This will take you back to the pre¬ 

vious screen, which was shown in Figure 10.7. Once you have that screen back, click 

“OK.” You will then see SPSS switch to the Output Screen and display the results of 
your statistical analysis. These results are presented in Figure 10.9. 

The second setup involves doing the analysis using only the contingency table 

instead of the raw data values. You would define the variables A and B in SPSS again. 

However, this time you would only enter the cell identifications. Remember, for 

Table 10.15, we gave Low PD-Low EC the subset combination (0, 0). We also gave 

such designation to the other cells of the contingency table; that is, Low PD-High 

M\ Figure 10.8 

CROSSTABS Statistics 

H chi-square 

-Nominal Data- 

□ Contingency Coefficient 

0 Phi & Cramer’s V 

□ Lambda 

□ Uncertainty Coefficient 

-Original Data 

□ Gamma 

□ Somer’s d 

□ Kendall’s tau-b 

□ Kendall’s tau-c 

-Nominal Interval- 

□ Eta 
□ Kappa 

□ Risk 

Continue 

Cancel 

Help 
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HI Figure 10.9 

B Low EC High EC 

Count 0 1 Row 
A Totals 

Low PD 0 2 8 10 

43.5 

High PD 1 10 3 13 

56.5 

Column 12 11 23 
Total 52.2 47.8 

Chi-Square Value DF Significance 

Pearson 7.33963 1 .00675 

Continuity Correction 5.23565 1 .02213 

Phi -.56490 

Cramer’s V .56490 

EC was (0, 1), High PD-Low EC was (1, 0), and High PD-High EC was (1, 1). 

Figure 10.10 shows the SPSS spreadsheet where this is done in the first two columns. 

Note that there is a column labeled “Count.” In this column you would enter the 

frequency counts for each cell. For example, (0, 0) or Low PD-Low EC had a 

ID Figure 10.10 

Untitled - SPSS Data Editor 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

a b count var var var 

1 0 0 2 

2 0 1 8 

3 1 0 10 

4 1 1 3 

5 
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H] Figure 10.11 

Untitled - SPSS Data Editor 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

a b count 

1 0 0 3 

2 0 1 8 

3 1 0 10 

4 1 1 2 

5 

Define Variables 

Define Dates 

Templates 

Insert Variable 

Insert Case 

Go To Case 

Sort Cases 

Merge Files » 

Aggregate 

Split File 

var 

Select Cases 

Weight Cases 

frequency of 2. Next to the (0, 0) designation on the spreadsheet, under the “Count” 

column, enter 2. For (0, 1) enter an 8, a 10 for (1, 0), and a 3 for (1, 1). 

After entering the appropriate data into SPSS, you need to tell SPSS that you 

have a special setup. SPSS usually expects setup to be in the form shown in Figure 

10.5. To inform SPSS, select Data ’ from the top action bars. This brings you to an¬ 

other menu. From this menu, choose “Weight Cases” (see Figure 10.11). 

Note that Weight Cases” is in boldface type to indicate that you are going to 

choose that option. After choosing that option, you will get a new screen where you 

can instruct SPSS how to weight the cases. This screen is shown in Figaire 10.12. 

Note in the left-most box that there are our three variables: “a,” “b,” and “count.” 

ID Figure 10.12 

Weight Cases 

a 

b 

count 

O Do not weight cases 

O Weight cases by 

Frequency Variable 

OK 

Paste 

Insert 

Cancel 

Help 
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[U Figure 10.13 

Weight Cases 

a 

b 
O Do not weight cases 

• Weight cases by 

Frequency Variable 

| —► | | count 

OK 

Paste 

Insert 

Cancel 

Help 

First, click the button labeled “Weight cases by” (see Figure 10.13). Then use your 

mouse and highlight the “count” variable in the left-most box. By clicking on the 

right arrow button in the panel, you will see the “count” variable moved from the left 

box into the right-most box. After this move is accomplished, click the “OK” button. 

This will return you to the SPSS spreadsheet. 

To perform the statistical analysis, you need now to follow the steps outlined in 

the first setup. These are depicted in Figure 10.6, Figure 10.7, and Figure 10.8. The 

output should be identical to the one obtained using the first setup shown in Figure 

10.9. The key to performing the contingency table analysis for this second setup lies 

in how the cells of the contingency were designated. If you had a 2 X 3 contingency 

table, the designation would be (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), and (1, 2). 

Chapter Summary 

1. Fundamentals on how to do analysis with cross-partition frequency data are 

introduced. 
2. Cross partitions are called crosstabs, contingency analysis, or contingency 

table analysis. 
3. Categorical variables are also called nominal variables. 

4. Crosstabs are numerical tabular presentations of data. 

5. Crosstabs can be used to determine the nature of relations between vari¬ 

ables. 
6. The simplest form of a crosstab is a 2-by-2 table or fourfold table. 

7. The generally accepted rule on the set up of crosstab tables has the columns 

for levels of the independent variable and the rows for the outcomes of the 

dependent variable. 
8. Percentages in crosstab tables are computed from the independent variable 

to the dependent variable. 
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9. The chi-square (y2) statistic is used to determine statistical significance in a 
crosstab. 

10. Statistical significance is defined as having an empirical result that differs sig¬ 

nificantly from chance expectations. 

11. The level of statistical significance is chosen arbitrarily; 0.05 and 0.01 are 

usually the accepted levels in the behavioral sciences. 

12. If an observed result is significant at the 0.05 level, it says that the result 

could occur by chance in no more than five out of every 100 trials of the 
same experiment. 

13. Cramer’s V or the phi (</>) coefficient are measures of association between 

two variables in a crosstab. The phi coefficient is used in 2 X 2 tables. The 
Cramer’s Vis for larger tables. 

14. Types of crosstab tables: 

a. one-dimensional 

b. two-dimensional 

c. three- and ^-dimensional 

15. Specification is a process of describing the conditions under which a relation 
does or does not exist. 

16. Relation is a set of ordered pairs. Crosstabs express ordered pairs in a table 
of frequencies. 

17. The analysis of multidimensional tables is also referred to as log-linear 

analysis. These tables are more complicated to analyze and require more 
complex computations. 

Study Suggestions 

1. Freedman, Wallington, and Bless (1967) present a classical study that tested 

the hypothesis that guilt leads to compliance. These researchers induced guilt 

in their experimental subjects by having them lie about a test they were to take. 

Control subjects were not made to lie. The subjects were then asked whether 

or not they would be willing the participate in an unrelated study (dependent 

variable: compliance). The authors report the following frequency table: 

Experimental (Lie) Control (Not Lie) 

Comply 20 11 

Not Comply 11 20 

Calculate y2, V, and percentages. Interpret the results. Is the hypothesis sup¬ 
ported? Is the relation weak? moderate? strong? 

(Answers: y2 = 5.23 (p < .05); V = .29. Yes, the hypothesis is supported. The 
relation is weak to moderate.) 

2. The Congressional Quarterly (1993) reported that on August 3, 1993, the U.S. 

Senate voted to authorize $1.5 billion for the National Service program. This 
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would provide people age 17 or older with $4,725 a year for up to two years 

in education awards for work in community service programs. The vote was 
as follows. 

Republican Democrat 

For 7 51 

Against 37 4 

Calculate x2, K and percentages. Interpret the results. 
(Answers: y2 = 59.45; V = .78.) 

3. Zavala, Barnett, Smedi, Istvan, and Matarazzo (1990) investigated the relation 

between cigarette, alcohol, and coffee use among U.S. Army personnel. One 

of their tables is partially reproduced below. 

Smokers Ex-smokers Nonsmoker 

Coffee 

Consumption 

0 cups 24 12 66 

1 to 2 cups 10 3 8 

3+ cups 16 3 6 

a. Examine the data carefully, then interpret the table. 

b. Calculate percentages, first by columns and then by rows. Does the 

interpretation change? If so, how? 

4. If possible, find a computer program that computes y2 (many are available 

commercially and some are available as shareware and can be downloaded 

from the Internet). Using that program, analyze the examples and the prob¬ 

lems in this section. Check your answers. 

5. Have occupations of women changed under the impact of the Equal Rights 

Movement? Here are data from a U.S. Census Report (in thousands). These 

data were obtained from the Web page of the U.S. Census Bureau: 

http://www.census.gov. 

1983 1995 

Professional, Managerial, Administrative 

Male 

13,943 

Female 

9,649 

Male 

18,365 

Female 

16,953 

Clerical, Sales, Service 11,068 20,198 13,320 24,097 

(Note: The above figures were obtained by adding the categories Professional 

+ Managerial + Administrative; Clerical + Sales + Service.) 
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a. Calculate percentages, being careful to calculate from the independent 

variables to the dependent variable, as usual. 

b. Calculate y2 and Vfor 1983 and 1995 separately. (Use the above figures; 

i.e., neglect the fact that the figures indicate thousands. This affects y2 but 

not V.) 

c. Interpret the results of your calculations. (Be circumspect. The method of 

adding the category numbers may have been biased or even incorrect.) 

d. In b, above, you calculated y2 and Vusing the tabled frequencies as they 

are. Now do the same calculations using the numbers in the thousands (i.e., 

instead of 13,943, use 13,943,000). Note the enormous increase in y2 but V 

is the same. Here is a generalization: With very large numbers virtually 

everything is statistically significant. This is one reason for measures of as¬ 

sociation that remain unaffected by the magnitude of the numbers. 

6. The following are data collected by Glick, DeMorest, and Hotze (1988) in 

their study concerning group membership, personal space, and request for a 

small favor. This study was described briefly in an earlier chapter. These re¬ 

searchers wanted to determine if the similarity of personal characteristics be¬ 

tween a requester and a requestee will influence whether or not the requestee 

will comply with a request. Also of interest was whether the distance between 

the requester and the requestee had any influence on compliance. 

Type of Confederate 

Out-Group In-Group 

Distance Distance 

Near Medium Far Near Medium Far 

Response to Request 

Complied 1 6 12 10 12 9 

Refused 14 9 3 5 3 6 

a. Calculate percentages and interpret. Consider each confederate type sepa¬ 
rately. 

b. How does distance influence compliance? strongly? moderately? Is the re¬ 

lation the same with the in-group requester as it is with the out-group re¬ 
quester? 

c. This study should be analyzed using multidimensional contingency 
tables. Explain why? 

7. If you have available a current version of SPSS for Windows, try analyzing 
the data given in Study Suggestions 1,2, and 3. 
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STATISTICS: 

Purpose, Approach, Method 

■ The Basic Approach 

■ Definition and Purpose of Statistics 

■ Binomial Statistics 

■ The Variance 

■ The Law of Large Numbers 

■ The Normal Probability Curve and the Standard Deviation 

■ Interpretation of Data Using the Normal Probability Curve— 

Frequency Data 

■ Interpretation of Data Using the Normal Probability Curve— 

Continuous Data 

e Basic Approach 

The basic principle behind the use of statistical tests of significance can be stated as: 

Compare obtained results to chance expectation. Another summation might be: Did 

you get what you would expect by chance? When a research study is done and statis¬ 

tical results have been obtained, they are checked against the results expected by 

chance. In Chapter 7 we met examples of checking empirical results of coin tossing 

and dice throwing against theoretical expectations. For example, if a die is thrown a 

large number of times, the expected proportion of occurrences of say 4, is one-sixth 

of the total number of throws. In Chapter 10 we learned that the rationale of the %2 

257 
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test was the comparison of numbers of observed frequencies of events to the num¬ 

bers of frequencies expected by chance. Indeed, the statistical ideas of Chapter 10 

were presented before those of this chapter in part to give the student preliminary 

experience with obtained and expected results. 

Two dice were thrown 72 times in a demonstration described in Chapter 7. The¬ 

oretically, 7 should turn up 1/6 X 72 = 12 times. However, Table 7.2 showed that 7 

turned up 15 times in 72 throws rather than 12 times. We ask important questions: 

Does this obtained result differ significantly from the theoretically expected result? 

Does this obtained result differ from chance expectation enough to warrant a belief 

that something other than chance is at work? Can the obtained results be explained 
solely by chance? 

Such questions are the essence of the statistical approach. Statisticians are skep¬ 

tics. They do not believe in the “reality” of empirical results until they have applied 

statistical tests to them. They assume that results are chance results until shown to be 

otherwise. They are inveterate probabilists. The core of their approach to empirical 

data is to set up chance expectation as their hypothesis and to try to fit empirical data 

to the chance model. If the empirical data “fit” the chance model, then it is said that 

they are “not statistically significant.” If they do not fit the chance model—if they 

depart “sufficiently” from the chance model — it is said that they are “statistically 
significant.” 

This and several succeeding chapters are devoted to the statistical approach to 

research problems. In this chapter we extend the discussion of Chapter 7 on proba¬ 

bility to basic conceptions of the mean, variance, and standard deviation. The so- 

called law of large numbers and the normal probability curve are also explained 

and interpreted, and some idea is given of their potent use in statistics. In the next 

chapter we tackle the idea of statistical testing itself. These two chapters are the 
foundation. 

Definition and Purpose of Statistics 

Statistics is the theory and method of analyzing quantitative data obtained from samples of 

observations in order to study and compare sources of variance of phenomena, to help make 

decisions to accept or reject hypothesized relations between the phenomena, and to aid in 
drawing reliable inferences from empirical observations. 

Four purposes of statistics are suggested in this definition. The first is the most 

common and most traditional: to reduce large quantities of data to manageable and 

understandable form. It is impossible to digest 100 scores, for instance, but if a mean ; 

and a standard deviation are calculated, a trained person can readily interpret the 

scores. The definition of statistic stems from this traditional usage and purpose of sta¬ 

tistics. A statistic is a measure calculated from a sample. A statistic contrasts from a 

parameter, which is a population value. If, in IT, a population or universe, we calcu¬ 

late the mean, this is a parameter. Now take a subset (sample) A of U. The mean of A 

is a statistic. For our purpose, parameters are of theoretical interest. They are not 
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usually known. They are estimated with statistics. Thus we deal mostly with sample 

or subset statistics. These samples are usually conceived to be representative of U. 

Statistics, then, are epitomes or summaries of the samples — and often, presumably, 

of the populations — from which they are calculated. Means, medians, variances, 

standard deviations, percentiles, percentages, and so on, calculated from samples, are 
statistics. 

A second purpose of statistics is to aid in the study of populations and samples. 

This use of statistics is so well-known that it will not be discussed here; besides, we 

studied something of populations and samples in earlier chapters. 

A third purpose of statistics is to aid in decision making. If an educational psy¬ 

chologist needs to know which of three methods of instruction promotes the most 

learning with the least cost, statistics can be used to help gain this knowledge. This 
use of statistics is comparatively recent. 

Although most decision situations are more complex, we use an example that is 

quite familiar by now. Let’s say, for this example, that you are the decisionmaker/dice 

gambler. Your first task is to lay out the outcomes for dice throws. These are, of 

course, 2 through 12. You note the differing frequencies of the numbers. For exam¬ 

ple, 2 and 12 will probably occur much less often than 7 or 6. Next, you calculate the 

probabilities for the various outcomes. Finally, on the basis of how much money you 

can expect to make, you devise a betting system. You decide, for instance, that, since 

7 has a probability of 1/6, you will require your opponent to give you odds of 5 to 1 

instead of even money on the first throw. (We here take liberties with craps.) To 

make this whole thing a bit more dramatic, suppose that two players operate with 

different decisionmakers (this example was suggested by Bross, 1953). You are player 

A and propose the following game: A will win if 2, 3, or 4 turns up; your opponent B 

will win if 5, 6, or 7 turns up (outcomes 8 through 12 are to be disregarded). It is obvi¬ 

ous that your decisionmaker is faulty. Your decisionmaker is based on the assumption 

that 2,3,4, 5, 6, and 7 are equiprobable. B should have a good time with this game. 

The fourth and last purpose of statistics — to aid in making reliable inferences 

from observational data—is closely allied to, indeed, is part of, the purpose of help¬ 

ing to make decisions among hypotheses. An inference is a proposition or generaliza¬ 

tion derived by reasoning from other propositions, or from evidence. Generally 

speaking, an inference is a conclusion arrived at through reasoning. In statistics, 

a number of inferences may be drawn from tests of statistical hypotheses. We “con¬ 

clude” that methods A and B really differ. We conclude from evidence, say, r = .67, 

that two variables are really related. 

Statistical inferences have two characteristics. (1) The inferences are usually 

made from samples to populations. When we say that the variables A and B are re¬ 

lated because the statistical evidence is r = .67, we are inferring that because r — .67 

in this sample it is r = .67, or near .67, in the population from which the sample was 

drawn. (2) Inferences are used when investigators are not interested in the popula¬ 

tions, or only interested secondarily in them. An educational investigator is studying 

the presumed effect of the relations between board of education members and chief 

educational administrators, on the one hand, and teacher morale, on the other. The 

hypothesis is that, when relations between boards and chief administrators are 
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strained, teacher morale is lower than otherwise. The interest is only in testing this 

hypothesis in Y county. The investigator makes the study and obtains statistical re¬ 

sults that support the hypothesis; for example, morale is lower in system A than in 

systems B and C. The researcher infers, from the statistical evidence of a difference 

between system A, on the one hand, and systems B and C on the other hand, that the 

initial hypothetical proposition is correct—in Y county. And it is possible for the in¬ 

vestigator’s interest to be limited strictly to Y county. 

To summarize much of the above discussion, the purposes of statistics can be 

reduced to one major purpose: to aid in inference making. This is one of the basic 

purposes of research design, methodology, and statistics. Scientists want to draw 

inferences from data. The science of statistics, through its power to reduce data to 

manageable forms (statistics), and to study and analyze variances, enables scientists to 

attach probability estimates to the inferences they draw from data. Statistics says, in 

effect, “The inference you have drawn is correct at such-and-such a level of signifi¬ 

cance. You may act as though your hypothesis were true, remembering that there is 

such-and-such a probability that it is untrue.” It should be reasonably clear why some 

contemporary statisticians call statistics the discipline of decision making under un¬ 

certainty. It should also be reasonably clear that, whether you know it or not, you are 

always drawing inferences, attaching probabilities to various outcomes or hypotheses, 

and making decisions on the basis of statistical reasoning. Statistics, using probability 

theory and mathematics, makes the process more systematic and objective. 

Binomial Statistics 

When things are counted, the number system used is simple and useful. Whenever 

objects are counted, they are counted on the basis of some criterion, some variable or 

attribute, in research language. Many examples have already been given: heads, tails, 

numbers on dice, sex, aggressive acts, political preference, and so on. If a person or a 

thing possesses the attribute, we say that person or thing is “counted in.” When 

something is “counted in” because it possesses the attribute in question, it is assigned 

a 1. If it does not possess the attribute, it is assigned a 0. This is a binomial system. 

Earlier, the mean was defined as M=%X/n. The variance is V = £ x2/n, where 

x — X — M (each x is a deviation of the rawscore X from the mean). The standard 

deviation is SD = Vfr. Of course, these formulas work with any scores; here we use 

them only with Is and Os. And it is useful to alter the formula for the mean. The for¬ 

mula XX/n is not general enough. It assumes that all scores are equiprobable. A more 

general formula, which can be used when equiprobability is not assumed, is 

M='2[X-w(Xj\ (11.1) 

where w(X) is the weight assigned to an X; w(X) simply means the probability each 

X has of occurring. The formula says: Multiply each X, each score, by its weight 

(probability), and then add them all up. Notice that if all Xs are equally probable, this 
formula is the same as XXIn. 
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The mean of the set {1 ,2,3,4, 5,} is 

M = 
1 + 2 + 3 + 4 + 5 15 

= 3 
5 5 

By Equation 11.1 it is, of course, the same, but its computation looks different: 

m=1T + 2T+3T + 4T + 5T = 3 

Why the hair-splitting? We shall see with our next example. Let a coin be tossed. 
U = {H, T}. The mean number of heads is, by Equation 11.1, 

M — 1 •— 4- 0- — 
2 2 2 

Let two coins be tossed. U — {77/7, HT, TH, 7T}. The mean number of heads, or the 
expectation of heads, is 

M = 2~ + 1-— + 1 
4 4 

l n 1 4 
T + 1 

This says that if two coins are tossed many times, the average number of heads per 

toss of the two coins is 1. If we sample one person from 30 men and 70 women, the 

mean of men is: M — 3/10-1 4- 7/10 • 0 = .3 . The mean for women is: M — 3/10 • 

0 + 7/10-1 = .7. These are the means for one outcome. (This is a little like saying 
“an average of 2.5 children per family.”) 

What has been said in these examples is that the mean of any single experiment 

(a single coin toss, a sample of one person) is the probability of the occurrence of one 

of two possible outcomes (heads, a man). If the outcome occurs, it is assigned a 1 

and, if it does not occur, 0. This is tantamount to saying: p( 1) = p and p(0) = 1 — p. 

In the one-toss experiment, let 1 be assigned if heads turns up and 0 if tails turns up. 

Thenp(l) = 1/2 andp(0) = 1 — 1/2 = 1/2. In tossing a coin twice, let 1 be assigned 

to each head that occurs and 0 to each tail. We are interested in the outcome 

“heads.” U={HH, HT, TH, 77). The mean is 

M= 4--2 +4--1 + 4-1 + 4--0 = 1 
4 4 4 4 

Can we arrive at the same result in an easier manner? Yes. Just add the means for 

each outcome. The mean of the outcome of one coin toss is 1/2. For two coin tosses 

it is 1/2 4- 1/2 = 1. To assign probabilities with one coin toss, we weight 1 (heads) 

with its probability and 0 (tails) with its probability. This gives M — p ■ 1 + (1 — p) ■ 
0 = p. Take the men-women sampling problem. Letp equal the probability of a man 
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being sampled on a single outcome and 1 — p = q equal the probability of a woman 

being sampled on a single outcome. Thenp = 3/10 and q = 7/10. We are interested 

in the mean of a man being sampled. Since M = p • 1 + q ■ 0 = p, M = 3/10 • 1 + 

7/10 • 0 = 3/10 = p, the mean is 3/10 and the probability is 3/10. Evidently, M = p, 

or the mean is equal to the probability. 
How about a series of outcomes? We write S for the sum of n outcomes. One ex¬ 

ample, the tossing of two coins, was given above. Let us take the men-women sam¬ 

pling problem. The mean of a man’s occurring is 3/10 and of a woman’s occurring 

7/10. We sample 10 persons. What is the mean number of men? Put differently, 

what is the expectation of men? If we sum the 10 means of the individual outcomes, 

we get the answer: 

M(S10) — + Mj + • • • + Mi 0 (11.2) 

= 3/10 + 3/10 + • • • + 3/10 = 30/10 = 3 

In a sample of 10, we expect to get the answer: 3 men. The same result could have 

been obtained by 3/10 • 10 = 3, but 3/10 • 10 ispn, or 

M(S„) = pn (11.3) 

In n trials the mean number of occurrences of the outcome associated with p is pn. 

The Variance 

Recall that in Chapter 6 the variance was defined as V = 2x2ln. Of course it will be 

the same in this chapter, with a change in symbols (for the same reason given with 

the formula for the mean): 

V = Z[w(X)(X - M)2] (11.4) 

To make clear what a variance — and a standard deviation—is in probability theory, 

we work two examples. Recall that in a binomial only two outcomes are possible: 

1 and 0. Therefore X is equal to 1 or 0. We set up a table to help us calculate the 

variance of the heads outcome of a coin toss: 

Outcome X w(X) = p (X-M)2 (11/2)2 

H 1 1/2 

T 0 1/2 

(1 - 1/2)2 = 1/4 

(0 - 1/2)2 = 1/4 
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The variance is, then, 

V = 1/2(1 - 1/2)2 + 1/2(0 - 1/2)2 = 1/2 • 1/4 + 1/2 • 1/4 = 1/4 

The mean is 1/2 and the variance is 1/4. The standard deviation is the square root of 

the variance, or 

VI/4 = 1/2 

The variance of an individual outcome, however, does not have much meaning. We 

really want the variance of the sum of a number of outcomes. If the outcomes are 

independent, the variance of the sum of the outcomes is the sum of the variances of 

the outcomes: 

V(S„) = vl + v2 + ■■■ + Vn (11.5) 

For 10 coin tosses, the variance of heads is V(H]0) = 10 • 1/4 = 10/4 = 2.5. Earlier 

we showed that M(Sn) = np. We now want a formula for the variance. That is, in¬ 

stead of Equation 11.5 we want a direct, simple formula. With a little algebraic ma¬ 

nipulation we can arrive at such a formula: 

V = p(l~p)=pq (H.6) 

This is the variance of one outcome. The variance of the number of times that 

an outcome occurs is, analogously to equations 11.2, 11.3, and 11.5, the sum of the 

individual outcome variances, or 

V(S„) = npq (11.7) 

The standard deviation is 

SD(S„) = ^pq (11.8) 

Equations 11.3, 11.7, and 11.8 are important and useful. They can be applied in 

many statistical situations. Take two or three applications of the formula. First con¬ 

sider an example where out of 100 people sampled (n = 100), 60 agree with a polit¬ 

ical issue and 40 disagree. On the assumption of equiprobability, p = 1/2 and q = 

1/2, M (SlQ0) = np = 100 • 1/2 = 50, F(S100) = npq = 100 • 1/2 • 1/2 = 25, and 

SD(Sloo) = a/25 = 5. It was found that there were 60 Agrees. So, this is a deviation of 

two standard deviations from the mean of 50, 60 — 50 = 10, and 10/5 = 2. Second, 

take the coin-tossing experiment of the chapter on probability. In one experiment, 52 

heads turned up in 100 tosses. The calculations are the same as those just given. 

Since there were 52 heads, the deviation from the mean, or expected frequency, is 

52 — 50 = 2. In standard deviation terms or units, this is 2/5 = .4 standard deviation 

units from the mean. We now get back to one of the original questions asked: Are 
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these differences “statistically significant”? We found, via y}, that the result of 60 

Agrees was statistically significant and that the result of 52 heads was not statistically 

significant. Can we do the same thing with the present formula? Yes, we can. Fur¬ 

ther, the beauty of the present method is that it is applicable to all kinds of numbers, 

not just to binomial numbers. Before demonstrating this, however, we must study, if 

only briefly, the so-called law of large numbers and the properties of the standard de¬ 

viation and the normal probability curve. 

The Law of Large Numbers 

The law of large numbers took Jacob Bernoulli (aka Jacques or James) twenty years 

to work out. In essence it is so simple that one wonders why he took so long to de¬ 

velop it. Bernoulli, who developed this law in 1713, called it the “golden theorem.” It 

was renamed “The Law of Large Numbers” by Poisson in 1837. Newman (1988) 

gives an interesting and detailed account of the developments and controversies sur¬ 

rounding this theorem. Roughly, the law says that with an increase in the size of sam¬ 

ple, n, there is a decrease in the probability that the observed value of an event, A, 

will deviate from the “true” value of A by no more than a fixed amount, k. Provided 

the members of the samples are drawn independently, the larger the sample the 

closer the “true” proportion value of the population is approached. Let’s say a fair 

coin is tossed 100 times and the number of heads is recorded. Now let’s say we toss 

the same coin 1,000 times and the number of heads is recorded. By the law of large 

numbers, there is a greater probability that the 1,000 tosses will have an outcome of 

550 heads (a difference of 10 heads from the expectation of 500 heads), than the 

event of 100 coin tosses having an outcome of 60 heads (also a difference of 10 heads 

from an expectation of 50 heads). What this essentially says is that the errors are 

smaller with the 1,000 trial experiment than with the 100 trial experiment. The law is 

also a gateway to the testing of statistical hypotheses, as we shall see. It plays a partic¬ 

ularly important role in Tchebysheff’s Theorem. This theorem states that if we are 

given a number k that is greater than or equal to 1 and a set of n measurements, we 

are guaranteed (regardless of the shape of the distribution) that at least (1 - \/k2) of 

the measurements will lie within k standard deviation units on either side of the mean. 

Toss a coin 1, 10, 50, 100, 400, and 1,000 times. Let heads be the outcome in 

which we are interested. We calculate means, variances, standard deviations, and two 

new measures. The first of these new measures is the proportion of favorable out¬ 

comes, heads in this case, in the total sample. We call this measure H„ and define it as 

Sn In. (Recall that Sn is the total number of times the favorable outcome occurs 

in n trials.) Then the fraction of time that the favorable outcome occurs is H„. The 

mean of Hn is p, or M(HW) = p. [This follows from Equation 11.3, where M(Sn) = pn, 

and since H„ — Sn In, — M(Sn)ln = np/n — p.] In short, M(Hn) equals the 

expected probability. The second measure is the variance of Hn. It is defined: 

V(Hn) = pq/n. The variance, V(Hn), is a measure of the variability of the mean, 
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fa] Table 11.1 Means, Variances, Standard Deviations, and Expected Probabilities 

of the Outcome Heads with Different Sample Sizes* 

n M(Sn) = np V(Sn) = npq SD(Sn) M(Hn) = p V(HJ = pq/n 

1 1/2 .25 .50 1/2 1/4 

10 5 2.50 1.58 1/2 1/40 

50 25 12.50 3.54 1/2 1/200 

100 50 25.00 5.00 1/2 1/400 

400 200 100.00 10.00 1/2 1/1600 

1000 500 250.00 15.81 1/2 1/4000 

aSee text for explanation of symbols in this table. 

M(Hn). Later more will be said about the square root of V(H„), called the standard 

error of the mean. The results of the calculation are given in Table 11.1. 

Note that, although the means, variances, and standard deviations of the sums 

increase with the sizes of the samples, the M(H,)s or ps remain the same. That is, the 

average number of heads, or M(Hn), is always 1/2. But the variance of the average 

number of heads, V(Hn), gets smaller and smaller as the sizes of the samples increase. 

Again, V(Hn) is a measure of the variability of the averages. As Table 11.1 clearly in¬ 

dicates, the average number of outcomes should come closer and closer to the “true” 

value, in this case 1/2. (The student should ponder this example carefully before 

going further.) 

The Normal Probability Curve 

and the Standard Deviation 

The normal probability curve is the lovely bell-shaped curve encountered so often in 

statistics and psychology textbooks. Its importance stems from the fact that chance 

events in large numbers tend to distribute themselves in the form of the curve. The 

so-called theory of errors uses the curve. Many phenomena — physical and psycho¬ 

logical— are considered to distribute themselves in approximately normal form. 

Height, intelligence, aptitude and achievement are three familiar examples. The 

means of samples distribute themselves normally. The reader should avoid the 

untested belief that all or even most phenomena are distributed normally. Whenever 

possible, data should be checked by appropriate methods, especially by plotting or 

graphing. Data are often subtle. Take aptitude, for example. In the whole population, 

aptitude may be normally distributed. But suppose we are studying whether the 

Graduate Record Examination (GRE) scores are predictive of success in graduate 
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school. Reported correlations between success and GRE scores do not have a very 

high value (Morrison & Morrison, 1995). GRE scores are considered to be distrib¬ 

uted normally. However, they are not for those who have been admitted to a top 

graduate school where scores on this test are taken seriously. Since only those with 

top scores are admitted, those with low scores are not. As a result, those with low 

scores generally do not get their level of success measured. Subsequently, they are 

not considered in the computation of the relation between GRE scores and success. 

A truncated distribution (no longer normal) leads to a low correlation value (Kirk, 

1990; House, 1983). It is hard to conceive of modern statistics without this curve. 

Every statistics text has a table called the “table of the normal deviate,” or “table of 
the normal curve.” 

The most important statistical reason for using the normal curve is to be able 

to interpret the probabilities of the statistics one calculates easily. If the data are, as 

is said, “normal” or approximately normal, one has a clear interpretation for what 
one does. 

There are two types of graphs ordinarily used in behavioral research. In one of 

these, as we have seen, the values of a dependent variable are plotted against the 

values of an independent variable. The second major type of graph has a different 

purpose: to show the distribution of a single variable. On the horizontal axis, values 

are laid out similarly to the first type of graph. But on the vertical axis, frequencies or 
frequency intervals or probabilities are laid out. 

We draw a normal curve and lay out two sets of values on the horizontal axis. 

In one set of values, we use intelligence test scores with a mean of 100 and a stan¬ 

dard deviation of 16. Say we have a sample of 400 and the data (the scores) are in 

approximately normal form. (It is said that the data are “distributed normally.”) The 

curve looks like that of Figure 11.1. Imagine a Y (vertical) axis with frequencies (or 

U Figure 11.1 

50 

(z) -3 -2 -1 0 +1 +2 +3 



CHAPTER 11 ■ Statistics: Purpose, Approach, Method 267 

proportions) marked off on the axis. The major characteristics of normal curves are 

unimodality (one curve), symmetry (one side the same as the other), and certain 

mathematical properties. It is the mathematical properties that interest us because 

they allow us to draw statistical inferences of considerable power. 

A standard deviation can be conceived as a length along the base line of the 

curve from the mean or middle of the baseline out to the right or left to the point 

where the curve inflects. It can also be visualized as a point on the baseline a certain 

distance from the mean. One standard deviation from the mean of this particular dis¬ 

tribution is 100 + 16 = 116. A heavy line in Figure 11.1 indicates the distance from 

100 to 116. Similarly, one standard deviation below the mean is 100 — 16 = 84. Two 

standard deviations are represented by 100 + (2)(16) = 132 and 100 — (2)(16) = 68. 

If one can be reasonably confident that one’s data are distributed normally, then one 

can draw a curve like the one above, mark the mean, and lay out the standard devia¬ 

tions. This has also been done in Figure 11.1. The baseline has also been labeled in 

standard deviation units (labeled Z in the figure). That is, instead of scores of 100, 

116, and 68, for instance, standard deviation scores can be used. They are 0, +1, —2, 

and so on; points between these marked points can be indicated. For example, one- 

half of a standard deviation above the mean, in raw scores, is 100 + (1/2)(16) = 108. 

In standard deviation scores, it is 0 + .5 = .5. These standard deviation scores are 

called standard scores or Z scores. Z scores range, in practical usage, from about — 3 

through 0 to about +3. To transform any raw score to a Z score, use the formula Z = 

x/SD, where x = X — M and SD is the sample standard deviation. The xs are called 

deviation scores. Now we can divide the standard deviation into any x to convert the 

X (raw score) to a Z score. As an example, take X = 120. Then Z = (120 — 100)/16 

= 20/16 = 1.25. That is, a raw score of 120 is equivalent to a Z score of 1.25. Or, it is 

one and one-quarter standard deviations above the mean. 

If Z scores are used, and the total area under the curve is set equal to 1.00, the 

curve is said to be in standard form. This immediately suggests probability. Portions 

of the area of the curve are conceived as probabilities and interpreted as such. If the 

total area under the whole curve is equal to 1.00, then if a vertical line is drawn 

upward from the base line at the mean (Z = 0) to the top of the bell, the areas to the 

left and to the right of the vertical line are each equal to 1/2 or 50%. But vertical 

lines might be drawn elsewhere on the baseline, at one standard deviation above the 

mean (Z = 1) or two standard deviations below the mean (Z = -2). To interpret 

such points in area terms — and in probability terms—we must know the area prop¬ 

erties of the curve. 
The approximate percentages of the areas one, two, and three standard devia¬ 

tions above and below the mean have been indicated in Figure 11.1. For our pur¬ 

poses, it is not necessary to use the exact percentages. The area between Z = — 1 and 

Z = + 1 is approximately 68%. The area between Z = - 2 and Z = +2 is approxi¬ 

mately 96%. (The exact figure is .9544. We use .96 because it makes interpretation 

easier.) The area between Z = -3 and Z = +3 is 99+%. Similarly, all other possible 

baseline distances and their associated areas can be translated into percentages of the 

whole curve. An important point to remember is that, since the area of the whole 

curve is equal to 1.00, or 100%, and thus is equivalent to U in probability theory, the 
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percentages of area can be interpreted as probabilities. In fact, the normal probability 

table entries are given as percentages of areas corresponding to Z scores. 

These percentages pertain only to a normal distribution. If the shape of the dis¬ 

tribution is non-normal these percentages do not apply. In order to find the percent¬ 

ages for a non-normal distribution, one can apply Tchebysheff’s Theorem mentioned 

earlier. With this theorem, one is guaranteed 75% between Z = — 2 and Z = + 2 

and 89.9% between Z = — 3 and Z = +3. 

Interpretation of Data Using the Normal Probability 

Curve — Frequency Data 

We now inquire about the probabilities of events. To do this, we must first go back to 

tossing coins. Strictly speaking, the frequencies of heads and tails are discontinuous 

events, whereas the normal probability curve is continuous. But this need not worry 

us, since the approximations are close. It is possible to specify with great accuracy 

and considerable ease the probabilities that chance events will occur. Instead of cal¬ 

culating exact probabilities, as we did before, we can estimate probabilities from 

knowledge of the properties of the normal curve. This normal curve approximation 

of the binomial distribution is most useful and accurate when N is large and the value 

of p (the probability of one of the two events) is close to .5. Comrey and Lee (1995, 

pp. 186-187) show how much the approximation changes for different values of 
p and N. 

Suppose we again, somewhat wearily perhaps, toss 100 coins. We found that the 

mean number of times heads will probably turn up is M(Sm) = np = 100 • 1/2 = 50, 
and the standard deviation was 

SD(Sl00) = <V(Sm) = <npq = V100 • 1/2 • 1/2 = V25 = 5 

Using the percentages of the curve (probabilities), we can make probability state¬ 

ments. We can say, for example, that in 100 tosses the probability that heads will turn 

up between one standard deviation below the mean (Z = -1) and one standard devi¬ 

ation above the mean (Z = +1) is approximately .68. Roughly, then, there are about 

two out of three chances that the number of heads will be between 45 and 55 (50 ± 

5). There is one chance in three, approximately, that the number of heads will be less 
than 45 or greater than 55. That is, = 1 — p = 1 - .68 = .32. 

Take two standard deviations above and below the mean. These points would be 

50 - (2)(5) = 40 and 50 + (2)(5) = 60. Since we know that about 95-96% of the 

cases will probably fall into this band, that is, between Z = -2 and Z = +2, or be¬ 

tween 40 and 60, we can say that the probability that the number of heads will not be 

less than 40 or greatei than 60 is about .95 or .96. In other words, there are only 

about four or five chances in 100 that less than 40, or more than 60, heads will occur. 
It can happen, but it is unlikely. 
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If we want or need to be practically certain (as in certain kinds of medical or en¬ 

gineering research), we can go out to three standard deviations, Z = — 3 and Z = +3, 

or perhaps somewhat less than three standard deviations. (The .01 level is about 2.58 

standard deviations.) Three standard deviations say the numbers of heads is between 

35 and 65. Since three standard deviations above and below the mean in Figure 11.1 

take up more than 99% of the area of the curve, we can say that we are practically 

certain that the number of heads in 100 tosses of a fair coin will not be less than 35 

or more than 65. The probability is greater than .99. If you tossed a coin 100 times 

and got, say, 68 heads, you might conclude that there was probably something wrong 

with the coin. Of course, 68 heads can occur, but it is extremely unlikely that they 

will with a fair coin. 

The earlier Agree-Disagree problem is treated exactly the same as the coin 

problem above. The result of 60 Agrees and 40 Disagrees is unlikely to happen. 

There are only about four chances in 100 that 60 Agrees and 40 Disagrees will hap¬ 

pen by chance. We knew this before from the y2 test and from the exact probability 

test. We now have a third way that is generally applicable to all kinds of data — 

provided the data are distributed normally or approximately so. 

Interpretation of Data Using the Normal Probability 

Curve — Continuous Data 

Suppose we have the mathematics test scores of a sample of 100 fifth-grade children. 

The mean of the scores is 70; the standard deviation is 10. From previous knowledge 

we know that the distribution of test scores on this test is approximately normal. Ob¬ 

viously we can interpret the data using the normal curve. Our interest is in the relia¬ 

bility of the mean. How much can we depend on this mean? With future samples of 

similar fifth-grade children, will we get the same mean? If the mean is undependable, 

that is, if it fluctuates widely from sample to sample, obviously any interpretation of 

the test scores of individual children is in jeopardy. A score of 75 might be average 

this time, but if the mean is unreliable this 75 might be, on a future testing, a supe¬ 

rior score. In other words, we must have a dependable or reliable mean. 

Imagine giving this same test to the same group of children again and again and 

again. Go further. Imagine giving the test under exactly the same conditions 100,000 

times. Assume that all other things are equal: the children learn nothing new in all 

these repetitions; they do not get fatigued; environmental conditions remain the 

same; and so on. 
If we calculate a mean and a standard deviation for each of the many times, we 

obtain a gigantic distribution of means (and standard deviations). What will this dis¬ 

tribution be like? First, it will form a beautiful bell-shaped normal curve. Means have 

the property of falling nicely into the normal distribution, even when the original 

distributions from which they are calculated are not normal. This is because we as¬ 

sumed “other things equal” and thus have no source of mean fluctuations other than 

chance. The means will fluctuate, but the fluctuations will all be chance fluctuations. 

Most of these fluctuations will cluster around what we will call the “true” mean, the 
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“true” value of the gigantic population of means. A few will be extreme values. If we 
repeated the 100 coin-tosses experiment many times, we would find that heads would 
cluster around what we know is the “true” value: 50. Some would be slightly higher, 
some slightly lower, a few considerably higher, a few considerably lower. In brief, the 
heads and the means will obey the same “law.” Since we assumed that nothing else is 
operating, we must come to the conclusion that these fluctuations are due to chance. 
And chance errors, given enough of them, distribute themselves into a normal distri¬ 
bution. This is the theory called the theory of errors. 

Continuing our story of the mean, if we had the data from the many administra¬ 
tions of the mathematics test to the same group, we could calculate a mean and a 
standard deviation. The mean so calculated would be close to the “true” mean. If we 
had an infinite number of means from an infinite number of test administrations 
and calculated the mean of the means, we would then obtain the “true” mean. 
This would be similar for the standard deviation of the means. Naturally, we cannot 
do this because we do not have an infinite or even a very large number of test 
administrations. 

There is fortunately a simple way to solve the problem. It consists in accepting 
the mean calculated from the sample as the “true” mean and then estimating how ac¬ 
curate this acceptance (or assumption) is. To do this, a statistic known as the standard 
error of the mean is calculated. It is defined: 

^ = > (11.9) 

where the standard error of the mean is SEM, the standard deviation of the popula¬ 
tion (a is read “sigma”), crpop; and the number of cases in the sample, n. 

There is a little snag here. We do not know or can know, the standard deviation 
of the population. Recall that we also did not know the mean of the population, but 
that we estimated it with the mean of the sample. Similarly, we estimate the standard 
deviation of the population with the standard deviation of the sample. Thus the 
formula to use is 

SEm = 
SD 

Vra 
(11.10) 

The mathematics test mean can now be studied for its reliability. We calculate: 

sem = 
10 10 

VToo io 
= l 

Again, imagine a large population of means of this test. If they are put into a distribu¬ 
tion and the curve of the distribution plotted, the curve would look something like the 
curve shown in Figure 11.2. Keep firmly in mind: this is an imaginary distribution 
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M Figure 11.2 

of means of samples; it is not a distribution of scores. It is easy to see that the means of 

this distribution are not very variable. If we double the standard error of the mean we 

get 2. Subtract and add this to the mean of 70: 68 to 72. The probability is approxi¬ 

mately .95 that the population (“true”) mean lies within the interval 68 to 72; that is, 

approximately 5 % of the time the means of random samples of this size will he out¬ 

side this interval. 
If we do the same calculation for the intelligence test data of Figure 11.1, we 

obtain 

sem — 
16 

V400 

16 

20 
= .80 

Three standard errors above and below the mean of 100 give the range 97.60 to 

102.40, or we can say that the “true” mean very probably (less than 1% chance of be¬ 

ing wrong) lies within the interval 98 to 102. Means are reliable—with fair-size sam¬ 

ples. Even with relatively small samples, the mean is quite stable (see the intelligence 

test data in Chapter 8). Five samples of 20 intelligence scores each were drawn from 

a population of such scores with a mean of 95. The means of the five samples were 

calculated. Standard errors of the mean were calculated for the first two samples, and 

interpretations made. Then comparisons were made to the “true” value of 95. The 

mean of the first sample was 93.55 with a standard deviation of 12.22. SEM = 2.73. 

The .05 level range of means was: 88.09 to 99.01. Obviously 95 falls within this 

range. The mean of the second sample was more deviant: 90.20. The standard devia¬ 

tion was 9.44. SEm = 2.11. The .05 level range was 85.98 to 94.42. Our 95 does not 

fall in this range. The .01 level range is: 83.87 to 96.53. Now 95 is encompassed. 

This is not bad at all for samples of only 20. For samples of 50 or 100 it would be 

even better. The mean of the five means was 93.31; the standard deviation of these 
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means was 2.73. Compare this to the standard errors calculated from the two sam¬ 

ples: 2.73 and 2.11. A more convincing demonstration of the stability of means will 
be given in Chapter 12. 

The standard error of the mean, then, is a standard deviation. It is a standard de¬ 

viation of an infinite number of means. Only chance error makes the means fluctuate. 

Thus, the standard error of the mean—or the standard deviation of the means, 

if you like—is a measure of chance or error in its effect on one measure of central 
tendency. 

A caution is in order. All the theory discussed here is based on the assumptions 

of random sampling and independence of observations. If these assumptions are 

violated, the reasoning, while not entirely invalidated, practically speaking, is open to 

question. Estimates of error may be biased to a greater or lesser extent. The trouble 

is we cannot tell how much a standard error is biased. A number of years ago Guil¬ 

ford and Fruchter (1977) gave interesting examples of the biases encountered when 

the assumptions are violated. With large numbers of Air Force pilots, they found that 

estimates of standard errors were sometimes considerably off. No one can give hard- 

and-fast rules. The best maxim probably is: If at all possible, use random sampling 

and keep observations independent. Simon (1987) would take issue with this rule. 

If random sampling cannot be used, and there is doubt about the independence 

of observations, calculate the statistics and interpret them. But be circumspect about 

interpretations and conclusions. They may be in error. Because of such possibilities 

of error, it has been said that statistics are misleading, and even useless. Fike any 

other method — consulting authority, using intuition, and the like — statistics can be 

misleading. But even when statistical measures are biased, they are usually less biased 

than authoritative and intuitive judgments. It is not that numbers lie; the numbers do 

not know what they are doing. It is the human beings using the numbers who may be 

informed or misinformed, biased or unbiased, knowledgeable or ignorant, intelligent 

or stupid. Treat numbers and statistics neither with too great respect nor too great 

contempt. Calculate statistics and act as though they were atrue,” but always main¬ 

tain a certain reserve toward them, a willingness to disbelieve them if the evidence 
indicates such disbelief. 

Chapter Summary 

1. The basic principle behind the use of statistical tests of significance is to 

compare obtained (observed, empirical) results to chance expectations. 
2. Four purposes of statistics are to 

a. reduce data to manageable and understandable form; 

b. aid in the study of populations and samples; 
c. aid in decision making; and 

d. aid in making reliable inferences from samples to populations. 

3. Binomial data consists of two admissible outcomes. 

Under certain conditions, the normal curve can be used to approximate the 
binomial distribution. 
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5. The law of large numbers states that the larger the sample, the closer the 

sample value approaches the true (population) value. 

6. Chance events tend to distribute themselves in the form of a normal curve. 

7. Using the normal curve simplifies the interpretation of data analysis. 

8. The normal curve has certain mathematical properties that make it attrac¬ 

tive to use in statistical analysis and interpretation. 

9. Standard scores, Z, are linear transformations (reexpressions) of raw scores. 

10. Use of Z-scores enhances interpretability of data because they are expressed 

as “standard deviation units.” 

11. Z -scores from different distributions can be meaningfully compared to one 

another. 

12. Converting normally distributed raw scores to Z-scores allows one to 

use the table for the normal curve to determine percentages, areas, and 

probabilities. 

Study Suggestions 

1. Statistics are used to summarize large sets of data. Give an example where sta¬ 

tistics could be misleading when used to evaluate a single person, company, or 

group. 
2. Explain how laypersons and statisticians differ in their concept of the word 

error. 

3. What is the one major purpose of statistics? 
4. When using the normal probability curve, approximately 0.68 of the area un¬ 

der the curve lies between 1 standard deviation of the mean. For ± 2 stan¬ 

dard deviations it is 0.96. What would be the approximate percentages if the 

curve was not normal? 
5. A friend tosses a coin 1,000 times and comes up with 505 heads and 495 tails. 

She claims the results support her notion that the coin is fair. However, we 

know that a fair coin should generate 500 heads. Let’s say she is correct. How 

would one explain the difference of 5 heads (or tails)? 

6. Distinguish between a parameter and a statistic. 
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Chapter l 2 

Testing Hypotheses and 
the Standard Error 

■ Examples: Differences Between Means 

■ Absolute and Relative Differences 

■ Correlation Coefficients 

■ Hypothesis Testing: Substantive and Null Hypotheses 

■ The General Nature of a Standard Error 

■ A Monte Carlo Demonstration 

The Procedure 

Generalizations 

The Central Limit Theorem 

The Standard Error of the Differences Between Means 

■ Statistical Inference 

Testing Hypotheses and the Two Types of Errors 

■ The Five Steps of Hypothesis Testing 

Sample Size Determination 

The standard error,1 as an estimate of chance fluctuation, is the measure against 

which the outcomes of experiments are checked. Is there a difference between the 

means of two experimental groups? If so, is the difference a “real” difference or 

merely a consequence of the many relatively small differences that could have arisen 

'The term “error” here refers to the fluctuations found between different samples of the same size 
taken from the same population. It should not be construed as “mistakes.” 
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by chance? To answer this question, the standard error of the differences between 

means is calculated and the obtained difference is compared to this standard error. 

If it is sufficiently greater than the standard error, it is said to be a “significant” 

difference. Similar reasoning can be applied to any statistic. There are thus many 

standard errors: of correlation coefficients, of differences between means, of means, 

of medians, of proportions, and so on. The purpose of this chapter is (1) to examine 

the general notion of the standard error, (2) to see how hypotheses are tested using 

the standard error, and (3) to see the important role they play in the estimation of 
sample size. 

Examples: Differences Between Means 

A particularly difficult problem in contemporary psychology centers on the question 

of whether behavior is controlled more by situational or environmental factors, or by 

dispositions of individuals. McGee and Snyder (1975), using a presumed difference 

between those individuals who salt their food before they taste it and those who taste 

their food before they salt it, hypothesized that those individuals who construe their 

behavior dispositionally salt their food before tasting it, whereas those individuals 

who construe their behavior situationally taste their food before salting it. They fur¬ 

ther reasoned that the former individuals would ascribe more traits to themselves 

than the latter individuals. They found that the former group, the “salters,” ascribed 

a mean of 14.87 traits to themselves, whereas the latter group, the “tasters,” ascribed 

a mean of 6.90 traits to themselves. The direction of the difference was as the au¬ 

thors predicted. Is the size of the difference between the means, 7.97, sufficient to 

warrant the authors’ claim that their hypothesis was supported? A test of the statisti¬ 

cal significance of this difference showed that it was highly significant. (This state¬ 
ment is a generalization of the original.) 

A growing psychological problem where nearly 75% of the sufferers do not seek 

help is panic disorder. With increasing regulations imposed by health management 

organizations (HMOs) it is possible that even fewer individuals afflicted will seek 

treatment. The study by Gould and Clum (1995) provides data that seems extremely 

promising to partially alleviate this problem. Gould and Clum studied the benefit of 

a self-help program in treating panic disorder sufferers. In an extensive effort to re¬ 

cruit subjects for their study, they were able to form two groups of participants. Both 

groups consisted of panic disorder sufferers. One group received instructions and 

some counseling on self-help. Self-help involved reading the book Coping with Panic. 

The other group, labeled wait-list, received no treatment (they were told that they 

were on a waiting list for therapy). Each participant was measured over a 14-week 

period of time covering three major sections: pre-treatment, post-treatment, and fol¬ 

low-up. One of the measures was the number of panic attacks per week. Prior to 

treatment, the self-help group had a mean of 2.6 attacks per week, whereas die wait¬ 

list group reported a mean of 1.8 attacks. After treatment, the self-help group 

reported a mean of 0.9 (a mean change of —1.7) and the wait-list group reported a 
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mean of 2.1 (mean change of +0.3). In the follow-up period, the self-help group re¬ 

ported a mean number of 0.5 attacks, whereas the wait-list group reported 2.5. The 

hypotheses of these researchers were supported. A test of the statistical significance 

of this difference showed that it was highly significant. 

The point of these two examples in the present context is that the difference 

between means was tested for statistical significance with a standard error. The stan¬ 

dard error in this case was the standard error of the difference between means. The 

difference in each study was found to be significant. The McGee and Snyder (1975) 

study tells us that those individuals who perceive behavior as influenced by individual 

traits tend to salt their food before tasting it, whereas those individuals whose per¬ 

ception is more environmentally oriented taste their food before salting it. In the 

Gould and Clum (1995) study, the self-help program is a more promising mode 

of treatment for panic disorder. While the wait-list experienced a nonsignificant 

change in terms of mean number of panic attacks, the self-help group showed great 

improvements. Gould and Clum (1995) used other dependent measures, such 

as Panic Symptoms and Coping with Panic Anxiety, and found a similar pattern of 

significance. Let us now look at an example in which the difference between means 

was not significant. 
Gates and Taylor (1925) in a well-known early study of transfer of training, set 

up two matched groups of 16 pupils each. The experimental group was given prac¬ 

tice in digit memory; the control was not. The mean gain of the experimental group 

right after the practice period was 2.00, the mean gain of the control group, was 

0.67, a mean difference of 1.33. Four to five months later, the children of both 

groups were tested again. The mean score gain of the experimental group was 0.35; 

the mean score gain of the control group was 0.36. This finding was surprising be¬ 

cause one would expect the experimental group to do better than the control group 

as it did earlier in the study. In this case, the control group’s performance matched 

the performance of those in the experimental group. Statistical tests are hardly neces¬ 

sary with data like these. 

Absolute and Relative Differences 

Since differences between statistics — especially between means — are tested and 

reported a great deal in the literature, we must try to get some perspective on the 

absolute and relative sizes of such statistics. Although the discussion uses differences 

between means as examples, the same points apply to differences between propor¬ 

tions, correlation coefficients, and so on. In a study by Scattone and Saetermoe 

(1997) U.S.-born Asians were found to be more accepting of people with disabilities 

than foreign-born Asians. Using a social distance scale of 1 to 5, where 5 indicates 

higher acceptance, U.S.-born Asians had a mean of 4.17 while foreign-born Asians 

had a mean of 3.71. The mean difference was 0.46 and was statistically significant. 

Is such a small difference meaningful? Contrast this small difference to the mean dif¬ 

ference between males and females on consumption of beer obtained by Zavela, 

Barrett, Smedi, Istvan, and Matarazzo (1990). Zavela and associates studied gender 
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differences on the consumption of alcohol, cigarettes, and coffee. For the consump¬ 

tion of beer per month males had a mean of 18.68 and females had 9.14. The mean 

difference here was 9.54 and was statistically significant. 

The problem here is actually two problems: one of absolute and relative size of 

differences and one of practical or “real” significance versus statistical significance. 

What appears to be a very small difference may, on close examination, not be so 

small. In a study by Evans, Turner, Ghee, and Getz (1990) on the relation between 

androgynous role and cigarette smoking, there was a mean difference of 0.164 

between androgynous and non-androgynous subjects on smoking frequency. The 

difference of 0.164 is probably trivial even though statistically significant. The 0.164 

was derived from a 7-point scale of smoking frequency, and is thus really small. Now, 

take an entirely different sort of example from an important study by Miller and 

DiCara (1968) on the instrumental conditioning of urine secretion. The means of a 

group of rats before and after training to secrete urine were 0.017 and 0.028, and the 

difference was highly statistically significant. But the difference was only 0.011. Is 

this too small to warrant serious consideration? But now the nature of the measures 

has to be considered. The small means of 0.017 and 0.028 were obtained from mea¬ 

sures of urine secretion of rats. When one considers the size of rats’ bladders and 

that instrumental conditioning (reward for secreting urine) produced the mean dif¬ 

ference of 0.011, the meaning of the difference is dramatic: it is even quite large! (We 
will analyze the data in a later chapter and perhaps see this more clearly.) 

One should ordinarily not be enthusiastic about mean differences like 0.20, 0.15, 

0.08, and so on, but one has to be intelligent about it. Suppose that a very small dif¬ 

ference is reported as statistically significant, and you think this ridiculous. But also 

suppose that it was the mean difference between the dendrite length of groups of rats 

under enriched and deprived experiences in the early days of their lives (Camel, 

Withers, & Greenough, 1986). To obtain any difference in dendrite branching in 

neurons due to experience is an outstanding achievement and, of course, an impor¬ 
tant scientific discovery. 

Correlation Coefficients 

Cori elation coefficients are reported in large quantities in research journals. Ques¬ 

tions as to the significance of the coefficients—and the “reality” of the relations they 

express must be asked. For example, to be statistically significant a coefficient of cor¬ 

relation calculated between 30 pairs of measures has to be approximately 0 31 at the 

0.05 level and 0.42 at the 0.01 level. With 100 pairs of measures the problem is less 

acute (the law of large numbers again). To carry the 0.05 day, an r of 0.16 is suffi¬ 

cient, to carry the 0.01 day, an r of about 0.23 does it. If rs are less than these values, 
they are considered to be not significantly different from zero. 

If one draws, say, 30 pairs of numbers from a table of random numbers and cor¬ 

relates them, theoretically the r should be near zero. Clearly, there should be near¬ 

zero relations between sets of random numbers, but occasionally sets of pairs can 

yield statistically significant and reasonably high rs by chance. At any rate, coefficients 
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of correlation, as well as means and differences, have to be weighed in the balance for 

statistical significance by stacking them up against their standard errors. Fortunately, 

this is easy to do, since rs for different levels of significance and for different sizes of 

samples are given in tables in most statistics texts. Thus, with rs, it is not necessary to 

calculate and use the standard error of an r. The reasoning behind the tables has to 

be understood, however. 
Of the thousands of correlation coefficients reported in the research literature, 

many are of low magnitude. How low is low? At what point is a correlation coeffi¬ 

cient too low to warrant treating it seriously? Usually, r less than 0.10 cannot be 

taken too seriously: an r of 0.10 means that only 1% (0.102 = 0.01) of the variance of 

y is shared with xl If an r of 0.30, on the other hand, is statistically significant, it may 

be important because it may point to an important relation. The problem becomes 

more difficult with rs between 0.20 and 0.30. (And remember that with large A/s, rs 

between 0.20 and 0.30 are statistically significant.) To be sure, an r, of say 0.20 says 

that the two variables share only 4% of their variance. But an r of 0.26 — 7% of the 

variance shared—or even one of 0.20 may be important because it may provide a 

valuable lead for theory and subsequent research. The problem is complex. In basic 

research, low correlations — of course, they should be statistically significant—may 

enrich theory and research. It is in applied research where prediction is important. 

It is here where value judgments about low correlations and the trivial amounts of 

variance shared have grown. In basic research, however, the picture is more compli¬ 

cated. One conclusion is fairly sure: correlation coefficients, like other statistics, must 

be tested for statistical significance. 

Hypothesis Testing: Substantive and Null Hypotheses 

The main research purpose of inferential statistics is to test research hypotheses by 

testing statistical hypotheses. Broadly speaking, scientists use two types of hypothe¬ 

ses: substantive and statistical. A substantive hypothesis is the usual type of hypothesis 

discussed in Chapter 2, where a conjectural statement of the relation between two or 

more variables is expressed. For example, “The greater the cohesiveness of a group, 

the greater its influence on its members is a substantive hypothesis posed by Schac- 

ter, Ellertson, McBride, and Gregory (1951). An investigator’s theory dictates that 

this variable is related to that variable. The statement of the relation is a substantive 

hypothesis. 
A substantive hypothesis itself, strictly speaking, is not testable. It must first be 

translated into operational terms. One very useful way to test substantive hypotheses 

is through statistical hypotheses. A statistical hypothesis is a conjectural statement, in 

statistical terms, of statistical relations deduced from the relations of the substantive 

hypothesis. This rather clumsy statement needs translation. A statistical hypothesis 

expresses an aspect of the original substantive hypothesis in quantitative and statisti¬ 

cal terms: q,A > > Mean A is greater than Mean B; r > +0.20, the coefficient of 

correlation is greater than +0.20; q,A •> Ab ^ the 0.01 level; x is significant at 

the 0.05 level; and so on. A statistical hypothesis is a prediction of how the statistics 
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used in analyzing the quantitative data of a research problem will turn out. In our 

discussion of hypothesis testing we will use /jl to indicate the population mean, and M 

for the sample mean. Statistical hypotheses are expressed in terms of population val¬ 
ues. After collecting data, the computed mean from the sample will use M. 

Statistical hypotheses must be tested against something, however. It is not possi¬ 

ble to simply test a stand-alone statistical hypothesis. That is, we do not directly test 

the statistical proposition Ma > mb in and of itself. We test it against an alternative 

proposition. Naturally, there can be several alternatives to ma > mb- The alternative 

usually selected is the null hypothesis, which was invented by Sir Ronald Fisher. The 

null hypothesis is a statistical proposition that states, essentially, that there is no rela¬ 

tion between the variables (of the problem). The null hypothesis-says, “You’re wrong, 

there is no relation; disprove me if you can.” It says this in statistical terms such as 

Ma = Ab5 or Ma - mb = 0; r^ = 0; y2 is not significant; t is not significant; and so on. 

Researchers sometimes unwittingly use null hypotheses as substantive hypothe¬ 

ses. Instead of saying that one method of presenting textual materials has a greater 

effect on recall memory than another method, for instance, they may say that there is 

no difference between the two methods. This is poor practice because it in effect 

uses the statistical null hypothesis as a substantive hypothesis, and thus confuses the 

two kinds of hypotheses. Strictly speaking, any significant result, positive or negative, 

then, supports the hypothesis. But this is certainly not the intention. The intention is 

to bring statistical evidence to bear on the substantive hypothesis, for example, on 

tiA > Mb- If the result is statistically significant (ma /nB, or the null hypothesis is’ re¬ 

jected) mA > mb, then the substantive hypothesis is supported. Using the null hypoth¬ 

esis substantively loses the power of the substantive hypothesis, which amounts to 
the investigator making a specific nonchance prediction. 

There is, of course, always the rather rare possibility that a null hypothesis is the 
substantive hypothesis. If, for example, an investigator seeks to show that two meth¬ 

ods of teaching make no difference in achievement, then the null hypothesis is pre¬ 

sumably appropriate. The trouble with this is that it places the investigator in a diffi¬ 

cult position logically because it is extremely difficult—perhaps impossible—to 

demonstrate the empirical “validity” of a null hypothesis. After all, if the hypothesis 

MA - mb is supported, it could well be one of the many chance results that are possi¬ 

ble, rather than a meaningful nondifference! Good discussions of hypothesis testing 
are given in Giere (1979), chapters 6, 8, 11, and 12, especially Chapter 11. 

Fisher (1950) says, “Every experiment may be said to exist only in order to give 

t e facts a chance of disproving the null hypothesis.” Aptly said, but what does it 

mCT a oP??Se y°u,entertain a hypothesis to the effect that method A is superior to 
method B. If you solve the problems of defining what you mean by “superior” satis¬ 
factorily-setting up an experiment, and the like-you must now specify a statistical 
hypothesis. In this case, you might say ma > Mb (the mean of method A is, or will be 
greatei than, the mean of method B on such-and-such a criterion measure). Assume 

at after the experiment the two means are 68 and 61, respectively. It would seem 

that your substantive hypothesis is upheld since 68 > 61, or ma is greater than mb- As 
have already learned, however, this is not enough, since this difference may be 

one of the many possible similar differences due to chance. 
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In effect, we set up what can be called the chance hypothesis: ^iA = M-b, or Ma ~ 

/xB = 0. These are null hypotheses. What we do, then, is write hypotheses. First we 

write the statistical hypothesis that reflects the operational-experimental meaning of 

the substantive hypothesis. Then we write the null hypothesis against which we test 

the first type of hypothesis. Here are the two kinds of hypothesis suitably labeled: 

H0: /i-A = M-b 

Hi- 

Hx represents “Hypothesis 1.” There is often more than one such hypothesis. If 

that is so, they are labeled Hi, H2, Hj, and so on. H0 represents “null hypothesis.” 

Note that the null hypothesis could in this case have been written Ha: /aa - Me = 0. 

This form shows where the null hypothesis got its name: the difference between fiA 

and mB is zero. But it is unwieldy in this form, especially when there are three or 

more means or other statistics being tested, /xA = ixB is general and, of course, means 

the same as /rA - fiB = 0 and - /xA = 0. Note that we can write quite easily /xA = 

/^B = Me = • • • ~ P-N- 

Although as researchers we want to demonstrate that H{ is true, it cannot be 

done in a direct way easily. Let’s say our substantive hypothesis leads us to write the 

statistical hypothesis Hx: /xA A fiB. This hypothesis can be rewritten Hp /xA - /xB + 0. 

In order to test this hypothesis directly, we would need to test an infinite number of 

values. That is, we would need to test each and every situation where fxA - is not 

equal to zero. In hypothesis testing, the procedure dictates that we test the null hy¬ 

pothesis. The null hypothesis is written as H0: /xA - fxB = 0. Note that it points di¬ 

rectly to a value, namely zero. What we need do is to gather enough empirical data 

to show that the null hypothesis is not tenable. In statistical terms, we would “reject 

H0.” Rejecting H0 would indicate to us that we have a significant result. Rejecting H0 

leads us toward supporting Hi. Supporting Hh in turn leads to support for our sub¬ 

stantive hypothesis. If there are not enough empirical data to refute the null hypoth¬ 

esis, we would not be able to reject the null hypothesis. Statistically we would say 

“failed to reject H0” or “do not reject H0” Note that we do not “accept” HQ because 

the results were “not significant.” Regardless of the results, it is only possible to “fail 

to reject” H0 or “reject” H0; one can never “accept” H0. To “accept” H0 would 

require repeating the study an infinite number of times, and getting exactly zero each 

time. On the other hand, we can “fail to reject” Ha because the results are not suffi¬ 

ciently different from what one would predict (under the assumption that H0 is true) 

to warrant the conclusion that it is false. 
The status of Ha is akin to the defendant in a trial who is deemed to be “inno¬ 

cent” until proved “guilty.” If the trial results in a verdict of “not guilty,” this does 

not mean the defendant is “innocent.” It merely means that guilt could not 

be demonstrated beyond a reasonable doubt. When the investigator fails to reject H0 

it does not mean H0 is true, merely that H0 cannot be shown to be false beyond a 

“reasonable” doubt. Propst (1988) and Kenney (1985) give an interesting analogy of 

hypothesis testing within the criminal justice system. 
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The G eneral Nature of a Standard Error 

If this were the best of all possible research worlds, there would be no random error. 

And if there was no random error, there would be no need for statistical tests of sig¬ 

nificance. The word significance would in fact be meaningless. Any difference at all 

would be a “real” difference. But alas, such is never the case. There are always chance 

errors (and biased errors, too), and in behavioral research they often contribute sub¬ 

stantially to the total variance. Standard errors are measures of this error, and are 

used, as has been said repeatedly, as a sort of yardstick against which experimental or 
“variable” variance is checked. 

The standard error is the standard deviation of the sampling distribution of any 

given measure — the mean or the correlation coefficient, for instance. In most cases, 

population or universe values (parameters) cannot be known; they must be estimated 

from sample measures, usually from single samples. 

Suppose we draw a random sample of 100 children from eighth-grade classes in 

such-and-such a school system. It is difficult or impossible, say, to measure the whole 

universe of eighth-grade children. We calculate the mean and the standard deviation 

from a test we give the children, and find these statistics to be M = 110; SD = 10. 

Important questions we must ask are: How accurate is this mean? or If we were to 

draw a large number of random samples of 100 eighth-grade pupils from this same 

population, will the means of these samples be 110 or near 110? And, if they are near 

110, how near? What we do, in effect, is to set up a hypothetical distribution of sample 

means, all calculated from samples of 100 pupils, each drawn from the parent popula¬ 

tion of eighth-grade pupils. If we could calculate the mean of this population of 

means, or if we knew what it was, everything would be simple. But we do not know 

this value, and we are not able to know it, since the possibilities of drawing different 

samples are so numerous. The best we can do is to estimate it with our sample value, or 

sample mean. We simply say, in this case, “Let the sample mean equal the mean of the 

population mean”—and hope we are right. Then we must test our equation. We do 
this with the standard error. 

A similar argument applies to the standard deviation of the whole population (of 

the original scores). We do not know and probably can never know it. But we can es¬ 

timate it with the standard deviation calculated from our sample. Again, we say, in ef¬ 

fect, Let the standard deviation of the sample equal the standard deviation of the 

population.” We know they are probably not the same value, but we also know, if the 
sampling has been random, that they are probably close. 

In Chapter 11 the sample standard deviation was used as a substitute for the 

standard deviation of the population in the formula for the standard error of the mean: 

cu SD SEm = — (i2.l) 
dn 

This is also called the sampling error Just as the standard deviation is a measure of the 

dispersion of the original scores, the standard error of the mean is a measure of the 
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dispersion of the distribution of sample means. It is not the standard deviation of 

the population of individual scores. It is not the same as testing every member of the 

population, and then calculating the mean and standard deviation of this population. 

Monte Carlo Demonstration 

To give us material to work with, we now resort to the computer and what are called 

Monte Carlo methods. Monte Carlo methods are computer-assisted simulation 

methods designed to obtain solutions to mathematical, statistical, numerical, and 

even verbal problems, by using random procedures and samples of random numbers. 

Usually associated with mathematical problems whose solutions are intractable, 

Monte Carlo methods have been extended to “testing” the statistical characteristics 

of samples of large populations. For example, the consequences of violating the 

assumptions behind statistical tests of significance can be studied effectively by simu¬ 

lating statistical distributions with random numbers, and introducing violations of 

assumptions into the procedure to study the consequences. In the behavioral 

sciences, Monte Carlo procedures are usually empirical studies of statistical and 

other models, using the computer-generated random numbers to help simulate the 

random processes needed to study the models. In any case, we now use an elemen¬ 

tary form of Monte Carlo to test a most important theorem of statistics, and to 

explore the variability of means and the use of the standard error of the mean. We 

also want to lay a foundation for understanding the computer in studying random 

processes. 

The Procedure 

A computer program is written to generate 4,000 random numbers evenly distrib¬ 

uted between 0 and 100 (so that each number has an equal chance of being “drawn”) 

in 40 sets of 100 numbers each, and to calculate various statistics with the numbers. 

Consider this set of 4,000 numbers a population, or U. The mean of U is 50.33 (by 

actual computer calculation) and the standard deviation is 29.17. We wish to estimate 

this mean from samples drawn randomly from U. Of course, in a real situation we 

would usually not know the mean of the population. One of the virtues of Monte 

Carlo procedures is that we can know what we ordinarily do not know. 

Five of the 40 sets of 100 numbers are drawn at random. (The sets drawn are 

numbers 5, 7, 8, 16, and 36 [see Appendix C].) The means and standard deviations of 

the five sets were computed. So were the five standard errors of the mean. These sta¬ 

tistics are reported in Table 12.1. We want to give an intuitive notion of what the 

standard error of the mean is and then show how it is used. 
First, calculate the standard deviation (SD) of this sample of means. If we simply 

treat the five means (53.21, 49.64, 51.37, 49.02, and 55.51) as ordinary scores and 

calculate the mean of these means and the standard deviation of these five means, we 

obtain: M*= 51.75; SD* = 2.38. The mean of all 4,000 scores is 50.33. Each of the 

five means is a sample estimate of this population mean. Note that three of them, 
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UU Table 12.1 Means Standard Deviations, and Standard Errors of the Mean, 

Five Samples of 100 Random Numbers (0 through 100f 

Samples 

1 2 3 4 5 

N 53.21 49.64 51.37 49.02 55.51 

SD 29.62 27.91 29.83 26.72 29.23 

SEm 2.96 2.79 2.98 2.67 2.92 

a Population statistics: M = 50.33; SD = 29.1653; TV = 4,000 

49.64, 51.37, and 49.02, are rather close to the population mean; and two of them, 

53.21 and 55.51, are farther away from it. So it seems that three of the samples 

provide good estimates of the population mean and two do not—or do they? 

The standard deviation of 2.38 is akin to the standard error of the mean. (It is, of 

course, not the standard error of the mean, because it has been calculated from only 

five means.) Suppose only one sample—M = 53.21 and SD = 29.62 — had been 

drawn, and this is the usual situation in research, and the standard error of the mean 
calculated: 

sem — 
SD 29.62 

VToo 
2.96 

This value is an estimate of the standard deviation of the population means of 

many, many samples of 100 cases, each randomly drawn from the population. Our 

population has 40 groups and thus 40 means. (Of course, this is not many, many 

means.) The standard deviation of these means is actually 3.10. The SEU calculated 

with the first sample, then, is close to this population value: 2.96 as an estimate of 
3.10. 

The five standard errors of the mean are given in the third data line of Table 

12.1. They fluctuate very little —from 2.67 to 2.98 —even though the means of the 

sets of 100 scores vary considerably. The standard deviation of 2.38 calculated from 

the five means is only a fair estimate of the standard deviation of the population of 

means. Yet it is an estimate. The interesting and important point is that the standard 

error of the mean, which is a “theoretical” estimate, calculated from the data of 

any one of the five groups, is an accurate estimate of the variability of the means of 
samples of the population. 

To ieinforce these ideas, let s now look at another .Monte Carlo demonstration of 

much greater magnitude. The same computer program used to produce the 4,000 

random numbers discussed above is now used to produce 15 more sets of 4,000 ran¬ 

dom numbers each, evenly distributed between 0 and 100. That is, a total of 80,000 

random numbers, in 20 sets of 4,000 each, are generated. The theoretical mean, 

again, of numbers between 0 and 100 is 50. Consider each of the 20 sets as a sample 
of 4,000 numbers. The means of the 20 sets are given in Table 12.2. 
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[Ml Table 12.2 Means from 20 Sets of4,000 Computer-Generated Random 

Numbers (0 through 100f 

50.3322 49.9447 50.1615 50.0995 

50.1170 49.5960 51.0585 51.1450 

49.8200 49.3175 49.5822 50.6440 

49.8227 49.9022 49.7505 49.8437 

49.5875 50.6180 50.0990 49.3605 

a Mean of means equals 50.0401; standard deviation of the means equals 0.4956; standard error of 
the mean, first sample equals 0.4611. 

The 20 means cluster closely around 50: the lowest is 49.3175, the highest is 

51.1450, and most are near 50. The mean of the 20 means is 50.0401, very close 

indeed to the theoretical expectation of 50. The standard deviation of the 20 means 

is 0.4956. The standard deviation of the first sample of 4,000 cases (see note a, Table 

12.1) is 29.1653. If we use this standard deviation to calculate the standard error of 

the mean, we obtain: 

SE M — 
29.1653 

V4000 
= .4611 

Note that this estimate of the standard error of the mean is close to the calculated 

standard deviation of the 20 means. We would not go wrong using it to assess the 

variability of the means of samples of 4,000 random numbers. Clearly, means of large 

samples are highly stable statistics, and standard errors are good estimates of their 

variability. 

eneralizations 

Several generalizations of great usefulness in research can now be made. For exam¬ 

ple, means of samples are stable in the sense that they are much less variable than the 

measures from which they are calculated. This is, of course, true by definition. Vari¬ 

ances, standard deviations, and standard errors of the mean are even more stable; 

they fluctuate within relatively narrow ranges. Even when the sample means of our 

example varied by as much as four or five points, the standard errors fluctuated by no 

more than a point and a half. This means that we can have considerable faith that es¬ 

timates of sample means will be rather close to the mean of a population of such 

means. And the law of large numbers tells us that the larger the sample size, the 

closer to the population values the statistics will probably be. 

A difficult question for researchers is: Do these generalizations always hold, 

especially with nonrandom samples? The validity of the generalizations depends on 

random sampling. If the sampling is not random, we cannot really know whether the 
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generalizations hold. Nevertheless, we often have to act as though they do hold, even 

with nonrandom samples. Fortunately, if we are careful about studying our data to 

detect substantial sample idiosyncrasy, we can use the theory profitably. For example, 

samples can be checked for easily verified expectations. If one expects approximately 

equal numbers of males and females in a sample, or known proportions of young and 

old or Republican and Democrat, it is simple to count these numbers. There are ex¬ 

perts who insist on random sampling as a condition of the validity of the theory— 

and they are correct to some degree. However, if the theory is forbidden to us with 

nonrandom samples, much use of statistics and the inferences that accompany statis¬ 

tics would have to be abandoned. The reality is that the statistics seem to work very 

well even with nonrandom samples, provided the researcher knows the limitations of 

such samples. The researcher needs to be even more careful with nonrandom sam¬ 

ples than with random samples. Replication of nonrandom studies is a must. 

The Central Limit Theorem 

Before studying the actual use of the standard error of the mean, we should look 

briefly at an extremely important generalization about means: If samples are drawn 

from a population at random, the means of the samples will tend to be normally distributed. 

The larger the Ns, the more this is so. And the shape and kind of distribution of 

the original population makes no difference. That is, the population distribution 

does not have to be normally distributed (see Hays, 1994, pp. 251-254 for a good 
example on how the theorem works). 

For example, the distribution of the 4,000 random numbers in Appendix C is 

rectangular, since the numbers are evenly distributed. If the central limit theorem is 

empirically valid, then the means of the 40 sets of 100 scores each should be approxi¬ 

mately normally distributed. If so, this is a remarkable thing. And it is so, though one 

sample of 40 means is hardly sufficient to well demonstrate the trend. Therefore, 

three more populations of 4,000 different evenly distributed random numbers, parti¬ 

tioned into 40 subsets of 100 numbers each, are computer-generated. 

The means for the 4 X 40 = 160 subsets of 100 numbers each were calculated 

and put into one distribution. A frequency polygon of the means is given in Figure 

12.1. It can be seen that the 160 means look almost like the bell-shaped normal 

curve. Apparently the central limit theorem “works.” And bear in mind that this dis¬ 

tribution of means was obtained from rectangular distributions of numbers. 

Why go to all this bother? Why is it important to show that distributions of 

means approximate normality? We work with means a great deal in data analysis, and 

if they are normally distributed then one can use the known properties of the normal 

curve to interpret obtained research data. Knowing that approximately 96% of the 

means will lie between two standard deviations (standard errors) above and below the 

mean is valuable information. It is valuable because an obtained result can be assessed 

against the known properties of the normal curve. In Chapter 11 we saw the use of 

the normal curve in interpreting means. We now turn to what is perhaps a more 

interesting use of the curve in assessing the differences between means. 



CHAPTER 12 ■ Testing Hypotheses and the Standard Error 287 

[U Figure 12.1 

The Standard Error 

of the Differences Between Means 

One of the most frequent and useful strategies in research is to compare means of 

samples. From differences in means we infer effects of independent variables. Any 

linear combination of means is also governed by the central limit theorem. That 

is, differences in means will be normally distributed, given large enough samples. 

(A linear combination is any equation of the first degree, for example, Y = M{ — M2. 

Y = Mi — M2 is not linear.) We can therefore use the same theory with differences 

between means that we use with means. 

Suppose we have assigned 200 subjects to two groups randomly, 100 to each 

group. We show a movie on intergroup relations to one group (Group A), for exam¬ 

ple, and no movie to the other group (Group B). Next, we give both groups an 

attitude measure. The mean score of Group A is 110, and the mean score of Group 

B is 100. Our problem is: Is the difference of 10 units a “real” difference, a statisti¬ 

cally significant difference? Or is it a difference that could have arisen by chance 

—more than five times in 100, say, or some other amount—when no difference 

actually exists? 
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If we similarly create double samples of 100 each and calculate the differences 

between the means of these samples, and go through the same experimental proce¬ 

dure, will we consistently get this difference of 10? Again, we use the standard error 

to evaluate our differences, but this time we have a sampling distribution of differences 

between means. It is as if we took each Mt — Mj and considered it as an X. Then the 

several differences between the means of the samples are considered as the Xs of a 

new distribution. At any rate, the standard deviation of this sampling distribution of 

differences is akin to the standard error. But this procedure is only for illustration, 

because we actually do not do this. Here, we again estimate the standard error from 

our first two groups, A and B, by using the formula: 

SEma-mb = + SE mb1 (12.2) 

where SE2Mi and SE2Mb are the standard errors squared, respectively, of Group A and 

Group B, as previously stated. 

Suppose we do the experiment with five double groups; that is, 10 groups, two at 

a time. The five differences between the means are 10, 11, 12, 8, 9. The mean of 

these differences is 10; the standard deviation is 1.414. This 1.414 is again akin to the 

standard error of the sampling distribution of the differences between the means, in 

the same sense as the standard error of the mean in the earlier discussion. If we now 

calculate the standard error of the mean for each group (by making up standard devi¬ 

ations for the two groups, SDA = 8 and SDB = 9), we obtain: 

SE ma VToo 
SE mb 

9 

VToo 
.9 

Using Equation 12.2, we calculate the standard error of the differences between 
the means: 

SEMa-Mis ~ ^SEMA2 + SEMB2 — V(.8)2 + (,9)2 — V.64 + .81 = V1.45 = 1.20 

What do we do with the resulting 1.20 now that we have it? If the scores of the 

two groups had been chosen from a table of random numbers and there were no ex¬ 

perimental conditions, we would expect no difference between the means. But we 

have learned that there are always relatively small differences due to chance factors. 

These differences are random. The standard error of the differences between the means is 

an estimate of the dispersion of these differences. But it is a measure of these differences 

that is an estimate for the whole population of such differences. For instance, the 

standard error of the differences between the means is 1.20. This says that, by 

chance alone, the difference between MA and MB will fluctuate randomly around 10. 

That is, it may now be 10, then later be 10.2, or 9.8, and so on. Only rarely will the 

differences exceed, say, 13 or 7 (about three times the SE). Another way of putting it 

is to say that the standard error of 1.20 indicates the limits (if we multiply the 1.20 

by the appropriate factor) beyond which sample differences between the means prob¬ 
ably will not go. 
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What has all this to do with our experiment? It is precisely here that we evaluate 

the experimental results. The standard error of 1.20 estimates random fluctuations. 

Could Ma — Mb =10 have arisen by chance, as a result of random fluctuations as 

just described? It should by now be halfway clear that this cannot be, except under 

very unusual circumstances. We evaluate this difference of 10 by comparing it to our 

estimate of random or chance fluctuations. Is it one of them? We make the comparison 

by means of the t-ratio, or t-test: 

Ma-Mb 110-100 10 
t = S-- =-Thh-= TT7T = 8J3 

SEMa-mb 1-20 1.20 

This tells us that our measured difference between MA and MB would be 8.33 stan¬ 

dard deviations (error units) away from a hypothesized mean of zero (zero difference, 

no difference between the two means). 

We would not have any difference, theoretically, if our subjects were well ran¬ 

domized and there had been no experimental manipulation. We would have, in 

effect, two distributions of random numbers from which we could expect only chance 

fluctuations. But here we have a comparatively huge difference of 10, compared to an 

insignificant 1.20 (our estimate of random deviations). Decidedly, something may be 

happening here besides chance. And this something is just what we are looking for. It 

is, presumably, the effect of the movie, or the effect of the experimental condition, 

other conditions having been sufficiently controlled, of course. 

Look at Figure 12.2. It represents a population of differences between means with a 

mean of zero and a standard deviation of 1.20. (The mean is set at zero because 

we assume that the mean of all the mean differences is zero.) Where would the 

difference of 10 be placed on the baseline of the diagram? In order to answer this 

10 Figure 12.2 
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question, the 10 must first be converted into standard deviation (or standard error) 

units. (Recall standard scores from Chapter 11.) This is done by dividing by the stan¬ 

dard deviation (standard error), which is 1.20: 10/1.2 = 8.33. But this is what we got 

when we calculated the t-ratio. It is, then, simply the difference between MA and MB, 

10, expressed in standard deviation (standard error) units. We can now put it on the 

baseline of the diagram. Look far to the right for the dot. Clearly the difference of 10 

is a deviate. It is so far out, in fact, that it probably does not belong to the population 

in question. In short, the difference between MA and MB is statistically significant, so 

significant that it amounts to what Bernoulli called “moral certainty.” Such a large 

difference, or deviation from chance expectation, can hardly be attributed solely to 

chance. The odds are actually greater than a billion to one. It can happen by chance. 

But it is hardly likely to happen. An important question is: How large a difference, or 

in the language of statistics, how far away from the hypothetical mean of zero must a 

deviation be to be significant? This question cannot be answered definitively in this 

book. In large samples, the 0.05 level is 1.96 standard deviations from the mean, and 

the 0.01 level is 2.58 standard deviations from the mean. But there are complications, 

especially with small samples. The student must, as usual, study a good statistics text. 

A simple rule is: 2 standard deviations (SEs) are significant (about the 0.05 level); 2.5 

standard deviations are very significant (about the 0.01 level); and 3 standard devia¬ 
tions are highly significant (a little less than the 0.001 level). 

Such is the standard error and its use. The standard errors of other statistics are 

used in the same way. A very important and useful tool; it is a basic instrument in 

contemporary research. Indeed, it would be difficult to imagine modern research 

methodology, and impossible to imagine modern statistics, without the standard er¬ 

ror. As a key to statistical inference its importance cannot be overestimated. Much of 

statistical inference boils down to a family of fractions epitomized by the fraction: 

Statistic 

Standard Error of the Statistic 

Statistical Inference 

To infer is to derive a conclusion from premises or from evidence. To infer statistically 

is to derive probabilistic conclusions from probabilistic premises. We conclude prob¬ 

abilistically; that is, at a specified level of significance. We infer, probabilistically, if an 

experimental result deviates from chance expectation, if the null hypothesis is not 

“true,” that a “real” influence is at work. If, in the methods experiment, MA > MB 

and Ma + Mb, or H{ is “true” and H0 is not “true,” we infer that method A is “supe¬ 

rior to method B, superior being specified in the sense defined in the experiment. 

Another form of inference, discussed at length in the chapter on sampling, is that 

from a sample to a population. Since, for instance, 55% of a random sample of 2,000 

people in the United States say they will vote for a certain presidential candidate, it 

is inferred that the whole population of the United States, if asked, will respond 
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similarly. This is a rather big inference. One of the gravest dangers of research — or 

perhaps we should say of any human reasoning—is the inferential leap from sample 

data to population fact. Inferential leaps are constantly made in politics, economics, 

education, and other areas of large concern. If the government cuts spending, infla¬ 

tion will decrease, for example. If we use teaching machines, children will learn 

more. Scientists, too, make inferential leaps—-often very large ones—with one 

important difference: The scientist is (or should be) aware of such leaps and that such 

leaps are always risky. 

It can be said, in sum, that statistics enable scientists to test substantive hypothe¬ 

ses indirectly by enabling them to test statistical hypotheses directly (if it is at all pos¬ 

sible to test anything directly). In this process, they use null hypotheses, hypotheses 

written by chance. They test the “truth” of substantive hypotheses by subjecting null 

hypotheses to statistical tests on the bases of probabilistic reasoning. They then make 

appropriate inferences. Indeed, the objective of all statistical tests is to test the justifi¬ 

ability of inferences. A reviewer of this chapter has questioned the message the chap¬ 

ter implies, namely that all statistical tests of hypotheses involve standard errors. 

This implication would be unfortunate. Indeed, as we shall see in later chapters, 

other means of assessing statistical significance are often used. For example, the non- 

parametric analysis of variance tests presented in Chapter 16 depend on ranking, and 

the complex tests of analysis of covariance structures of Chapter 37 depend on com¬ 

parisons of covariances (correlations) and the comparison of latent structures with 

empirical data. 

Testing Hypotheses and the Two Types of Errors 

In a coin-tossing experiment, we can test the hypothesis that the coin is balanced or 

not balanced. These hypotheses are stated as follows: 

Ha: p = 1/2 

Hi: p * 1/2 

where H0 equals the hypothesis to be tested, and p equals the true probability of a 

head. The hypothesis to be tested, Ha, states that p, the true probability of getting a 

head on any given trial, is 1/2. If it is true, the coin is indeed balanced. Of course, in 

practice the number of heads obtained with an unbiased coin cannot be guaranteed 

to be exactly 1/2 unless the coin is tossed an infinite number of times — an impossi¬ 

bility. For a fair coin, the obtained number of heads approaches 50% as the number 

of trials increase. 
In a coin-tossing experiment where 12 out of 16 tosses are heads for the coin 

suspected of yielding too many heads, the probability for such an event can be 

obtained from using the binomial formula (see Comrey & Lee, 1995, Chapter 7) 

or by consulting a table of binomial value (see Beyer, 1971, p. 44). The probability or 

p value for the obtained result is 0.038. If we choose the 0.05 level of significance 

in advance, the result would be declared “significant” since 0.038 < 0.05. It would 
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not, however be significant if we had chosen the 0.01 level of significance, since 

0.038 > 0.01. 

If we conduct another experiment with the same coin and it yields 15 heads in 19 

tosses; the probability of this happening, if we assume the coin is fair, is 0.0096. 

In this case, the results are not only significant at the 0.05 level (0.0096 < 0.05), the 

results would also be significant at the 0.01 level (0.0096 < 0.01). 

In the example where 12 heads are obtained in 16 tosses of a coin, the null hy¬ 

pothesis that the coin is fair is rejected. It is rejected because the probability of such 

an event occurring given that the coin is fair is 0.038, and this value is less than the 

tolerable amount of 0.05. Rejecting H0, however, is an error if in fact the coin is fair. 

We call this error the Type I eiTor. A fair coin might generate 12 or more heads in 16 

tosses. The likelihood of that happening is 0.038, or 38 out of 1,000 repetitions of 

the same “16 toss” experiment. It is not shown beforehand whether this particular 

experiment is one of the 38, when a fair coin generated 12 heads in 16 tosses, or if 

the coin really is unfair. However, H0 is rejected with the awareness that an error 

might have been made, but the chances of that happening are less than 0.05. The 

conclusion of rejecting H0 on an average is correct more than 95% of the time. For 

the 1% level of significance, rejecting a true null hypothesis occurs an average of one 

time in every 100 experiments. For the 5% level, it occurs an average of five times in 

every 100 experiments. Hence, rejecting a true null hypothesis is a Type I error. The 

symbol used to represent the probability of a Type I error is the Greek letter a 

(alpha). The term “level of confidence” is often interchangeable with “level of signifi¬ 
cance” and “alpha level.” 

A second type of error, called a Type II error, is made when H0 is false, but the 

conclusion of the analysis is that H0 is true. That is, accepting a false null hypothesis 

is a Type II error. Generally, observing 8 heads in 16 tosses of a coin is evidence that 

the coin is fair. However, an unfair coin (one where the probability of heads is 0.25 

instead of 0.5), can generate 8 heads in 16 tosses. The ease in doing so is not as high 

as for a fair coin, but an unfair coin can do it. The experiment can be repeated many 

times before a judgment is made. However, in some real world experiments, such as 

those found in human factors engineering studies, it is not financially feasible to re¬ 

peat the experiment. Generally, one has only a single experimental result from which 

a decision is to be made. In the example above, if the coin is in fact unfair, but the 

conclusion of the experiment is that the coin is fair, a Type II error has been made. 

The Greek letter used to represent the probability of a Type II error is /3 (beta). 

Most novice researchers tend to establish a very stringent Type I error criterion. 

By doing so, there is less likelihood of a Type I error. There is, however, a relation¬ 

ship between the Type I and Type II errors that needs to be considered before mak¬ 

ing the decision to make either error too stringent. If the probability of a Type I 

error is made smaller, the probability of a Type II error gets larger for a fixed sample 

size. Likewise, by reducing the probability of a Type II error, the probability of a 

Type I erroi increases. As a rule, in selecting a significance level one must decide 

which type of error is more important to avoid or minimize. To be certain that 

an event of some importance has been identified before reporting it, use a fairly 

stringent criterion of significance, such as 0.01. On the other hand, if there is greater 

concern not to miss something, use a less stringent level, such as 0.05. Table 12.3 and 
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M Figure 12.3 

Critical Decision 

Point 

Figure 12.3 show the relationship between the Type I and Type II errors. Probst 

(1988) presents an absorbing discussion of the trade-off between Type I and Type II 

errors in some real-world situations. 
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[b1 Table 12.3 Type I and Type II Decision Errors. 

True State of Affairs 

The null The experimental 

hypothesis is hypothesis is correct 

correct 

Fail to reject Ha Correct decision, 1 — a Type II error, (3 
Our decision 

Reject H0 Type I error, a Correct decision, 1 — /3 

In examining Figure 12.3, the filled in area indicates the probability of a Type I 

error. The critical decision point is the point that divides the “Ha is true” distribution 

so 0.05 or 0.01 of the area lies to the right of the point. By setting the probability of a 

Type I error, the probability of a Type II error is set. By moving the critical decision 

point, the Type I error becomes smaller or larger, and in return, the Type II error be¬ 
comes larger or smaller. 

The size of the sample is related to both types of errors. With a fixed value of a 

and a fixed sample size n, the value of (3 is predetermined. If (3 is too large, it can be 

reduced by either raising the level of a for fixed n, or by increasing n for a fixed level 

of a. Although (3 is seldom determined in an experiment, researchers can be assured 
that it is reasonably small by collecting a large sample. 

The power of a test concept arises from the Type II error, (3. In fact, the power 

of a test is defined as 1 — (3. The power of a test is the probability of rejecting a false 

null hypothesis. A test that is termed to be more powerful than another is defined as 

a test that is more likely to discover significant differences than another. These tests 

with different power levels can be further compared with a power efficiency index, 

which usually ranges from 0.63 to 1.00. When a test has a power efficiency of 0.75 in 

comparison to another test, it indicates that the weaker test requires a sample size of 

100 to achieve the same power level as the stronger test does with a sample size of 

75. The power of test is usually not computed. Tables are available to estimate the 

power of a test. A more complete treatment of this material may be found in Cohen 

(1988). The notion of power is often used in the estimation of sample size. Several 

computer software programs for conducting power analysis are available. One of the 

more established and better-known is by Borenstein, Cohen, and Rothstein (1997), 

called “Power Precision!” Others are N & Nsurv, and PASS (Power Analysis and 

Sample Size). These programs are expensive and, at the time of this writing, only 

PASS is designed to run on Windows. The other two are DOS-based programs. 

Although Internet information gets outdated quickly, at the present time there is a 

site where a researcher can download a list and a review of software for computing 

power. The Web site address is http://www.interchg.ubc.ca/cacb/power/.2 A DOS- 

2This valuable information was provided by one of the anonymous reviewers of this textbook. 
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based power analysis program is available with the book by Woodward, Bonett, and 
Brecht (1990). 

The Five Steps of Hypothesis Testing 

After our discussion given in the previous sections, we are ready to put in place the 
five major steps used in hypothesis testing. Using our substantive hypothesis we can 
state it statistically. Even though we have referred to it as our statistical hypothesis, 
many statisticians refer to it as the research, or experimental or alternative hypothe¬ 
sis. Step 1 is to state this statistical hypothesis. It will generally be stated in terms of 
population values and it will contain either the not equal sign (^), the greater than 
sign (>), or the less than sign (<). For example, the statistical hypothesis could be 
H\. /xA > /xB, or p-a ~ AU = 0- Step 2 is to state the null hypothesis, H0. This hypoth¬ 
esis will contain the equal to (=) sign. For example, it could be H0 : /xA = p,B, or p,A — 
/jlb = 0. Step 3 is to compute the test statistic using empirical data. The test statistic 
is usually some kind of standard score that expresses a difference in terms of standard 
error (deviation) units. Step 4 is the definition of a decision rule. The decision rule 
gives guidelines or a yardstick to evaluate the test statistic. The probability of a Type I 
error, namely a, enters into the determination of the critical value that is used in the 
rule. Finding the critical value also involves determinating (computing) the degrees 
of freedom and the use of a table of critical values. The decision rule tells us whether 
or not the null hypothesis should be rejected. Step 5 makes the leap of inference 
from the decision made in Step 4 back to the actual problem. It relates the statistical 
test results back to the substantive hypothesis. Table 12.4 gives a summary of these 
five steps. 

Sample Size Determination 

When starting a study a question arises as to how large of a sample should be taken. 
This question is important because we are interested in getting the best information 
for the lowest cost. For those researchers who conduct large surveys where the cost 
of data collection is expensive, sample size determination is critical. When a 
researcher applies for a research grant, determining the sample size as part of the re¬ 
search proposal is important because it tells how much the data collection process 
will cost in terms of time and labor. A sample size that is too large is a waste of re¬ 
sources. A sample that is too small is also a wasted effort since it will not be large 
enough to detect a significant effect (difference). How the samples are drawn and the 
size of the sample controls the total amount of relevant information contained in a 
sample. In Chapter 8 we discussed many sampling procedures. In this chapter, after 
the introduction of some statistics and in particular the standard error, we can 
observe how sample sizes are determined. It is the standard error with some algebraic 
manipulation and some additional information that makes sample size determination 
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U Table 12.4 Summary of the Five Steps of Hypothesis Testing. 

Steps for hypothesis testing Notes 

1. Statement of the null 

hypothesis 
H0:/Xi = /jl2 (note that the null hypothesis contains 
the = sign) 

2. Statement of the alternative 

hypothesis 
Hp Ah ^ /u(ai > n-2 or /Aj < ix2) 

'I 

3. Computation of test statistic Statistic can be z, t, F, Computed from observed 
data. 

4. Decision Rule Uses a, df and table to determine critical value. 

5. Relate decision back to 

original problem 
This is the inferential part. 

possible. By increasing the sample size, the sampling distribution becomes narrower 

and the standard error becomes smaller. As a result, a large sample increases the like¬ 

lihood of detecting a difference. However, too large of a sample will make a very 

small difference statistically significant, but not necessarily of practical significance. 

Although we will try to simplify the concepts and procedures involved, the process of 

determining sample sizes for research studies is not a trivial or easy process. In fact, 

Williams (1978) says it is one of the most difficult problems in applied statistics. The 

answer given by these methods is not entirely accurate and should only be used as a 

guideline for helping make intelligent decisions about the conduct of the study. Such 

usage is still an improvement over a number of rule-of-thumb methods that re¬ 

searchers use without justification. One such rule is the decision to select n number 

of participants based on a proportion of the population size. Although the second au¬ 

thor of this book (HBL) has heard of such rules, he has yet to find such rules written 
anywhere with justification. 

First, we shall introduce how to determine sample sizes for simple random sam¬ 

ples. Here the researcher needs to have the actual value of the population standard 

deviation a, or an estimate of it. Estimates can come from past data or studies. How¬ 

ever, if this is unavailable, the researcher can use the range. This would require an 

estimate of the largest and smallest value in the measurements. Mendenhall and 

Beaver (1994) recommend dividing the range by 4 to obtain an estimate of a. 

Williams (1978) recommends dividing the range by 6. Second, the researcher needs 

to specify the amount of precision (how close the sample mean is from the popula¬ 

tion [true] mean). Some refer to this as how much error the researcher is willing to 

tolerate between the sample mean and the true mean. The third ingredient is the 

amount of risk (in terms of probability) or certainty that is acceptable to the re¬ 
searcher. This is traditionally known as the probability of the Type I error, a. 
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The formula to estimate sample size for a simple random sample is 

Z2cr 

n = ~ 

(12.3) 

where 

Z2 = standard score corresponding to the specified probability of risk. If the risk is 

0.10 (i.e., a = .10), Z = 1.645. For a risk of 0.05, Z = 1.96 and for 0.01 the Z 

is 2.575. 

cr = the standard deviation of the population. 

d = specified deviation. 

This is the desired accuracy of the sample mean. How close does the sample mean 

have to be to the true mean? 

Example 
A researcher is designing a study concerning college students. She will select two 

groups of students. She wants to determine the appropriate number of students she 

should sample for the study. The dependent variable in this study is grade point 

average. She feels she can tolerate a 0.2 deviation between the sample mean and the 

true mean. She is willing to take a risk of 0.05. And past research using grade point 

average has reported a standard deviation that is approximately 0.6. 

For a risk of 0.05 probability, the corresponding Z-value is 1.96. The standard 

deviation is 0.6 and the deviation is 0.2. Using the formula given above, the required 

sample size is estimated to be: 

1.962(0.62) 3.842(.36) 1.383 
n 

l2 .04 .04 
34.6 - 35 

This is 35 subjects per group. So the researcher will need 70 subjects. 

If sampling is from a finite population of size N, and the sampling is done with¬ 

out replacement, Williams (1978) suggests the following adjustment to the formula 

given above. 

n 
ri —- 

1 + n/N 

n' is the estimated sample size, n is the sample size estimated using formula 12.3, and 

N is the size of the population. Using the above example, if we had ascertained that 
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the population size was N = 1,000, then ri would be 

1 + 70/1000 
= 65.421 ~ 66, or 33 in each group. 

This method requires only knowledge of the populations’ standard deviation or its 

estimate and a, the probability of a Type I error. Guilford and Fruchter (1978) pre¬ 

sent a method that also utilizes (3, the probability of the Type II error. In specifying (3, 
as mentioned previously, the power of the statistical test, 1 - (3 is also specified. Re¬ 

searchers who want to protect themselves on both a and (3 can use the formula given 

by Guilford and Fruchter to find a sample size that gives them the desired risks. 
The formula is 

(Zp - ZJV 

d2 
n 

where a = the standard deviation of the population 

d = specified deviation. This is the desired accuracy of the sample mean, i.e., 

how close does the sample mean have to be to the true mean? 

Z« = distance from critical value to mean in H0 (in standard deviation units 
with appropriate sign). 

Z/j = distance from critical value to mean in Hi (in standard deviation units 
with appropriate sign). 

To demonstrate how this formula works, we need to refer back to Figure 12.3, which 

shows the relation between a and (3. By specifying both a and /3 along with the stan¬ 

dard deviation, the sample size can be determined. Provided that the standard devia¬ 

tion was accurately measured, the number of data points collected from a research 

study would meet the specification set up by the a and /3 levels. With specific values 

of a and (3, the two sampling distributions can be displaced in a way such that the ap¬ 

propriate critical value can be found. For example, if we set for our study a = 0.05 

and /3 = 0.10, the Z-values that would satisfy this would be -1.28 for the Hx distrib¬ 

ution and 1.645 for the H0 distribution. Figure 12.4 shows this Z = -1.28 would be 

the value that would cut off (3 = 0.10 on the “Hx is true distribution.” For that same 

point marked “critical value” in Figure 12.4, it would correspond to Z = 1.645 on 
the H0 is true distribution. 

Using the data from the previous example, the estimated sample size would be 

(-1.28 - 1.645)2(0.62) 18.656(.36) 

.04 

6.716 

This is 168 participants per group. 
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M Figure 12.4 

r z for H0 = 1.645 

0 z for Hj = -1.28 H1 

The procedure described above is for a one-tailed test. For a two-tailed test, only 

the Za will change. If the test is two-tailed, then instead of using all of a in the tail, 

we would use all instead. For the example given above, the appropriate Z-value for 

this would be 1.96. 
Using essentially the same data for both examples have led to different values. 

Why is this so? Recall that the probability of a Type II error is not rejecting the null 

hypothesis when there is a true difference. With the Example, the use of 35 subjects 

per group would be necessary to reject the null hypothesis. It is not concerned with 

the possibility of missing any opportunities. Reworking this example with Guilford 

and Fruchter formula, /3, the probability of the Type II is considered and it makes for 

a more sensitive test in terms of detecting a true difference. Hence, with an n — 168, 

we as researchers would not only have enough subjects to reject HQ at a = 0.05, but 

also enough to give us a power (1 — /3) of 0.90. 

Chapter Summary 

1. The standard error is the standard deviation of the sampling distribution of 

sample statistics. 

2. Standard errors serve to evaluate 

a. difference between means 

b. difference between the sample correlation and zero. 

3. Small differences can be statistically significant if the standard error is pro¬ 

portionally smaller. 
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4. Standard errors serve as a yardstick against which experimental variance is 
checked. 

5. Monte Carlo is a method used to create simulated data for a number of situ¬ 

ations where collecting actual data may be expensive or not feasible. 

6. Monte Carlo can be used to show the behavior and meaning of the standard 
error. 

7. The Central Limit Theorem is one of the most important theorems in 
statistics. 

8. By the Central Limit Theorem, the sampling distribution of sample means 

is approximately normal in shape even though the distribution from which 
the samples were drawn was not normal. 

9. A substantive hypothesis is a conjectural statement of relation between two 
variables. 

10. Statistical hypotheses are restatements of substantive hypothesis into statisti¬ 
cal terms. 

11. Hypothesis tests involve the null and statistical hypotheses. 

12. There are five basic steps of hypothesis testing. 

13. The standard error is an important part in sample size determination. 

Study Suggestions 

1. Good references on statistics, fortunately, are plentiful. Ask your instructor 

for recommendations. The books mentioned below may be helpful. Choose 

one or two to supplement your study. In reading a statistics book, do not be 

discouraged if you do not completely understand everything you read. 

Indeed, sometimes you may be completely bewildered. As you acquire 

understanding of the language and methods of the statistician, most of the 
difficulties will disappear. 

Comrey, A. L., & Lee, H. B. (1995). Elementary statistics: A problem-solving 

approach (3rd ed.). Dubuque, IA: Kendall-Hunt. A good book for the be¬ 

ginning student. The topics are organized in the form of 50 problems. 

Freedman, D., Pisani, R., & Purves, R. (1997) Statistics (3rd ed.). New York: 

Norton. Accessible to the beginning student. Good discussions of inter¬ 

esting studies and problems. Applications oriented. Tries to avoid the 
use of symbols and statistical notation. 

Glass, G., & Hopkins, (1996). Statistical methods in education and psychology 

(3rd ed.). Boston: Allyn & Bacon. A well-written book with good treat¬ 

ment of difficult concepts. Gives an interesting computer demonstration 
of the Central Limit Theorem. 

Hays, W. L. (1994). Statistics (5th ed.). Fort Worth, TX: Harcourt Brace. 

Superb: thorough, authoritative, research-oriented—but not elemen¬ 

tary. Its careful study should be a goal of serious students and re¬ 
searchers. 
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Kirk, R. E. (1990). Statistics: An introduction (3rd ed.). Fort Worth, TX: Holt, 

Rinehart and Winston. A well-written and informative treatment of sta¬ 

tistics; a good reference for beginners. 

Mattson, D. E. (1984). Statistics: Difficult concepts, understandable explanations. 

Oak Park, IL: Bolchazy-Carducci Publishers. Each chapter is broken 

down into lessons. A good treatment on public health data. 

Natrella, M. G. (1966). Experimental Statistics. National Bureau of Standards 

Handbook 91. Washington, DC: U.S. Government Printing Office. A 

dated but well-presented book produced by the U.S. Government. 

Contains a set of charts that are useful in estimating sample sizes for a 

number of different statistical tests. 

Snedecor, G., Cochran, W., & Cox, D. R. (1989). Statistical method (8th ed.). 

Ames: Iowa State University Press. Solid, authoritative, helpful, but not 

elementary. Excellent reference book. 

2. The proportions of men and women voters in a certain county are 0.70 and 

0.30, respectively. In one election district of 400 people, there are 300 men 

and 100 women. Can it be said that the district’s proportions of men and 

women voters differ significantly from those of the county? 

[Answer: Yes. y2 = 4.76. y2 table entry, 0.05 level, for df— 1 is 3.84.] 

3. An investigator in the field of prejudice experimented with various methods 

of answering the prejudiced person’s remarks about minority group mem¬ 

bers. The investigator assigned 32 subjects randomly to two groups with 16 

in each group. With the first group method A is used. Method B is used on 

the second group. The means of the two groups on an attitude test, adminis¬ 

tered after the methods were used were A: 27, and B: 25. Each group had a 

standard deviation of 4. Do the two group means differ significantly? 

[Answer: No. (27 - 25)/1.414 = 1.414.] 

4. The evenly distributed 4,000 random numbers discussed in the text and the 

statistics calculated from the random numbers are given in Appendix C at 

the end of the book. Use a table of random numbers — the 4,000 random 

numbers will do—and wave a pencil in the air with eyes closed and let it 

come to rest at any point in the table. Going down the columns from the 

place the table was entered, copy out 10 numbers in the range from 1 

through 40. Let these be the numbers of 10 of the 40 groups. The means, 

variances, and standard deviations are given right after the table of 4,000 

random numbers. Copy out the means of the groups selected randomly. 

Round the means; that is, 54.33 becomes 54, 47.87 becomes 48, and so on. 

a. Calculate the mean of the means, and compare it to the population mean 

of 50 (really 50.33). Did you come close? 

b. Calculate the standard deviation of the 10 means. 

c. Take the first group selected and calculate the standard error of the 

mean, using N = 100 and the reported standard deviation. Do the same 

for the fourth and ninth groups. Are the SEMs alike? Interpret the first 

SEm. Compare the results of (b) and (c). 
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d. Calculate the differences between the first and sixth means and the fourth 

and tenth means. Test the two differences for statistical significance. 

Should they be statistically significant? Give the reason for your answer. 

Make up an experimental situation and imagine that the fourth and tenth 

means are your results. Interpret. 

e. Discuss the central limit theorem in relation to (d), above. 

5. For now, the variance and the standard deviation have been calculated with 

N in the denominator. In statistics books, the student will encounter the 

variance formula as: V= Xx2/N, or V = Xx2/(N - 1). The first formula is 

used when only describing a sample or population. The second is used when 

estimating the variance of a population with the sample variance (or stan¬ 

dard deviation). With N large, there is little practical difference. In later 

chapters, we will see that the denominators of variance estimates always have 

N - 1, k - 1, and so on. These are really degrees of freedom. Most com¬ 

puter programs use N — 1 to calculate standard deviations. Perhaps the best 

advice is to always use N — 1. Even when it is not appropriate, it will not 
make that much difference. 

6. Statistics are not always viewed favorably. Marxists, for example, are not too 

sympathetic. (Why, do you suppose?) There is an interesting education 

study where a design with a control group was used. However no statistical 

tests of significance or measures of the magnitude of relations were used: 

See DeCorte and Verschaffel (1981). The student may find it interesting to 
read this study. 

7- There has been much discussion in education about the presumed virtues of 

the “open” educational environment. In a study by Wright (1975) of the dif¬ 

ference between “open” and “traditional” school environments, a number of 

interesting mean differences were reported. Among these mean differences, 

those in Word Meaning and Verbal Creativity (p. 453) were as follows: 

Word Meaning 

Traditional Open 
Verbal Creativity 

Traditional Open 

N 50 50 50 50 

M 4.84 4.35 135.38 129.60 

SD 1.19 .78 23.5 19.2 

Calculate the two t-ratios and interpret the results. (Use Equation 12.1 and 
substitute in Equation 12.2.) 

[Answers: Word Meaning: t = 2.43 (p , 0.05); Verbal Creativity *=135 
(n.s.).] 

8. Review the Scattone and Saetermoe (1997) study. Note that the authors did 

a t-test of the means. These means, however, reflect the independent vari¬ 

able. Analysis of data with /-tests and similar statistics is usually done on de- 
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pendent variable measures. Were the authors wrong? If so, why? Could a t- 

test of the dependent variable, or “disability” measures conceivably have 

been not significant? If so, what happens to the authors’ hypothesis? (We 

ignore here other possible kinds of analysis.) 

[Hint: What is predicted in problems of this kind? Think of hypotheses as 

“If p, then q” statements.] 
9. A researcher is asked to conduct a study on intelligence test scores. A spe¬ 

cific school district claims that the students are averaging a score of 90 on 

the test. She needs to obtain a sample of size n that is large enough in order 

to obtain a sample mean that will not differ from 90 by more than 2 points 

with 99% confidence. The district also reports a standard deviation of 10.2. 

How large should n be? 
10. Using the data from Problem 9, if we know the district has 1,500 students, 

how large should n be? 
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Analysis of Variance: 
Foundations 

■ Variance Breakdown: A Simple Example 

■ The t- Ratio Approach 

■ The Analysis of Variance Approach 

* An Example of a Statistically Significant Difference 

m Calculation of One-Way Analysis of Variance 

■ A Research Example 

■ Strength of Relations: Correlation and the Analysis of Variance 

■ Broadening the Structure: Post Hoc Tests and Planned Comparison 

Post Hoc Tests 

Planned Comparisons 

a Computer Addendum 

£-Ratio or f-Test on SPSS 

One-Way ANOVA on SPSS 

■ Addendum 
Analysis of Variance Calculations, with Means, Standard Deviations, and ns 

The analysis of variance is not merely a statistical method. It is an approach and a 

way of thinking. It is also one of the many expressions of what is known as the gen¬ 

eral linear model. This model is actually a linear equation—linear means that no 

terms of the equation have powers greater than 1—that expresses the sources of 

variance of a set of measures. In a form suitable for analysis of variance, it can be 

written: 

y = b0x0 + b\X\ + b2x2 + • • • + bkxk + e 
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(Note that none of the xs has a power greater than 1; that is, there are no x^s or x3s.) 

If we conceive a score of one individual, y, as having one or more sources of variance, 

xhx2, , then we can roughly grasp the idea of the model. The bs are weights that 

express the relative degrees of influence of the xs in accounting for y. e is error; it ex¬ 

presses the unknown factors that influence y along with, of course, ubiquitous ran¬ 

dom error. The equation is general: it fits most analytic situations in which we wish 

to explain the variation of a set of measures of a dependent variable, y. For analysis of 

variance models, the equation simplifies to one of several specific forms, which we 

need not now examine. The point is that dependent variable measures are conceived 

as having two or more components, and the task of analysis of variance is to deter¬ 

mine the relative contributions of these components to the dependent variable varia¬ 

tion. As we will see toward the end of the book, this is one of the goals of multiple 

regression, as well as of other analytic methods. We must try to make these abstrac¬ 

tions concrete and understandable. However, for now, just bear this in mind: the to¬ 

tal dependent variable variance of any statistical situation is broken down into com¬ 
ponent sources of variance. 

In this chapter and in chapters 14 and 15 we explore the analysis of variance. 

The emphasis will be on the few fundamental and general notions that underlie the 

method. The chapters are not meant merely to teach analysis of variance and related 

methods as statistics; their intent is to convey the basic ideas of the methods in rela¬ 

tion to research and research problems. To accomplish this pedagogical purpose, 

simple examples will be used. It makes little difference whether five scores or 500 

scores are used, or if two or 20 variables are used. The fbndamental ideas, the theo¬ 

retical conceptions, are the same. In this chapter, simple one-way analysis of variance is 

discussed. The next two chapters consider so-called factorial analysis of variance and 

the analysis of variance of correlated groups or subjects. By then the student should 
have a good basis for the study of research design. 

Variance Breakdown: A Simple Example 

In Chapter 6, two sets of scores were analyzed in a variance fashion. The total vari¬ 

ance o a the scores was broken down into a between-groups variance and a with in¬ 

groups variance. We now pick up the theme of Chapter 6 by using, in altered form 

t e two-group example given there, and by correcting the method of calculation! 
I hen we extend analysis of variance ideas considerably. 

Suppose an investigator is interested in the relative efficacies of two methods A, 

and A2 We use methods here and elsewhere because the word is general and easily 

grasped. Students can supply the substance of different methods of their own field 

For example, in education, it might be methods of teaching; in psychology, methods 

o reinforcement or attention arousal; in political science, methods of participation in 

po i ical processes Ten students are selected as a sample. The sample is divided into 

two groups at random Each group is assigned at random to the experimental treat¬ 

ments. After a suitable length of time, the learning of the students in both groups is 

Z:^rgaT^rent teSt- The results’ toSether certain computa¬ tions, are given in Table 13.1. ^ 
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HI Table 13.1 Two Sets of Hypothetical Experimental Data with Sums, Means, 

and Sums of Squares 

Ay X x2 a2 X X2 

4 0 0 3 0 0 

5 1 1 1 -2 4 

3 -1 1 5 2 4 

2 -2 4 2 -1 1 

6 2 4 4 1 1 

XX 20 15 XX, = 35 

M 4 3 Mt = 3.5 

Xv2 10 10 

Our job is to locate and calculate the different variances that make up the total 

variance. The total variance and the other variances are calculated as before, with an 

important difference. Instead of using N or n in the denominator of variance frac¬ 

tions, we use so-called degrees of freedom. Degrees of freedom are ordinarily 

defined as one case less than N or n; that is, N - 1 and n - 1. In the case of groups, 

instead of k (the number of groups), we use f - 1. While this method has a great 

advantage from a statistical point of view, from a mathematical-conceptual point of 

view it makes our job a bit more difficult. First, we do the computations, and then 

return to the difficulty. 
To calculate the total variance, we use the formula: 

^x2 

vt =- (13.1) 
N - 1 

where (Xt2 equals the sum-of-squares, as before, x = X — M, or deviation from the 

mean of any score, and N equals number of cases in the total sample. To calculate 

Vt, simply take all the scores, regardless of their grouping, and calculate the necessary 

terms of Equation 13.1, as in Table 13.2. Since N — 1 = 10 — 1 = 9, Vt = 22.50/9 = 

2.5. Thus, if we arrange the data of Table 13.1 without regard to the two groups, 

Vt = 2.5. 
There is variance between the groups, and this variance is due, presumably, to 

the experimental manipulation. That is, the experimenter did something to one 

group and something different to the other group. These different treatments should 

make the groups and their means different. They will have between-groups variance. 

Take the two means, treat them like any other scores (Xs), and calculate their vari¬ 

ance (see Table 13.3). 
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[Ml Table 13.2 Calculation of Vb from Table 13.1 Data 

X X X2 

4 .5 .25 

5 1.5 2.25 

3 -.5 .25 

2 -1.5 2.25 

6 2.5 6.25 

3 -.5 .25 

1 -2.5 6.25 

5 1.5 2.25 

2 -1.5 2.25 

4 .5 .25 

Xx 35 

M 3.5 

Xx2 22.50 

There is a remaining source of variance left over: the ubiquitous random error. 

We saw in Chapter 6 that this could be obtained by calculating the variance within 

each group separately, and then averaging these separate variances. We do this using 

the figures given in Table 13.1. Each group has Xx2 = 10. Dividing each of these 

sums-of-squares by its degrees of freedom, we get: 

and 

10 

”A, ~ 1 4 

10 

nA2 ~ 1 4 

The averaging yields, of course, 2.5. Therefore, the within-groups variance, Vw, is 2 5 

Three variances have been calculated: Vt = 2.5, Vb = .50, Vw = 2.5. The theoretical 

equation given in Chapter 6 says that the total variance is made up of separate 

sources °f variance: the between-groups and the within-groups variances. Logically, 

they should add up to the total variance. The theoretical equation is 

Vt = Vb + Vw (13.2) 
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HI Table 13.3 Calculation of Vhfrom Table 13.1 Data 

X X x2 

4 .5 .25 

3 .5 .25 

XX 7 

M 3.5 

Xt2 .50 

Vb = 
.50 

2 - 1 
= .50 

Since 2.5 is not equal to 0.50 and 2.5, something must be wrong. The trouble is that 

degrees of freedom were used in the denominators of the variance formula instead of 

N, n, and k. Had N, n, and k been used, the relation of Equation 13.2 would have 

held (see Chapter 6). If N, n and k were used, the values would have been Vt = 2.25, 

Vh = 0.25 and Vw = 2. 

The student may ask: Why not follow the N, n, and k procedure? And if you 

cannot follow it, why bother with all this? The answer is that the calculation of the 

variances with N, n, and k is mathematically correct but statistically “unsatisfactory.” 

Another important aspect of the analysis of variance is the estimation of population 

values. It can be shown that using degrees of freedom in the denominators of the 

variance formula yields unbiased estimates of the population values, a matter of great 

statistical concern. The reason we bother going through the present procedure is 

to show the reader clearly the mathematical basis of the reasoning. One should 

remember, though, that variances, as used in the analysis of variance, are not neces¬ 

sarily additive. 
Sums-of-squares, on the other hand, are always additive. (They are calculated 

from the scores and not divided by anything.) And sums-of-squares, of course, are 

also measures of variability. Except at the final stage of analysis of variance, sums-of- 

squares are calculated, studied, and analyzed. To convince ourselves of the additive 

property of sums-of-squares, note that the between-groups and the within-groups 

sums-of-squares add to the total sum-of-squares. If we multiply the between-groups 

sum-of-squares by n, the number of cases in each group: 

Xxf2 = n2jXb + ILxf 

or numerically, 22.50 = (5)(.50) + 20. 

The reasoning behind the expression nXxb2 in this equation is as follows. The 

definition of an unbiased estimate of the variance of the population of means is 
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VM = Xxr/(n - 1). But from our reasoning on the standard error and the standard 

variance, we know that VM = SVM = V/n. Substituting in the first equation, we get 

V/ii = 1<x2/(k — 1), and thus V = nHx2/{k — 1). It should be noted here that the ex¬ 

pression, ntxf, indicated in Chapter 6, is really the between sum-of-squares — and 

not Xxb2, as indicated in Chapter 6 and subsequent chapters. That is, instead of writ¬ 

ing Xxb2, statisticians write ssb, which is really ntxb. 

\ 

The £-Ratio Approach 

Using the data from Table 13.1, we calculate several statistics for the Ax and A2 data 

separately: the variances, standard deviations, standard errors of the means, and stan¬ 

dard variances of the means. The methods of analysis used in the first part of this 

chapter are not used in actual calculation because they are too cumbersome. They 

are used here only for pedagogical reasons. Unfortunately, the usual method of cal¬ 

culation tends to obscure the important relations and operations underlying the 

analysis of variance. These calculations are shown in Table 13.4. (Note that Vis now 
calculated with n - 1 instead of n.) 

We now consider the central statistical idea behind the analysis of variance. The 

question the investigator has to ask himself or herself is: Do the means differ signifi¬ 

cantly? It is obvious that 4 does not equal 3, but the question has to be asked statisti¬ 

cally. We know that if sets of random numbers are drawn, the means of the sets will 

not be equal. They should, however, not be too different; that is, they should differ 

only within the bounds of chance fluctuations. Thus the question becomes: Does 4 

differ from 3 significantly? Again the null hypothesis is set up: H0: /jlm - /iA2 = 0, or 

Am = AA2• The substantive hypothesis was: Hx: ^ ^ Which hypothesis does 

the evidence support? In different words, it is not simply a question of 4 being 

US0Ur greater than 3; lt: ls’ rather> a question of whether 4 differs from 3 beyond 
the differences to be expected by chance. 

H] Table 13.4 Various Statistics Calculated from Table 13.1 Data 

A 2 

V: 
n — 

2 10 

1 = 4 “ 2'5 
10 

4 
2.5 

SD: - 1.58 : 1.58 

SD 1.58 1 58 
SEm: 

Vra 

II II o
 

V5 
= .705 

SVM: 
V 

n 

2.5 
: — = .50 2.5 

5 
.50 
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This question can be quickly answered using the methods of the last chapter. 

First, calculate the standard error of the differences between the means: 

'M. ,2 + semj 

= V(-705)2 + (.705)2 = ^[^)94 = .997 = 1.00 (rounded). 

Now, the f-ratio: 

_ MAi ~~ MA2 __ 4 — 3 _ 1 _ ^ 

SEMm-mA2 1-00 1 

Since the difference being evaluated is no greater than the measure of error, it is 

obvious that it is not significant. The numerator and the denominator of the t-ratio 

are equal. The difference, 4 — 3 = 1, is clearly one of the differences that could have 

occurred with random numbers. Remember that a “real” difference would be 

reflected in the t-ratio by a considerably larger numerator than denominator. 

The Analysis of Variance Approach 

In the analysis of variance, the approach is conceptually similar, although the method 

differs. The method is general: Differences of more than two groups can be tested 

for statistical significance, whereas the f-test applies to only two groups. (With two 

groups, as we shall see shortly, the results of the two methods are really identical.) 

The method of analysis of variance uses variances entirely, instead of using actual 

differences and standard errors, even though the actual difference-standard error 

reasoning is behind the method. Two variances are always pitted against each other. 

One variance, presumably due to the experimental (independent) variable or vari¬ 

ables, is pitted against another variance, which is presumably due to error or ran¬ 

domness. To get a grip on this idea, go back to the problem. 

We found that the between-groups variance was 0.50. We must now find a vari¬ 

ance that is a reflection of error. This is the within-groups variance. After all, since we 

calculate the within-groups variance, essentially, by calculating the variance of each 

group separately and then averaging the two (or more) variances, this estimate of er¬ 

ror is unaffected by the differences between the means. Thus, if nothing else is causing 

the scores to vary, it is reasonable to consider the within-groups variance as a measure 

of chance fluctuation. If this is so, then we can stack up the variance due to the experi¬ 

mental effect, the between-groups variance, against this measure of chance error, the within- 

groups variance. The only question is: How is the within-groups variance calculated? 

Remember that the variance of a population of means can be estimated with the 

standard variance of the mean (the standard error squared). One way to obtain the 

within-groups variance is to calculate the standard variance of each of the groups and 
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then average them for all of the groups. This should yield an estimate of error that 

can be used to evaluate the variance of the means of the groups. The reasoning here 

is basic. To evaluate the differences between the means, it is necessary to refer to a 

theoretical population of means that would be obtained from the random sampling 

of groups of scores like the groups of scores we have. In the present case we have two 

means from samples with five scores in each group. (It is well to remember that we 

might have three, four, or more means from three, four, or more groups. The 

reasoning is the same.) If participants were assigned to the groups at random, and 

nothing has operated — that is, there have been no experimental manipulations and 

no other systematic influences at work—then it is possible to estimate the variance 

of the means of the population of means with the standard variance of the means 

(SEm2, or SVM). Each group provides such an estimate. These estimates will vary to 

some extent among themselves. We can pool them by averaging to form an overall 

estimate of the variance of the population means. 

Recall that the standard error of the mean formula was: SEM = SD/'fn. Simply 

square this expression to get the standard variance of the mean: SEM2 = (,SD)2/n = 

SVM = V/n. The variances of each of the groups was 2.5. Calculating the standard 

variances, we obtain for each group: SV^ — V/n = 2.50/5 = 0.50. Averaging them 

obviously yields .50. Note carefully that each standard variance was calculated from 

each group separately and then averaged. Therefore, this average standard variance is 

uninfluenced by differences between the means, as noted earlier. The average stan¬ 

dard variance, then, is a within-groups variance. It is an estimate of random errors. 

But if random numbers had been used, the same reasoning applies to the be- 

tween-groups variance, the variance calculated from the actual means. We calculated 

a variance from the means of 4 and 3: it was 0.50. If the numbers were random, esti¬ 

mating the variance of the population of means should be possible by calculating the 
variance of the obtained means. 

Note carefully, however, that if any extraneous influence has been at work if 

anything like experimental effects have operated, then the variance calculated from 

the obtained means will no longer be a good estimate of the population variance of 

means. If an experimental influence — or some influence other than chance — has op- 

erated, the effect may be to increase the variance of the obtained means. In a sense, 

this is the purpose of experimental manipulation: to increase the variance between 

means, to make the means different from each other. This is the crux of the analysis 

o variance matter If an experimental manipulation has been influential, then it 

should show up in differences between means above and beyond the differences that 

arise by chance alone And the between-groups variance should show the influence 

by becoming greater than expected by chance. Clearly we can use Vb then, as a mea¬ 

sure of experimental influence. Equally clearly, as we showed above, we can use V 

as a measure of chance variation. Therefore, we have almost reached the end of "a 

r*tulu°nS uUt profitable j°urney: We can evaluate the between-groups variance, Vb, 
wi the within-groups variance, Vw. Or information, experimental information, can 
be weighed against error or chance. 

It might be possible to evaluate by subtracting K from it. In the analysis of 

variance, however, V„ is divided by V,. The ratio so formed is called the /ratio. 
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Snedecor named the F-ratio in honor of Ronald Fisher, the inventor of the analysis 

of variance. It was Snedecor who worked out the F-tables used to evaluate F-ratios. 

One calculates the F-ratio from observed data and checks the result against a value 

from the F-table. (The F-table with direction for its use can be found in any statistics 

text.) If the obtained F-ratio is as great or greater than the appropriate tabled entry, 

the differences that Vb reflect are statistically significant. In such a case the null 

hypothesis of no differences between the means is rejected at the chosen level of 

significance. In the present case: 

Vb .50 
F =-=-= 1 

K .50 

One obviously does not need the F-table to see that the F-ratio is not significant. 

Evidently the two means of 4 and 3 do not differ from each other significantly. In 

other words, of the many possible random samples of pairs of groups of five cases 

each, this particular case could easily be one of them. Flad the difference been con¬ 

siderably greater, great enough to tip the F-ratio balance scale, then the conclusion 

would have been quite different, as we shall see. Note that the t-test and analysis of 

variance yielded the same result. With only two groups, or one degree of freedom 

(k — 1), F — t2, or t = VF. This equality shows that it does not matter, in the case of 

two groups, whether t or F is calculated. (But the analysis of variance is a bit easier to 

calculate than t, in most cases.) With three or more groups, however, the equality 

breaks down; F must always be calculated. Thus F is the general test of which t is a 

special case. 

An Example of a Statistically Significant Difference 

Suppose that the investigator had obtained quite different results. Say the means had 

been 6 and 3, rather than 4 and 3. We now take the above example and add a con¬ 

stant of 2 to each At score. This operation, of course, merely restores the scores used in 

Chapter 6. It was said earlier that adding a constant, to a set of scores (or subtracting 

a constant) changes the mean by the constant, but has no effect whatsoever on the vari¬ 

ance. The figures are given in Table 13.5. 

It is important to note carefully that the 2x2 values are the same as they were 

before, 10. Note, too, that the variances, V, are the same, 2.5. So are the standard 

variances, each being 0.50. As far as these statistics are concerned, then, there is no 

difference between this example and the previous example. But now we calculate the 

between-groups variance (Table 13.6). Vb is nine times greater than it was before: 

4.50 versus 0.50. But Vw is exactly the same as it was before. This is an important 

point. To repeat: adding a constant to one set of scores—which is tantamount to an 

experimental manipulation, since one of the purposes of an experiment of this kind is 

to augment or diminish one set of measures (the experimental group measures), 

while the other set does not change (the control group measures) — has no effect on 
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[ID Table 13.5 Hypothetical Experimental Data for Two Groups: Table 13.1 Data 
Altered 

At X x2 A2 X X2 

4 + 2 = 6 0 0 3 0 0 

5 + 2 - 7 1 1 1 -2 4 

3 + 2 = 5 -1 
V 

1 5 2 4 

2 + 2 = 4 -2 4 2 -1 1 

6 + 2 — 8 2 4 4 1 1 

XX 30 15 

M 6 3 

XX2 10 10 

V: 

SV: 
V _ 2.5 

n 5 
- .50 

10 

4 

2.5 

5 

- 2.5 

= .50 

the within-groups variance, whereas the between-groups variance changes drastically. 

Note that the estimates of Vb and Vw, are independent of each other. (If they are not, 

by the way the rules and assumptions of F-test are violated.) 

The F-ratio is F = Vb/Vw = 4.50/.50 = 9. Evidendy, information is much 

greater than error. Does this mean that the difference 6 — 3 = 3 is a statistically 

H Table 13.6 Calculation of Between-Groups Variance Data 
from Table 13.5 

X X X2 

6 1.5 2.25 

3 -1.5 2.25 

XX 9 

M 4.5 

Xx2 
4.50 

^4 4.50 

k - 1 2-1 
- 4.50 
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significant difference? If we check an Stable, we find that, in this case, an F-ratio of 

5.32 or greater is significant at the 0.05 level. (The details of how to read an F-table 

are given later in this chapter.) To be significant at the 0.01 level, the F-ratio in this 

case would have to be 11.26 or greater. Our F-ratio is 9. It is greater than 5.32 but 

less than 11.26. It seems that the difference of 3 is a statistically significant difference 

at the 0.05 level. Therefore, 6^3, and the null hypothesis is rejected. 

culation of One-Way Analysis of Variance 

In this computer age, a researcher interested in performing an analysis of variance 

would most likely have a computer and appropriate software for statistical analysis 

available. The use of a computer would be the first choice as far as computations are 

concerned. However, if you happen to be in a situation where you do not have a 

computer and are armed only with a hand calculator, doing the calculations for 

a one-way ANOVA via calculator is not difficult or complex. This section is given 

for those who feel they either need to know how a one-way ANOVA would be 

computed, or they would want to do one using a hand calculator. 

Simple one-way analysis of variance is easier to do than the procedure outlined 

in the previous section. To show the method, the example just considered will be 

used. By now the reader should be able to follow the procedure without difficulty. 

Note that deviation scores (x’s) are not used at all. One can calculate entirely with 

raw scores. There will be certain differences in the variances. In the preceding exam¬ 

ples, standard variances were used in order to show the underlying rationale of 

the analysis of variance. In the following method, however, although the same 

method is used, certain steps are omitted because it is possible to do the calculation 

in a much easier way. 

The calculations of Table 13.7 can easily be followed. First, in the body of the 

table, note that the raw scores, the Vs, are each squared. They are then added to 

yield the XV2s at the bottom of the table (190 and 55). The purpose of doing this is 

to obtain XV/2 = 245 (190 + 55), at the right and bottom: read XVy as “The total 

sum of all the squared Vs.” The XVs and Ms are calculated as usual (even though we 

do not really need the Ms, except for later interpretation). Next, each group sum is 

squared and written (2V)2. They are (30)2 = 900 and (15)2 = 225. (Be careful here. A 

frequent mistake is to confuse XV2 and (XV)2.) At the bottom right of the table 

proper, (Xt, (XVr)2, Mt and XVf2 are entered. They are statistics of all the scores and 

are calculated in the same way as the individual group statistics. 

Next, the calculations of the sums-of-squares (hereafter, ss). In the analysis of 

variance, mostly sums-of-squares are calculated and used. The variances or mean 

squares are reserved for the final analysis of variance table (at the bottom of Table 

13.7). What we are after in this procedure are the total, the between and the within 

sums-of-squares, or sst, ssh, and ssw. First, the calculation of C, the correction term. 

Since we are using raw scores, and since we are aiming at sums-of-squares, which are 

the sums of the deviations squared, we must reduce the raw scores to deviation scores. 

To accomplish this, we subtract C from every calculation. This accomplishes the 
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reduction: it changes, in effect, Xs to vs. The actual calculation of C is obvious. Here 

it is 202.50. 

The total sum-of-squares, sst is now calculated: 42.50. The between, or between- 

groups, or between-means, sum-of-squares is not as obvious. The sum of each 

group’s scores is squared and then divided by the number of scores in the group. 

These averages are then added. From this sum C is subtracted. The result is the 

between-groups sum-of-squares, or ssh. And this is all there is to the simple one-way 

analysis of variance. The within sum-of-squares, ssw is calculated by subtraction. The 

following equation is important and should be remembered: 

sst = ssi + ssw (13.3) 

Almost all calculators that are priced around $10 today have built-in statistical 

function keys. There is generally one which allows the user to find the mean and an¬ 

other to find the standard deviation. In many cases, these calculators have a standard 

[Ml Table 13.7 Calculation of Analysis of Variance: Fictitious Data. 

Xai Y 2 A-Al x^2 Y 2 A-A2 

6 36 3 9 N = 10 

7 49 1 1 n = 5 

5 25 5 25 k = 2 

4 16 2 4 

8 64 4 16 

XX: 30 15 X, = 45 

(XX)2: 900 225 (XX,)2 = 2025 

M 6 3 M, = 9 

XX2 190 55 XXf2 = 245 

c = 
(IK)1 

N 

(45)2 2025 

10 = 10 = 202'50 

Total ss = 2x2 - C = 245 - 202.50 = 42.50 

Between ss = 
GX,)2 

_ nA\ 

GX)21 

nA2 

- C 

= 
(30)2 ( (15)21 

5 
- 202.50 = (180 + 45) - 202.50 = 22.50 
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Source df ss MS F 

Between groups k- 1 = 1 22.50 22.50 9.0(0.05) 

Within groups N - k = 8 20.00 2.50 

Total N- 1 =9 42.50 

deviation function for standard deviations computed using N and another using N — 1. 

Learning how to use these function buttons greatly simplifies computations and leads 

to fewer errors. Also, using these function keys will help in doing the computations 

for a one-way ANOVA. For example, the C term can be computed as M2 X N. This 

says that you can enter in all of your data, disregarding group membership and then 

get C by pressing the key for the mean, squaring it, and multiplying by the number 

of data points (scores). Likewise, you can get the total sum-of-squares sst by the for¬ 

mula SD2 X (N) or .q2 X (N — 1). [Note: The lowercase s was computer using the 

degrees of freedom; i.e, N-l, instead of N.] This is done by pressing the key for the 

standard deviation, squaring it, and multiplying it by either N or N — 1. You would 

multiply by N if the function key you pressed was for the standard deviation com¬ 

puted using N. You would multiply by N — 1 if the key you pressed was for the stan¬ 

dard deviation computed using N — 1. Hence, you can enter your data into the cal¬ 

culator one time and get C and sst through some simple key presses. 

Recall Equation 13.2: Vt = Vb + Vw. Equation 13.3 is the same equation in the 

sums-of-squares form. Equation 13.2 cannot be used since, as was pointed out ear¬ 

lier, it is a theoretical formulation that only works exactly under the conditions speci¬ 

fied. Equation 13.3 always works; that is, sums-of-squares in the analysis of variance 

are always additive. So, with a little algebraic manipulation we see that ssw = sst — ssb. 

To obtain the within sum-of-squares, in other words, simply subtract the between 

from the total sum-of-squares. In the table, 42.50 — 22.50 = 20. (It is, of course, 

possible to calculate the within sum-of-squares directly.) 

After completing the above calculation, we enter the degrees of freedom (df in 

the final table). Although formulas have been entered, they are not necessary to the 

operation. For the total degrees of freedom, simply take one less than the total num¬ 

ber of participants used. If, for example, there were three experimental groups with 

30 ss in each group, the total degrees of freedom are N — 1 = 90 — 1 = 89. The be- 

tween-groups degrees of freedom are one less than the number of experimental 

groups. With three experimental groups, ^ — 1 = 3 — 1 = 2. With the example of 

Table 13.7, k — 1 = 2 — 1 = 1. The within-groups degrees of freedom, like the 

within-groups sum-of-squares, are obtained by subtraction. In this case, 9—1=8. 

Next, divide the degrees of freedom into the sums-of-squares (ss/df) to obtain the 

between- and within-mean squares, labeled MS in the table. In the analysis of vari¬ 

ance, the variances are called “mean squares.” Finally, obtain the F-ratio by dividing 

the within or error variance or mean square into the between variance or mean 

square: F = MS)/MSw = 22.50/2.50 = 9. This final F-ratio (also called the variance 
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m Table 13.8 Critical Values of F 

df for between 

df for 
Within 1 2 3 4 

1 161 200 216 225 
4,052 4,999 5,403 5,625 

2 18.51 19.00 19.16 19.25 
98.49 99.00 99.17 99.25 

3 10.13 9.55 9.28 9.12 
34.12 30.82 29.46 28.71 

4 7.71 6.94 6.39 6.26 
21.20 18.00 15.98 15.52 

5 6.61 5.14 4.76 4.53 
16.26 10.92 9.78 9.15 

6 5.99 5.14 4.76 4.53 
13.74 10.92 9.78 9.15 

7 5.59 4.74 4.35 4.12 
12.25 9.55 8.45 7.85 

8 5.32 4.46 4.07 3.84 
11.26 8.65 7.59 7.01 

9 5.12 4.26 3.86 3.63 
10.56 8.02 6.99 6.42 

10 4.96 4.10 3.71 3.48 
10.04 7.56 6.55 5.99 

ratio) is checked against appropriate entries in an F-table to determine its signifi¬ 
cance, as discussed previously. 

An abbreviated F-Table is presented in Table 13.8. In order to use this table, we 

must first decide on a level of significance (either 0.05 or 0.01). Then we look along 

the top row to find the degrees of freedom for the between group variance. In our 

example it is k — 1 = 1. Next we look down the first column to find the degrees of 

freedom for the withm-groups variance. It is N - k = 8. The value we seek (also 

called the critical value) is found by the intersection of the row and the.column. 

When we do this we find two values: 5.32 and 11.26. The boldfaced type is 
for a — 0.01 and the text type is for a = 0.05. 
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Research Example 

To illustrate the research use of one-way analysis of variance, data from an early 

experimental study by Hurlock (1925), mentioned earlier in this book, are given in 

Table 13.9. The data were not analyzed in this manner by Hurlock, the analysis of 

variance not being available at the time of the study. The first three lines in Table 

13.9 were reported by Hurlock. All the other figures were calculated by the authors 

from these figures (see Addendum to chapter). Hurlock divided 106 fourth- and 

sixth-grade pupils into four groups, Eu E2, £3, and C. Five forms of an addition test, 

A, B, C, D, and E, were used. Form A was administered to all the participants on the 

first day. For the next four days the experimental groups, Eu E2, and £3, were given a 

different form of the test. Group C (the control group) was separated from the other 

groups and given different forms of the test on four separate days. The participants 

of Group C were told to work as usual. But each day before the tests were given, the 

£1 group was brought to the front of the room and praised for its good work. Then 

the E2 group was brought forward and reproved for its poor work. The members of 

the £3 group were ignored. On the fifth day of the experiment, Form E was adminis¬ 

tered to all groups. Scores were the number of correct answers on this form of the 

test. Summary data are given in Table 13.9, together with the table of the final analy¬ 
sis of variance. 

Since £ = 10.08, which is significant at the 0.001 level, the null hypothesis of 

no differences between the means has to be rejected. Evidently the experimental ma¬ 

nipulations were effective. There is not much difference between the Ignored and 

Control groups, an interesting finding. The Praised group has the largest mean, with 

the Reproved group mean in between the Praised group and the other two groups. 

HI Table 13.9 Summary Data and Analysis of Variance of Data 

(from Hurlock study) 

El: Praise E2: Reprove E3: Ignore C: Control 

n: 27 27 26 26 

M: 20.22 14.19 12.38 11.35 

SD: 7.68 6.78 6.06 4.21 

Source df SS MS F 

Between groups 3 1260.06 420.02 10.08(0.001) 

Within groups 102 4249.29 41.66 

Total 105 5509.35 
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The student can complete the interpretation of the data. After an analysis of vari¬ 

ance of this kind, some investigators test pairs of means with t-tests. Unless specific 

differences between means, or groups of means, have been predicted before the analy¬ 

sis, this procedure is questionable. We take up this problem later in the chapter (see 

Study Suggestion 6). 

Strength of Relations: 

Correlation and the Analysis of Variance 

Tests of statistical significance like t and F unfortunately do not indicate the magni¬ 

tude or strength of relations. A t-test of the difference between two means, if signifi¬ 

cant, simply tells the investigator that there is a relation. An F-test, similarly, if 

significant, simply states that a relation exists. The relation is inferred from the sig¬ 

nificant differences between two, three, or more means. A statistical test like F says in 

an indirect way that there is or is not a relation between the independent variable (or 

variables) and the dependent variable. 

In contrast to tests of statistical significance like t and F, coefficients of correla¬ 

tion are relatively direct measures of relations. They have an easily “seen” and direct 

intuitive message, since the joining of two sets of scores more obviously seems like a 

relation. It follows our earlier definition of a relation as a set of ordered pairs. If, for 

example, r — .90, it is easy to see that the rank orders of the measures of two vari¬ 

ables are very similar. But t- and F-ratios are one or two steps removed from the ac¬ 

tual relation. An important research technical question, then, is how t and F, on the 
one hand, and measures like r, on the other, are related. 

In an analysis of variance, the variable on the margins of the data table (methods 

of incentive in the Hurlock example) is the independent variable. The measures in 

the body of the table reflect the dependent variable (i.e., arithmetic achievement in 

the Hurlock example). The analysis of variance works with the relation between 

these two kinds of variables. If the independent variable has had an effect on the 

dependent variable, then this would upset the “equality” of the means of the experi¬ 

mental groups that would be expected if the numbers being analyzed were random 

numbers. The effect of a really influential independent variable is to make means 

unequal. We can say, then, that any relation that exists between the independent and 

dependent variables is reflected in the inequality of the means. The more unequal 

the means, the wider apart they are, the higher the relation, other things being equal. 

If no relation exists between the independent variable and the dependent variable, 

then it is as though we had sets of random numbers and, consequently, random 

means. The differences between the means would only be chance fluctuations. An F- 

test would show them not to be significantly different. If a relation does exist, if there 

is a tie or bond between the independent and dependent variables, the imposition of 

different aspects of the independent variable, like different methods of instruction, 

should make the measures of the dependent variable vary accordingly. Method Ax 

might make achievement scores go up, whereas method A2 might make them go down 
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[Ml Table 13.10 Strong Relation between Methods of Instruction and Achievement 

Independent Variable Dependent 

(Methods of Variable 

Instruction) (Achievement) Means 

Method A v 

Method A2 

Method At, 

10 

9 9 

9 

8 

7 

7 7 

7 

7 

5 

4 4 

4 

3 

or stay about the same. Note that we have the same phenomenon of concomitant 

variation that we did with the correlation coefficient. Take two extreme cases: a 

strong relation and a zero relation. We lay out a hypothetically strong relation be¬ 

tween methods and achievement in Table 13.10. Note that the dependent variable 

scores vary directly with the independent variable methods: Method A1 has high 

scores, method A2 medium scores, and method A3 low scores. The relation is also 

shown by comparing methods and the means of the dependent variable. 

Compare the example of Table 13.10 with chance expectation. If there was no 

relation between methods and achievement, then the achievement means would not 

covary with methods. That is, the means would be nearly equal. In order to show 

this, we wrote the 12 achievement scores of Table 13.10 on separate slips of paper. 

These slips were mixed up thoroughly in a hat. All slips were then thrown on the 

floor. The slips were picked up four at a time, assigning the first four to Au the sec¬ 

ond four to A2, and the third four to A3. The results are shown in Table 13.11. 

Now it is difficult, or impossible, to “see” a relation. The means differ, but not 

much. Certainly, the relation between methods and achievement scores (and means) 

is not nearly as clear as it was before. Still, we have to be sure. Analyses of variance of 

both sets of data were performed. The F-ratio of the data of Table 13.10 (strong rela¬ 

tion) was 57.59, highly significant, whereas the F-ratio of the data of Table 13.11 
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HO Table 13.11 Zero Relation between Methods of Instruction and Achievement 

Independent Variable Dependent 

(Methods of Variable 
Instruction) (Achievement) Means 

4 

8 7.25 
Method A j 

10 

7 

3 

Method A2 
5 5.25 

4 

9 

7 

Method At, 

7 7.50 

7 

9 

(low or zero relation) was 1.29, not significant. The statistical tests confirm our visual 

impressions. We now know that there is a relation between methods and achieve¬ 
ment in Table 13.10 but not in Table 13.11. 

The problem, however, is to show the relation between significance tests like the 

F-test and the correlation method. This can be done in several ways. We illustrate 

with two such ways, one graphical and one statistical. In Figure 13.1 the data from 

Table 13.10 and Table 13.11 have been plotted much as continuous X and Y mea¬ 

sures in the usual correlation problem are plotted. In each case, the independent 

variable (Methods) is placed on the horizontal axis, and the dependent variable 

(Achievement) is on the vertical axis. To indicate the relation, lines have been drawn 

as near to the means as possible. A diagonal line making a 45 —degree angle with the 

horizontal axis would indicate a strong relation. A horizontal line across the graph 

would indicate a zero relation. Note that the plotted scores of the data from Table 

13.10 clearly indicate a strong relation: the height of the plotted scores (crosses) and 

the means (circles) varies with the method. The plot of the data from Table 13.11, 

even with a rearrangement of the methods for purposes of comparison, shows a weak 
relation or no relation. 

Let us now look at the problem statistically. It is possible to calculate correlation 

coefficients with data of this kind. If one has done an analysis of variance, a simple 
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(but not entirely satisfactory) coefficient is yielded by the following formula: 

Of course ssb and sst are the between-groups sum-of-squares and the total sum-of- 

squares, respectively. One simply takes these sums-of-squares from the analysis of 

variance table to calculate the coefficient. 17, usually called the correlation ratio, is a 

general coefficient or index of relation often used with data that are not linear. (Lin¬ 

ear, roughly speaking, means that, if two variables are plotted one against another, 

the plot tends to follow a straight line. This is another way of saying what was said in 

Chapter 12 about linear combinations.) Its values vary from 0 to 1.00. We are inter¬ 

ested here only in its use with analysis of variance and in its power to tell us the 

magnitude of the relation between independent and dependent variables. 

Recall that the means of the data from Table 13.1 were 3 and 4. They were not 

significantly different. Therefore there is no relation between the independent vari¬ 

able (methods) and the dependent variable (achievement). If an analysis of variance 

of the data from Table 13.1 is done using the method outlined in Table 13.7, then 

ssy — 2.50 and sst = 22.50. 

7] = V2.50/22.50 = vTITT = 0.33 

yields the correlation between methods and achievement. Since we know that the 

data are not significant (F = 1), 17 is not significant. In other words, 17 = 0.33 is here 

tantamount to a zero relation. Had there been no difference at all between the 
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means, then, of course, 17 = 0. If ssh = sst, then 17 = 1.00. This can happen only if all 
the scores of one group are the same, and all the scores of the other group are the 
same as, and yet different from, those of the first group. In practice this event is 
highly unlikely. For example, if the A\ scores were 4, 4, 4, 4, 4, and the A2 scores 
were 3, 3, 3, 3, 3, then 

sse — sst = 2.5, and 17 = ^2.5/2.5 = 1. 

It is obvious that there is no within-groups variance. Again, this is extremely unlikely. 
Take the data from Table 13.7. The means are 6 and 3. They are significantly differ¬ 
ent, since F = 9. Calculate 7/: 

V = 
22.50 

42.50 
^[J29 = 0.73 

Note the substantial increase in 77. And since F is significant, 77 = 0.73 is significant. 
There is a substantial relation between methods and achievement. 

The Hurlock study is more interesting: 

77 = Vl260.06/5509.35 = ^229 = 0.48, 

which is of course significant. Other things being equal, incentive is substantially 
related to arithmetic achievement, as defined. 

By now the student has sufficient background to interpret 172 in variance terms. 
In Chapter 6, this was done for r, where it was explained that r2 indicated the vari¬ 
ance shared by two variables. T72 can be given a similar interpretation. If 77 is squared, 
T72 indicates, in essence, the variance shared by the independent and dependent vari¬ 
ables. Perhaps more to the point, ry indicates the proportion of the variance of the 
dependent variable, say achievement, determined by the variance of the independent 
variable, methods, or incentives. For example, in the Hurlock example, ry = (0.48)2 
= 0.23, which indicates that 23% of the variance of the arithmetic addition scores is 
accounted for by the different modes of incentives used by Hurlock. 

7]2 is an index of the proportion of variance accounted for in this sample. An¬ 
other index, <u2, omega squared, (see Hays, 1994) is an estimate of the strength of as¬ 
sociation between the independent variable and the population dependent variable. 
We recommend its use: 

? ^ - (k - 1 )MSW 
l --- 

T + MSW 
(13.5) 

where k equals number of groups in the analysis of variance and the other terms are 
the sums-of-squares and mean squares defined earlier, yf is a conservative estimate of 
the strength of association or relation between the independent variable X and the 
dependent variable Y, or between the variable reflected by the experimental treat¬ 
ment and the dependent variable measure. Calculating co2 for the Hurlock example, 
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0) 
2 

1260.06 - (4 - 1)(41.66) 

5509.35 + 41.66 
0.205 

This is rather close to the value of rj2, 0.23. if is comparable to co2 rather than to p. 

Both indices indicate the proportion of variance in a dependent variable due to the 

presumed influence of an independent variable. There are other indices available to 

report the amount of variance accounted for. In the first and second editions of this 

book, the intraclass correlation coefficient, RI, was recommended. RI however, is 

better suited for a different type of analysis of variance model than the one presented 

here (see Hays, 1994). 

The formula for RI is: 

MS) - MSL 
m _ _£_®_ 

MS) + (nj - 1)MS), 

The relations between these measures, and their relative merits are not easy 

problems. Vaughan and Corballis (1969) discusses this problem. Simon (1987) highly 

encourages the use of these measures over significant tests. Simon points out that 

significant tests are prone to sample size influences. However, if and or are not. 

The point of the above discussion has been to bring out the similarity of concep¬ 

tion of these and other indices of association or correlation. A more important 

discussion concerned the similarity of the principle and structure of analysis of 

variance and correlation methods. From a practical and applied standpoint, it should 

be emphasized that rf, co2 and RI, or other measures of association should always be 

calculated and reported. It is not enough to report F-ratios and whether they 

are statistically significant. We must know how strong relations are. After all, 

with large enough Ns, F- and t-ratios can almost always be statistically significant. 

While often sobering in their effect, especially when they are low, coefficients of 

association of independent and dependent variables are indispensable parts of 

research results. 

Broadening the Structure: 

Post H oc Tests and Planned Comparisons 

The approach used in this chapter and the next two chapters, while pedagogically 

useful, is too rigid. That is, the emphasis is on neat paradigms that have as their cul¬ 

mination the F-test and some measure of relation. Actual research, however, fre¬ 

quently does not fit into such nice shapes and thinking. Nevertheless, the basic 

analysis of variance notions can be used in a broader and freer way, with an expansion 

of the design and statistical possibilities. We examine such possibilities within the 

general framework of this chapter. 
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Post Hoc Tests 

Suppose an experiment like Hurlock’s has been done and the experimenter has the 

data from Table 13.9. The experimenter knows that the overall differences among 

the means are statistically significant. But the experimenter does not know which dif¬ 

ferences contribute to the significance. Can one simply test the differences between 

all pairs of means to tell which are significant? Yes and no, but generally no. Such 

tests are not independent and, with sufficient numbers of tests, one can be significant 

by chance. In short, such a “shotgun” procedure capitalizes on chance. Moreover, it 
is blind and what has been called “no-headed.” 

There are several ways to do post hoc tests, but we mention only one of them 

briefly. Zwick (1993), Edwards (1984), and Kirk (1995) give excellent descriptions of 

a number of different tests. The Scheffe test (see Scheffe, 1959), if used with discre¬ 

tion, is a general method that can be applied to all comparisons of means after an 

analysis of variance. If and only if the F-test is significant, one can test all the differ¬ 

ences between means. One can test the combined mean of two or more groups 

against the mean of one other group; or one can select any combination of means 

against any other combination. Such a test with the ability to do so much is very use¬ 

ful. But we pay for the generality and usefulness: the test is quite conservative. To at¬ 

tain significance, differences have to be rather substantial. The Scheffe test is the 

most conservative test available for multiple comparison tests. Linton and Gallo (1975) 

shows the relation between the different tests and probability of a Type I error. The 

Scheffe test has the lowest probability of committing a Type I error yet has the low¬ 

est probability of detecting a difference when one exists (power). The main point is 

that post hoc comparisons and tests of means can be done mainly for exploratory and 

interpretative purposes. One examines his or her data in detail; one rummages for in¬ 
sights and clues. 

Since it would take us too far afield, the mechanics of the Scheffe test are not 

given here (but see Study Suggestion 6 at the end of the chapter or Comrey and Lee, 

1995, chapters 10 and 11). Suffice it to say that, when applied to the Hurlock data 

from Table 13.9, it shows that the Praised mean is significantly greater than the other 

three means and that none of the other differences are significant. This is important 

information because it points directly to the main source of the significance of the 

overall F-ratio: Praise versus Reproof, Ignoring, and Control. (However, the differ¬ 

ence between an average of means 1 and 2 versus an average of means 3 and 4 is also 

statistically significant.) Although one can see this from the relative sizes of the 
means, the Scheffe test makes things precise—in a conservative way. 

Planned Comparisons 

While post hoc tests are important in actual research, especially for exploring one’s 

data and for getting leads for future research, the method of planned comparisons 

is perhaps more important scientifically. Whenever hypotheses are formulated 

and systematically tested and empirical results support them, this is much more pow¬ 

erful evidence on the empirical validity of the hypotheses than when “interesting” 
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(sometimes translated: “support my predilections”) results are found after the data 

are obtained. This point was made in Chapter 2 where the power of hypotheses was 

explained. 

In the analysis of variance, an overall F-test, if significant, simply indicates that 

there are significant differences somewhere in the data. Inspection of the means can 

tell one, though imprecisely, which differences are important. To test hypotheses, 

however, more or less controlled and precise statistical tests are needed. There is a 

large variety of possible comparisons in any set of data that one can test. But which 

ones? As usual, the research problem and the theory behind the problem should dic¬ 

tate the statistical tests. One designs research in part to test substantive hypotheses. 

Suppose the reinforcement theory behind the Hurlock study said, in effect, that 

any kind of attention, positive or negative, will improve performance, and that posi¬ 

tive reinforcement will improve it more than punishment. This would mean that E{ 

and E2 of Table 13.9, taken together or separately, will be significantly greater than 

£3 and C taken together or separately. That is, both Praised (positive reinforcement) 

and Reproved (punishment) will be significantly greater than Ignored (no reinforce¬ 

ment) and Control (no reinforcement). In addition, the theory says that the effect of 

positive reinforcement is greater than the effect of punishment. Thus Praised will be 

significantly greater than Reproved. These implied tests can be written symbolically: 

M-i + M2 M3 + Ma 
H,:C, = -L--- > —L--1 

H2:C2 = Mx> M2 

where Q indicates the first comparison and C2 the second. We have here the ingredi¬ 

ents of a one-way analysis of variance, but the simple overall test and its democracy 

of means have been radically changed. That is, the plan and design of the research 

have changed under the impact of the theory and the research problem. 

When the Scheffe test is used, the overall F-ratio must be significant because 

none of the Scheffe tests can be significant if the overall F is not significant. When 

planned comparisons are used, however, no overall F-test need be made. The focus is 

on the planned comparisons and the hypotheses. The number of comparisons and 

tests made are limited by the degrees of freedom. In the Hurlock example, there are 

three degrees of freedom for between groups (k — 1); therefore, three tests can be 

made. These tests have to be orthogonal to each other—that is, they must be inde¬ 

pendent. We keep the comparisons orthogonal by using what are called orthogonal co¬ 

efficients or contrasts, which are weights to be attached to the means in the compar¬ 

isons. The coefficients, in other words, specify the comparisons. The coefficients or 

weights for Hx and H2, above, are: 

Ffyl/2 1/2 -1/2 -1/2 

H2: 1-1 0 0 
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For comparisons to be orthogonal, two conditions must be met: the sum of each set 

of weights must equal 0, and the sum of the products of any two sets of weights must 

also be zero. It is obvious that both of the above sets sum to zero. Test the sum of the 

products: (1/2)(1) + (l/2)(—1) + (—1/2)(0) + (—1/2)(0) = 0. Thus the two sets of 
weights are orthogonal. 

It is important to understand orthogonal weights, as well as the two conditions 

just given. The first set of weights simply represents: (M1 + M2)/2 — (M3 + M4)/2. 

The second set represents: — M2. Now, suppose we also wanted to test the notion 

that the Ignored mean is greater than the Control mean. This is tested by: M3 — M4, 

and is coded: Hy 0 0 1 — 1. Henceforth, we will call these weight vectors. The 

values of the vector sum to zero. What about its sum of products with the other two 
vectors? 

Hi X Hy (l/2)(0) + (l/2)(0) + (-1/2)0) + (—1/2)(— 1) = 0 

H2 X Hy (1)(0) + (—1)(0) + (0)(1) + (0)(-l) = 0 

The third vector is orthogonal to, or independent of, the other two vectors. The 

third comparison can be made. If these three comparisons are made, no other is 

possible because the available k - 1 = 4 - 1 = 3 degrees of freedom are used up. 

Suppose, now, that instead of the H3 above, we wanted to test the difference 

between the average of the first three means against the fourth mean. The coding is: 

1/3 1/3 1/3 1. This is tantamount to (/Vfj + M2 + iVf3)/3 + Tf4. Is the vector or¬ 
thogonal to the first two? Calculate: 

(1/2X1/3) + (l/2)(l/3) + (— l/2)(l/3) + (—1/2)(—1) 
= 1/6 + 1/6 - 1/6 + 1/2 = 4/6 = 2/3. 

Since the sum of the products does not equal zero, it is not orthogonal to the first 

vector, and the comparison should not be made. The comparison implied by the vec¬ 

tor would yield redundant information. In this case, the comparison using the third 
vector supplies information already given in part by the first vector. 

The method of calculating the significance of the differences of planned compar¬ 

isons need not be detailed. Besides, at this point we do not need the actual calcula¬ 

tions. Our purpose, we hope, is a larger one: to show the flexibility and power of 

analysis of variance when properly conceived and understood. F-tests (or f-tests) are 

used with each comparison or, in this case, with each degree of freedom. The details : 

of calculations can be found in Hays (1994) and other texts. The basic idea 

of planned comparisons is quite general, and we use it again when we study research 
design. 

We have come a long, perhaps hard, way on the analysis-of-variance road. One 

may wonder why so much space has been devoted to the subject. There are several 

reasons^ First, the analysis of variance has wide practical applicability. It takes many 

forms that are applicable in psychology, sociology, economics, political science, agri¬ 

culture, biology, education, and other fields. It frees us from working with only one 
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independent variable at a time and gives us a powerful lever for solving measurement 

problems. It increases the possibilities of making experiments exact and precise. It 

also permits us to test several hypotheses simultaneously, as well as to test hypotheses 

that cannot be tested in any other way, at least with precision. Thus its generality of 

application is great. 

More germane to the purposes of this book, the analysis of variance gives us in¬ 

sight into modern research approaches and methods. It does this by focusing sharply 

and constantly on variance thinking, by making clear the close relation between 

research problems and statistical methods and inference, and by clarifying the struc¬ 

ture, the architecture, of research design. It is also an important step in understand¬ 

ing contemporary multivariate conceptions of research because it is an expression of 

the general linear model. 

The model of dais chapter is simple and can be written: 

y = u0 + A + e 

where y is the dependent variable score of an individual, a0 is a term common to all 

individuals, for example, the general mean of y. A is the effect of the independent 

variable treatment, and e is error. The model of the next chapter will be slightly more 

complex and, before the book is finished, models will become much more complex. 

As we will see, the general linear model is flexible and generally applicable to many 

research problems and situations. Perhaps of more immediate weight to us, it can 

help us better understand the common threads and themes of different multivariate 

approaches and methods. 

omputer Addendum 

In this chapter we examined the t-ratio that was used to analyze the difference 

between two means and the one-way analysis of variance that can be used to analyze 

the difference between two or more group means. Technically we would refer to the 

groups as levels of the independent variable and the outcome measure as the depen¬ 

dent variable. Although such computations can be done by hand or with a hand 

calculator, it is sometimes more efficient to use a computer. We introduced in Chap¬ 

ter 6 and demonstrated how it can be used to analyze frequency data in Chapter 10. 

In this chapter we will show how one can use it to perform a t-test and a one-way 

ANOVA. It is expected that the reader has read and understood the computer mater¬ 

ial in Chapter 6 and Chapter 10 concerning the creation of the data table in SPSS. 

£-Ratio or f-Test on SPSS 

The data are taken from Table 13.1. Note that when dealing with group member¬ 

ship, it is expressed as a categorical variable. In this case, the independent variable, 
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[Ml Figure 13.2 Data Table for t-Test in SPSS 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

Group Score 

1 1 4 

2 1 5 

3 1 3 

4 1 2 

5 1 6 

6 2 3 

7 2 1 

8 2 5 

9 2 2 

10 2 4 

[1 Figure 13.3 Selecting the Appropriate Statistical Analysis in SPSS 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

Group Score Summarize ► 
Compare Means ► 
ANOVA Models ► 
Correlate ► 
Regression ► 
Log-linear ► 
Classify ► 

Data Reduction ► 
Scale ► 

Nonparametric Tests ► 

■ Means 

One-Sample T-Test 

Independent Samples T-Test 
Paired Samples T-Test 

One Way ANOVA 

1 1 4 

2 1 5 

3 1 3 

4 1 2 

5 1 6 

6 2 3 

7 2 1 

8 2 5 

9 2 2 

10 2 4 



CHAPTER 13 as Analysis of Variance: Foundations 333 

OH FIGURE 13.4 SPSS Screen for Specifying the btdependent and Dependent 

Variables 

Independent Samples T-Test 

Group 

Score 

Test Variable 

Grouping Variable 

Define Groups 

OK 

Paste 

Insert 

Cancel 

Help 

Options 

Group, is written as a variable with two levels. For Au Group = 1; for A2, Group = 

2. The second variable, Score is the dependent variable. SPSS and some other com¬ 

puter programs for statistical analyses expect the data to be entered into the program 

in such a manner. Figure 13.2 shows what the data table for SPSS should look like 

for this problem. 
Using the mouse, point to and click on “Statistics.” Another menu will appear 

listing the different analyses one can perform on the data. For your f-test, select 

“Compare Means.” This selection in turn gives another menu from which you 

choose “Independent Samples T-Test.” This is shown in Figure 13.3. 

When “Independent Samples T-Test” is selected, you are given a new screen 

asking you to decide which variable listed in your data table should be specified as 

the independent variable and which should be the dependent variable. Figure 13.4 

shows this panel without any changes made by the user. Using SPSS terminology, 

“Test Variable” refers to the dependent variables; “Grouping Variable” refers to the 

independent variables. 
We can specify the dependent or test variable first by highlighting the “Score” 

variable in the left-most box and clicking on the arrow button associated with the 

Test Variable box. We will see the Score variable name move from the left-most box 

to the top right-most box when this happens. Next, highlight (select) the indepen¬ 

dent or “Grouping Variable.” In our example it is named “Group.” After highlight¬ 

ing it click on the arrow button associated with the “Grouping Variable” box, the 

variable name, Group will move from the left-most box to the Grouping Variable 

box. Figure 13.5 shows what this screen looks like after these operations. 

Note that the Group variable has a set of parentheses surrounding two question 

marks. This tells you that you need to specify the levels of the independent variable. 
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M Figure 13.5 Screen after Specifying the Independent and Dependent 

Variables 

Independent Samples T-Test 

Test Variable 

Score 

OK 

Paste 

Insert 

Grouping Variable 

| Group (?, ?) 

Define Groups 

Cancel 

Help 

Options 

OH] Figure 13.6 Screen Used to Define Levels of the Independent Variable 

Independent Samples T-Test 

Test Variable 

Score 

Grouping Variable 

Group (?, ?) 

Define Groups 

OK 

Paste 

Insert 

Cancel 

Help 

Options 

Define Groups 

0 Use Specific Values 

Group 1 1 Continue 

Group 2 2 Cancel 

0 Cutpoint Help 
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FIGURE 13.7 Screen Showing Aftermath of Defining the Groups for the 

Independent Variable 

Independent Samples T-Test 

Test Variable 

Grouping Variable 

I Group (1, 2) 

Define Groups 

OK 

Paste 

Insert 

Cancel 

Help 

Options 

The values would correspond to the ones used in your original data table. For our 

example it would be 1 and 2. To tell SPSS this, click on the “Define Groups” button. 

When this is done, you get yet another panel screen that allows you to define the lev¬ 

els for the variable, Group. Figure 13.6 shows what this screen looks like. Note that 

we will enter “1” for Group 1 and “2” for Group 2. By clicking on the “Continue” 

button, you will return to the previous screen. However, the two question marks are 

gone and replaced by the specification “1, 2.” 
We need to digress here a bit before finishing SPSS and the t-test. Let’s say we 

had more than two levels of the independent variable (i.e., say, three or more 

groups). The f-test can only compare two levels (groups) at a time. If we had three 

groups, we could do the t-test between groups 1 and 2, groups 1 and 3, or groups 2 

and 3. In the screen displayed in Figure 13.6, we would specify Group 1 with an 

index of “1” and Group 2 with an index of “3” if we were interested in comparing 

groups 1 and 3. If we were interested in comparing groups 2 and 3, we would 

have specified a “2” for Group 1 and a “3” for Group 2 in the screen shown in 

Figure 13.6. 
Figure 13.7 shows the screen after clicking on the “Continue” button shown in 

Figure 13.6. If we now click on the “OK” button, the statistical analysis requested 

will be performed on the data. The output from this analysis is given in the box be¬ 

low. Note that the t-value computed is the same as the one done by hand for the data 

in Table 13.1. SPSS also gives us the probability of a Type I error. In this case it is 

.347. It is larger than .05, so the difference between means is not statistically sig- 

nifcant. 
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t-test for Independent Samples 

Number 
Variable of Cases 

of GROUP 

Mean SD SE of Mean 

SCORE 

GROUP 1 5 4.0000 1.581 .707 

GROUP 2 5 3.0000 1.581 .707 

Mean Difference = 1.0000 

Levene’s Test for Equality of Variances: F = .000 p = 1.000 

t-test for Equality of Means 

Variances t-value df 2-Tail Sig SE of Diff 
95% 

Cl for Diff 

Equal 1.00 8 .347 1.000 (-1.306, 3.306) 

Unequal 1.00 8.00 .347 1.000 (-1.306, 3.306) 

One-Way ANOVA on SPSS 

Again, we are assuming that the reader has created the data table within SPSS and is 

about to select and perform a specific statistical analysis. Figure 13.8 shows the data 

H Figure 13.8 Data Table for One-Way ANOVA Example 

File Edit View Data Transform Statistics Graphs Utilities Windows Hein 

Group Score 

1 1 6 

2 1 7 

3 1 5 

4 1 4 

5 1 8 

6 2 3 

7 2 1 

8 2 5 

9 2 2 

10 2 4 
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FIGURE 13.9a SPSS Screen Used to Select Independent and Dependent 

Variables 

One WayANOVA 

Dependent List 
OK 

Paste 

Insert 

Cancel 

Factor 
Help 

Define Range 
Options 

Contrasts Post Hoc Options 

table to be used in SPSS. The data were taken from Table 13.7. Although there are 

only two groups, the procedure shown here would be very similar for more than two 

groups or more than two levels of the independent variable. We saw when we did the 

t-test, that having the mouse point to and click on “Statistics,” gave us another menu 

listing the different analyses one can perform on the data. Figure 13.3 shows the menus. 

1b1 FIGURE 13.9b Screen Used for Specifying the Dependent and Independent 

Variables 

One Way ANOVA 

Contrasts 

Dependent List 

Score 

Factor 

Group (?, ?) 

OK 

Paste 

Insert 

Cancel 

Help 

Define Range 

Post Hoc Options 

Options 
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For a one-way ANOVA, choose “Compare Means.” This selection gives a new 

menu from which you choose “One Way ANOVA.” When you do this, you get a 

screen that asks you to specify which variable in your data table will be the indepen¬ 

dent variable(s) and the dependent variable(s). This screen is shown in Figure 13.8. 

As you did for the t-test, choose “Score” as the dependent variable and “Group” as 

the independent variable. Here, in SPSS terminology “Dependent List” is for the de¬ 

pendent variable and “Factor” is for the independent variable (see Figure 13.9a). 

Like the screens used in the t-test, highlight the “Score” variable name in the left¬ 

most box and click on the arrow for the “Dependent List” box. This moves the vari¬ 

able name “Score” to the box associated with the Dependent List. Do likewise for 

the “Group” variable label—move it to the box associated with “Factor.” When this 

is done, you will see that SPSS asks you to specify the range of values for the depen¬ 

dent variable. Figure 13.9a and Figure 13.9b show this. To define the factors (inde¬ 

pendent variables) click on the button labeled “Define Range.” From this operation, 

another screen appears. This is shown in Figure 13.10. Enter the numbers “1” and 

“2” for the minimum and maximum values of the independent variable. If you had 

three groups which were specified in the data table as “1, 2, and 3,” you would spec¬ 

ify the minimum as 1 and the maximum as 3. SPSS expects a systematic ordering of 

the categories of the independent variable. Once you have finished defining the 

Figure 13.10 Screen Used to Define the Range of Values for the 

Independent Variable 

One Way ANOVA 

Dependent List 

Factor 

Group (?, ?) 

Define Range 

Contrasts 

OK 

Paste 

Insert 

Cancel 

Help 

Optior 

One Way ANOVA: Define Range 

Continue 

Minimum 

Maximum 

1 Cancel 

2 Help 
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FIGURE 13.11 One-Way ANOVA Screen after Defining the Range 

One WayANOVA 

Dependent List 
OK 

Paste 

Insert 

Cancel 

Factor 

Group (1, 2) 
Help 

Define Range 
Options 

Contrasts Post Hoc Options 

range, click on the “Continue” button. This action will return you to the One Way 

ANOVA screen with the range for the independent variable defined (shown in Fig¬ 

ure 13.11). Now click the “OK” button and analysis will begin. Note that if we 

wanted post hoc multiple comparison tests we could do those by clicking on “Post 

Hoc” (see Figure 13.11) before telling SPSS to go ahead with the analysis. When 

“Post Hoc” is activated, a screen containing a list of the most used post hoc tests is 

presented. The user needs only to select the one wanted. 

The results of the one-way ANOVA for the data are given in the box below. The 

results agree with those we had performed by hand. With SPSS, a table lookup for 

the critical value used to reject or not reject the null hypothesis is not necessary. 

-ONEWAY- 

Variable SCORE 

By Variable GROUP 

Analysis of Variance 

Sum of Mean F F 

Source D.F. Squares Squares Ratio Prob. 

Between Groups 1 22.5000 22.5000 9.0000 .0171 

Within Groups 8 20.0000 2.5000 

Total 9 42.5000 
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Addendum 

Analysis of Variance Calculations 

with Means, Standard Deviations, and ns 

It is sometimes useful to be able to do analysis of variance from means, standard 

deviations, and ns of groups rather than from raw scores. One method of doing so 

follows (the data from Table 13.7 are used to illustrate the method): 

1. From the ns and Ms calculate the sums of the groups, XXj. Add these to ob¬ 
tain XXt. Calculate total N from the ns of the groups. 

2A, = X [Mjnj] = (5)(6) + (5)(3) = 45; N = 5 + 5 = 10 

2. Correction term: ($Xt)1 2 3 4 5/N = 452/10 = 202.50 (C). 

3. Calculate the within-groups sum-of-squares: the average of the sums-of- 
squares within the groups: 

(1.58112)(4) + (1.58112)(4) = 19.9990 = 20 = ssw 

4. Calculate between sums-of-squares: 

ssb = 2 [njMj2] — C 

ssb = [(62)(5) + (32)(5)] - C = 225.00 - 202.50 = 22.50. 

5. Set up analysis of variance table (as in Table 13.7), and calculate mean squares 
and F-ratio. 

Special Note: This method assumes that the original standard deviations were calcu¬ 

lated with n - 1. If they were calculated with n, alter step 3, above: (1.41422)(51 + 
(1.41422)(5) = 20. That is, change 4 to 5, or n - 1 to n. 

Chapter Summary 

1. The variance of the dependent variable can be broken up into two or more 
components. 

2. Components are called sources of variance. 

3. The sources of variance serve as the basis for the statistical method known as 
analysis of variance or ANOVA. 

4. In a one-way ANOVA, the sources are between-group and within-group 
variances. ° r 

5. A statistically significant difference is present when the between group 

variance exceed the within-group variance by a significant amount. An 
r-tabie is used to determine the critical value. 
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6. A demonstration is given with both fictitious data and real data on how to 

compute the appropriate values in an analysis of variance. 

7. The strength of the relation between the independent and dependent vari¬ 

ables is determined by either rj1 2 or or. These measures are not sensitive to 

sample size and are interpreted like r2. 

8. When an F-test is significant and there are three or more groups (or 

levels of the independent variable), multiple comparison tests are needed to 

determine which means are statistically different. 

9. The Scheffe test is presented as a multiple comparison test. Where there is 

no predetermined plan for comparisons, the tests are called post hoc tests. 

10. Comparisons determined before conducting the test are called planned com¬ 

parisons. 

11. The material in this chapter introduces the concepts necessary for the next 

two chapters concerning the analysis of variance. 

Study Suggestions 

1. There are many good references on analysis of variance, varying in difficulty 

and clarity of explanation. Hays’ (1994) discussion that includes the general 

linear model, is as usual excellent, but not easy. It is highly recommended for 

careful study. The following four books are very good indeed. All are staples 

of statistical diet. Some are also listed in the reference section because they 

were cited in the text. 

Edwards, A. L. (1984). Experimental design in psychological research (5th ed.). 

Reading, MA: Addison-Wesley. 

Hays, W. L. (1994). Statistics (5th ed.). Fort Worth, TX: Harcourt Brace. 

Kirk, R. E. (1995). Experimental designs: Procedures for the behavioral sciences. 

Pacific Grove, CA: Brooks/Cole. 
Woodward, J. A., Bonett, D. G., & Brecht, M. (1990). Introduction to linear 

models and experimental design. San Diego, CA: Harcourt Brace Jo- 

vanovich. 

Some students may like to read an interesting history of analysis of variance, 

especially in psychology, followed by a history of the 0.05 level of statistical 

significance. For those students, the following are recommended: 

Cowles, M. (1989). Statistics in psychology: An historical perspective. Hillsdale, 

NJ: Lawrence Erlbaum. 
Rucci, A., & Tweny, R. (1980). Analysis of variance and the second discipline 

of scientific psychology: A historical account. Psychological Bulletin, 87, 

166-184. 



342 Part Five a Analysis of Variance 

2. A university professor conducts an experiment to test the relative efficacies 

of three methods of instruction: Au Lecture; A2, Large-Group Discussion; 

and Ai, Small-Group Discussion. From a universe of sophomores, 30 are 

selected at random and assigned randomly to three groups. The three meth¬ 

ods are assigned randomly to the three groups. The students are tested for 

their achievement at the end of four months of the experiment. The scores 
for the three groups are given below. 

Methods 

A2 (Large-Group 

^/(Lecture) Discussion) 

A3 (Small-Group 

Discussion) 

4 5 

7 6 

9 3 

6 8 

9 3 

6 2 

5 5 

7 6 

7 7 

10 5 

3 

5 

1 

4 

4 

5 

7 

3 

5 

3 

Test the null hypothesis, using one-way analysis of variance and the 0.01 level 

of significance. Calculate 172 and at2. Interpret the results. Draw a graph of the 
data similar to those in the text. 

[Answers: F = 7.16 (.01); r,2 = .35; a;2 = .29] 

3 From a table of random numbers—you can use those in Appendix C —draw 
three samples of 10 each of numbers 0 through 9. 

a. Make up a research study, with problem and hypotheses, and imagine that 
the three sets of numbers are your results. 

b. Do an analysis of variance of the three sets of numbers. Calculate 77, rf, 
and co . Draw a graph of the results like those of Figure 13.1. Interpret the 
results both statistically and substantively. 

c. Add a constant of 2 to each of the scores of the group with the highest 

mean. Do the calculations and graph of (b), above, again. Interpret. What 

changes take place in the statistics? [Examine the sums-of-squares espe¬ 

cially, taking careful note of the within groups variances (mean squares) of 
both examples.] 
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4. Take the scores of the highest and lowest groups in Study Suggestion 2, above 

(groups A! and Af3). 

a. Do an analysis of variance, and calculate the square root of F, a/f. Now do 

a r-test as described in Chapter 12. Compare the t obtained with a/f. 

b. Is it legitimate, after doing the analysis of variance of the three groups, to 

calculate the f-ratio as instructed and then to draw conclusions about the 

difference between the two methods? (Consult your instructor, if necessary. 

This point is difficult.) 

[Answers: (a) F = 14.46; Vf = 3.80, t = 3.80; (c) t?2 = .45; w2 = .40] 

5. Aronson and Mills (1959) tested the interesting and perhaps humanly per¬ 

verse hypothesis that individuals who undergo an unpleasant initiation to be¬ 

come members of a group have more liking for the group than do members 

who do not undergo such an initiation. Three groups of 21 young women 

each were subjected to three experimental conditions: (i) severe condition, in 

which the 5s were asked to read obscene words and vivid descriptions of sex¬ 

ual activity in order to become members of a group; (ii) mild condition, in 

which 5s read words related to sex but were not obscene; and (iii) control condi¬ 

tion, in which 5s were not required to do anything to become members of the 

group. After a rather elaborate procedure, the 5s were asked to rate the dis¬ 

cussion and the members of the group to which they then ostensibly be¬ 

longed. The means and standard deviations of the total ratings are severe: 

M = 195.3, SD = 31.9; mild: M = 171.1, SD = 34.0; control: M = 166.7, 

SD — 21.6. Each n was 21. 

a. Do an analysis of variance of these data. Use the method outlined in the 

addendum to this chapter. Interpret the data. Is the hypothesis supported? 

b. Calculate co2. Is the relation strong? Would you expect the relation to be 

strong in an experiment of this find? 

[Answers: (a) F = 5.39 (.01); (b) co2 = .12] 

6. Use the Scheffe test to calculate the significance of all the differences between 

the three means of Study Suggestion 2, above. One way to do the Scheffe test 

is to calculate the standard error of the differences between two means with 

the following formula: 

SEM-M, ~ n_ + N. ) (13-6) 

where MSW equals within-groups mean square, and n, and ny are the numbers 

of cases in groups i and j. For the example, this is: 
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Then calculate the statistic 5 (for Scheffe): 

^ = V(* - 1)Fo5(*-iiIB) (13.7) 

where k equals number of groups in the analysis of variance, and the F term is 

the .05 level T-ratio obtained from an F-table at k - 1 (3 - 1 = 2) and m = 

N - k = 30 - 3 = 27 degrees of freedom. This is 3.35. Thus, 
* 

5 = V(3 - 1)(3.35) = a/670 = 2.59. 

The final step is to multiply the results of equations 13.6 and 13.7: 

S' X SEm._m. = (2.59)(.81) = 2.10. 

Any difference, to be statistically significant at the 0.05 level, must be as large 
or larger than 2.10. Now use the statistic in the example. 

7. Studies using one-way analysis of variance are fewer than studies using other 

methods. From the following list of nine studies using one-way analysis of 

variance, select two for study. Pay particular attention to post hoc tests of the 
significance of the differences between means. 

Gibson, R. L., & Hartshorne, T. S. (1996). Childhood sexual abuse and adult 

loneliness and network orientation. Child Abuse & Neglect 20 
1087-1093. ’ 

Goldenberg, D., & Iwasiw, C. (1993). Professional socialization of nursing 

students as the outcome of a senior clinical preceptorship experience. 
Nurse Education Today, 13, 3-5. 

Gupta, S. (1992). Season of birth in relation to personality and blood groups. 
Personality and Individual Differences, 13,631-633. 

Jamal, M., & Baba, V V. (1992). Shiftwork and department-type related to job 

stress, work attitudes and behavioral intentions: A study of nurses. Journal 
of Organizational Behavior, 13, 449-464. 

Kirsch, I., Mobayed, C. P, Council, J. R., & Kenny, D. A. (1992). Expert 

judgments of hypnosis from subjective state reports. Journal of Abnormal 
Psychology, 101, 657-662. 

Silverstein, B. (1982). Cigarette smoking, nicotine addiction, and relaxation. 
Journal of Personality and Social Psychology, 42, 946-950. 

Sonnenschem, S. (1986). Developing referential communication: Transfer 

across novel tasks. Bulletin of the Psychonomic Society, 24, 127-130. 

Uddm, M. (1996). College women’s sexuality in an era of AIDS. Journal of 
American College Health, 44, 252-261. 

Wittrock, M. (1967). Replacement and nonreplacement strategies in chil¬ 

dren’s problem solving. Journal of Educational Psychology, 58, 69-74 
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Factorial Analysis of Variance 

■ Two Research Examples 

■ The Nature of Factorial Analysis of Variance 

■ The Meaning of Interaction 

■ A Simple Fictitious Example 

■ INTERACTION: AN EXAMPLE 

« Kinds of Interactions 

■ Notes of Caution 

■ Interaction and Interpretation 

■ Factorial Analysis of Variance with Three or More Variables 

■ Advantages and Virtues of Factorial Design and Analysis of Variance 

Factorial Analysis of Variance-Control 

■ Research Examples 
Race, Sex, and College Admissions 

The Effect of Gender, Type of Rape, and Information on Perception 

Student Essays and Teacher Evaluation 

■ Computer Addendum 

We now study the statistical and design approach that epitomizes the true beginning 
of the modern behavioral science research outlook. The idea of factorial design and 
factorial analysis of variance is one of the creative research ideas put forward in 
the past sixty or more years. Its influence on contemporary behavioral research, espe¬ 
cially in psychology and education, has been great. It is no exaggeration to say that 
factorial designs are the most used of all experimental designs, and that factorial 
analysis of variance is used more in experimental psychological research than any 
other form of analysis. These are strong statements and require explanation. We de¬ 
vote this chapter to such explanation, together with description and explanation of 

345 
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the mechanics of factorial analysis of variance. Its importance and complexity will 

make it necessary to belabor aspects of the subject more than usual. This chapter, in 

other words, will be heavier than most. Readers should thus have patience, persis¬ 

tence, and forbearance. Believe that it is in a good cause. We begin with two instruc¬ 
tive research examples. 

Two Research Exam pies 

Prejudice is a deep and subtle phenomenon. Once born it penetrates large parts of 

our thinking. It is an obvious truism that negative prejudice against minorities is a 

widespread and potent phenomenon. Is prejudice so pervasive and subtle that it can 

work the “other way”? Do people who believe themselves free of prejudice discrimi¬ 

nate positively toward minorities? Is there such a thing, in other words, as “inverse 

prejudice”? Is some of the hiring of African Americans and women practiced by busi¬ 

ness firms and universities prompted by inverse prejudice—or is it merely good busi¬ 

ness? Such questions can, of course, be asked easily, although they are not answered 
so easily—at least not scientifically. 

In an insightful and somewhat upsetting study, Dutton and Lake (1973) hypoth¬ 

esize that if people are threatened by the thought that they themselves might be prej¬ 

udiced, they would act in a reverse discriminatory manner toward minority group 
members. They would discriminate, but favorably, in other words. 

From a pool of 500 college students, 40 male and 40 female students, who had 

evaluated themselves as relatively unprejudiced on questionnaires administered be¬ 

fore the experiment, were assigned to two experimental conditions: “Threat” and 

Race, partitioned into high threat and low threat, and African American panhan¬ 

dler and White American panhandler. The design, then, was the simplest factorial 

design possible: a so-called two-by-two (2 X 2). It is given in Table 14.1, together 

with the means of the dependent variable, which was money (cents) given to a pan¬ 

handler. Note that this 2 X 2 table looks like the 2 X 2 crosstabs (crossbreaks) dis¬ 

cussed in Chapter 10. It is essentially different, however, and the student should 

clearly understand that difference: Crosstabs have frequencies or percentages in the 

table cells whereas factorial designs have measures of the dependent variable in the 

cells, usually means. The dependent variable is always one of the variables in the 

margins (outside) of the crosstab; in factorial designs, the dependent variable is always ; 
the measure inside the cells. 

Dutton and Lake reasoned that reverse discrimination was likely to occur if par¬ 

ticipants who saw themselves as unprejudiced were led to suspect that they might ac¬ 

tually be prejudiced. This suspicion would be a threat to self, and a subject experi¬ 

encing this threat would, under appropriate conditions, act in a reverse 

discriminatory manner. High Threat participants were told that they had shown high 

emotional arousal—as presumably measured by galvanic skin response and pulse 

rate-to slides depicting interracial scenes. Low Threat participants were given no 
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[Ml Table 14.1 Factorial Design, 2X2, of Dutton and Lake Reverse 

Discrimination Experimenta 

Threat 

Race High Threat Low Threat 

African American Panhandler 47.25 16.75 32.00 

White American Panhandler 28.25 27.75 28.00 

37.75 22.25 

“Numbers in the cells are means, in cents, given to panhandlers. The original design included sex, 

but we omit this variable here. 

such feedback to the slides. This experimental condition is given at the top of the de¬ 

sign in Table 14.1. 

The second experimental variable, “Race,” was manipulated as follows. After the 

completion of the Threat variable manipulation, subjects were paid in quarters and 

then dismissed. On their way out of the laboratory, half the subjects were asked by an 

African American confederate, and half the subjects asked by a white American con¬ 

federate the following question: “Can you spare some change for some food?” This 

second experimental variable, Race, is given in the side margin of Table 14.1, African 

American panhandler and White American panhandler. It was predicted that the 

High Threat subjects would give more money to the African American panhandler 

than to the White American panhandler, since it was assumed that the High Threat 

subjects would react against the idea that they were prejudiced, as suggested by the 

polygraph of the experimental condition, by giving more money to the African 

American panhandler. Low Threat subjects, since they had not been made to doubt 

their lack of prejudice, would not give money to the same extent. In other words, 

there would be a between-threat difference of money given to the African American 

panhandler, but no between-threat difference of money given to the White American 

panhandler. The predicted outcome is known as an interaction, a term we will explain 

later in considerable depth. 
The data of Table 14.1, taken from the more extensive data reported by Dutton 

and Lake, seem to support the hypothesis. The means of High Threat versus Low 

Threat under the African American panhandler condition were 47.25 and 16.75 

(cents), whereas the Threat means under the White American panhandler condition 

were 28.25 and 27.75. Statistical analysis indicated that the hypothesized outcomes 

were indeed as the authors indicated they would be. We try to bring out and empha¬ 

size the nature of the obtained data by the plot of the means given in Figure 14.1. 

The plotted points—indicated by the small black circles — are the means of Table 

14.1. The horizontal axis is “Threat.” Since there are only two “values,” their place¬ 

ment on the line is almost arbitrary. The vertical axis is the amounts of money given 

to the panhandler. 
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M Figure 14.1 

African-American 

Threat 

The relation is apparent: the African American panhandler is given more money 

under the High Threat condition than under the Low Threat condition, whereas 

there is virtually no difference in the two threat conditions with the White American 

panhandler. Evidently the interaction hypothesis is supported. Reverse discrimina¬ 

tion was practiced, and we can perhaps say that inverse prejudice “exists.” 

In an interesting experimental study of the effects of two variables, Self¬ 

disclosure and Group Gender Composition, Elias (1989) found that both had an ef¬ 

fect on group cohesiveness, commitment to task, and productivity. Elias assigned at 

random each of the 144 undergraduate college students (72 females and 72 males) to 

one of 36 groups. Each group was composed of four members. Of these 36 groups, 

12 were males only, 12 were females only, and 12 were mixed (males and females). 

Six groups from each category (male, female, mixed) were then assigned randomly to 

either the experimental condition (Self-disclosure) or the control condition (No Self¬ 

disclosure). All groups completed a simple puzzle task as a measure of Productivity 

and questionnaires assessing Cohesiveness and Commitment to Task. The subjects 

were instructed to have no verbal communication between the group members. The 

subjects were told that they could give puzzle pieces to other members. In the 

Self-disclosure groups, group members participated in a group discussion after com¬ 

pleting the first puzzle. The discussion centered on the facts and feelings that were 

relevant to the puzzle task. Self-disclosure cue cards were used to facilitate discus¬ 

sion. The control group received a videotape of nature scenes. Subjects in the 

control condition were instructed not to communicate with each other. After this, 
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both groups participated in a second puzzle-solving task. The amount of time it took 

to complete the second puzzle served as the measure for Productivity. A question¬ 

naire was used to measure Cohesiveness and Commitment to Task. The data showed 

that Self-disclosure intervention resulted in higher Cohesiveness, Commitment to 

Task, and Productivity. This is more readily understood by considering Table 14.2. 

One variable is group gender composition, which is partitioned into “Male,” “Fe¬ 

male,” and “Mixed.” The other variable, “Disclosure,” was partitioned similarly into 

“Self-disclosure” and “Control.” These were experimental conditions. The dependent 

variables are: Cohesiveness, Commitment to Task, and Productivity. In Cohesiveness 

and Commitment to Task, both independent variables had a statistically significant 

effect. Under both of these dependent variables, female participants reported higher 

group Cohesiveness and Commitment to Task than males or mixed groups. 

For Group Productivity, only Self-disclosure versus Control had a statistically 

significant effect. 

[Ml TABLE 14.2 Design and Results (Means) of the Elias Study: 2x3 Factorial,a 

Cohesiveness 
Disclosure 

Group Gender 
Female Male 

Composition 
Mixed 

Self-disclosure 14.20 15.96 15.61 15.25 

Control 15.92 19.08 17.75 17.58 

15.06 17.52 16.68 

Commitment to Task 
Disclosure 

Group Gender 
Female Male 

Composition 
Mixed 

Self-disclosure 77.13 71.80 71.88 73.60 

Control 72.08 65.50 68.88 68.68 

74.60 68.85 70.17 

Productivity 
Disclosure 

Group Gender 
Female Male 

Composition 
Mixed 

Self-disclosure 149.17 71.17 143.67 121.00 

Control 193.00 217.17 310.17 240.11 

171.09 144.17 226.92 

Tower scores indicate greater cohesiveness. 
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The Nature of Factorial Analysis of Variance 

In factorial analysis of variance two or more independent variables vary indepen¬ 

dently or interact with each other to produce variation in a dependent variable. 

Factorial analysis of variance is the statistical method that analyzes the independent and 

interactive effects of two or more independent variables on a dependent variable. 

If there are two independent variables, as in the examples just discussed, the 

linear model is an extension of the linear model of the last chapter: 

y = a0-\- A + B + AB + e (14.1) 

where y, as usual, is a score of an individual on the dependent variable; a0 is the term 

common to all individuals, for example, the general mean Al; is the effect of one inde¬ 

pendent variable; B is the effect of another independent variable; AB is the effect of 

both variables working together, or interacting; and e is error. In addition to the one 

effect, A, and error, e, in one-way analysis of variance, we now have a second effect, 

B, and a third “effect,” the joint working or influence on y of A and B, or AB. There 

is no theoretical limit to the number of independent variables in factorial designs. 
Here is the model for three independent variables: 

y — a0+ A + B + C + AB + AC + BC + ABC + e (14.2) 

Here, there are three independent variables, A, B, and C; the interactions between 

them, AB, AC, and BC; and the simultaneous interaction of all three, ABC. As com¬ 

plex as this model seems, there are many uses of it in the literature (we will give 

examples later). And we can add more independent variables. The only limitations 

are practical ones: how to handle so many variables at one time and how to interpret 

interactions, especially triple and quadruple ones. What we are after, however, are 
the basic ideas behind factorial designs and models. 

One of the most significant and revolutionary developments in modern research 

design and statistics is the planning and analysis of the simultaneous operation and 

interaction of two or more variables. Scientists have long known that variables do not 

act independently. Rather, they often act in concert. The virtue of one method of 

teaching contrasted with another method of teaching depends on the teachers using 

the methods. The educational effect of a certain kind of teacher depends, to a large 

extent, on the kind of pupil being taught. An anxious teacher may be quite effective 

with anxious pupils but less effective with nonanxious pupils. Different methods of 

teaching in colleges and universities may depend on the intelligence and personality 

of both professors and students. In the Dutton and Lake (1973) study, the effect of 

Threat depended on the race of the panhandler (see Table 14.1 and Figure 14.1). In 

the Elias (1989) study, the interaction was different. There were no interactions on 

any of the analyses on the three dependent variables. The joint effect of the indepen¬ 

dent variables Disclosure and Group Gender Composition—was cumulative; the 
effect was strongest when both were present (see Table 14.2). 
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Before the invention of analysis of variance and the designs suggested by the 

method, the traditional conduct of experimental research was to study the effect of 

one independent variable on one dependent variable. We are not implying, by the 

way, that this approach is wrong. It is simply limited. Nevertheless, many research 

questions can be adequately answered using this “one-to-one” approach. Many other 

research questions can be adequately answered only by considering multiple and 

interacting influences. Educational scientists knew that the study of the effects of dif¬ 

ferent pedagogical methods and techniques on educational outcomes was in part a 

function of other variables, such as the intelligence of the students, the personality of 

the teachers, the social background of both the teacher and the students, and the 

general atmosphere of the class and the school. But many researchers believed that 

the most effective research method was to vary one independent variable while con¬ 

trolling, as best one could, other independent variables that might contribute to the 

variance of the dependent variable. Simon (1976; 1987) disagrees with this traditional 

approach and advocates economic multifactor designs. These designs, however, 

require careful planning and execution of the experiment but can yield useful infor¬ 
mation on a large number of variables. 

In the studies summarized above, the conclusions go beyond the simple 

differences between effects or groups. It was possible to qualify the conclusions in 

important ways because the authors studied the simultaneous workings of the two 

independent variables. They were consequently able to talk about the differential 

effect of their variables. They could say, for example, that treatment Ax is effective 

when coupled with level Bu but not effective when alone or when coupled with level 

B2, and that, perhaps, A2 is effective only when coupled with Bx. 

The implied logic behind this sort of research thinking can be better understood 

by returning to the conditional statements and thinking of an earlier chapter. Recall 

that a conditional statement takes the form “If p, then q,” or “If p, then q, under 

conditions r and s” In logical notation: p —»• q and p —> q | r,s. Schematically, 

the conditional statement behind the one-way analysis of variable problems of 

Chapter 13 is the simple statement: If p, then q. In the Hurlock study, if certain in¬ 

centives, then certain achievement. In the Aronson and Mills study (see Study 

Suggestion 5, Chapter 13), if severity of initiation, then liking for the group. 

The conditional statements associated with the research problems of this chap¬ 

ter, however, are more complex and subtle: If p, then q, under conditions r and s, or 

p q | r,s, where “|” means “under condition(s).” In the Dutton and Lake (1973) 

study, this would be p —■> q > \ r; or If threat then reverse discrimination, under the 

condition that the target (the panhandler) is African American. While structurally 

similar, the “cumulative” logic of Elias (1989) is different: If p and r, then q; or If Self¬ 

disclosure and Group Gender Composition, then the greater the Cohesiveness and 

Commitment to Task, or in logical symbols: (p D r) —> q (read: If p and r, then q). 

Here we cannot say “under the condition” because p and q (Self-disclosure and 

Group Gender Composition) are equal partners and combine to affect cohesiveness 

and commitment to task. In another study to be considered later in this chapter, 

Martin and Seneviratne (1997) make the statement: If Hungry then Precipitation of 

Headaches. 
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The Meaning of Interaction 

Interaction is the working together of two or more independent variables in their 

influence on a dependent variable. More precisely, interaction means that the opera¬ 

tion or influence of one independent variable on a dependent variable depends on 

the level of another independent variable. This is a rather clumsy way of saying what 

we said earlier in talking about conditional statements; for example, If p, then q, 

under condition r. In other words, interaction occurs when an independent variable 

has differing effects on a dependent variable at different levels of another indepen¬ 

dent variable. 
The above definition of interaction encompasses two independent variables. 

This is called a first-order interaction. It is possible for three independent variables 

to interact in their influence on a dependent variable. This is a second-order interac¬ 

tion. Still higher order interactions are possible but interpreting those higher order 

interactions becomes difficult; unlike the first-order interactions we have shown here 

in a two-dimensional figure. Higher order interactions are difficult to visualize and 

graph. When we have a significant interaction effect, we know that there is a treat¬ 

ment difference. However, in order to determine exactly how the treatments differ, 

we would need to examine the levels of the other independent variables. In order to 

predict the result of treatment for a single individual, the prediction can only be 

made if that individual’s status is known on all independent variables. Some textbook 

authors have gone as far as saying that higher order interaction effects are negligible. 

This may be true if the study is properly designed, but may not be true with all stud¬ 

ies. In a brief survey of a number of intermediate and advanced statistics books used 

in graduate education, the discussion of interpreting higher order interaction effects 

is brief at best (see Hays, 1994; Kirk, 1995; Howell, 1997). However, the works of 

Daniel (1976) and Simon (1976) have discussed how to handle higher order interac¬ 

tion effects. Before we turn to the computational aspects, the reader should be aware 

that interaction can occur in the absence of any separate effects of the independent 

variables. (Interaction can also be absent when one or more independent variables 

have significant separate effects.) Separate independent variable effects are called 

main effects. We will now show this possibility using a fictitious example and then 
later using an example from published research. 

A Simple Fictitious Exam pie 

As usual we take a simple, if unrealistic, example that highlights the basic problems 

and characteristics of factorial analysis of variance. Assume that an educational inves¬ 

tigator is interested in the relative efficacy of two methods of teaching: Ax and A2. 

Call this variable Methods. The investigator believes that methods of teaching, in 

and of themselves, do not differ very much. They differ only when used with certain 

kinds of students, by certain kinds of teachers, in certain kinds of educational situa¬ 

tions, and with certain kinds of motives. Studying all of these variables simultane- 
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M Figure 14.2 

Methods 

A, A2 

Motivations B{ AlBl A2Bl 

B2 AlB2 a2b2 

ously is a large order, though not necessarily impossible. So a decision is made to 

study Methods and Motivations, which gives two independent variables and one 

dependent variable. Call the dependent variable Achievement. (Some type of 

Achievement measure will be used, perhaps scores on a standardized test.) 

The investigator conducts an experiment with eight sixth-grade children. (A real 

experiment would work with many more than eight children.) The eight children are 

assigned randomly to four groups, two per group. The investigator also assigns ran¬ 

domly methods Ay and A2 and motivations By and B2 to the four groups. Refer back 

to the earlier discussion on partitions of sets. Recall that we can partition and cross¬ 

partition sets of objects. The objects can be assigned to a partition or subpartition on 

the basis of the possession of certain characteristics. But they can also be assigned at 

random — and then presumably be “given” certain characteristics by the experi¬ 

menter. In either case, the partitioning logic is the same. The experimenter will end 

up with four subpartitions: AyBy, AyB2, A2BU and A2B2. The experimental paradigm is 

shown in Figure 14.2. 

Each cell in the design is the intersection of two subsets. For instance, method 

Ay combined with motivation B2 is conceptually Ay Pi B2. Method A2 combined with 

motivation B2 is the intersection A2 fl B2. In this design, we write only AyB2 and A2B2 

for simplicity. Now, two children have been assigned at random to each of the four 

cells. This means that each child will get a combination of two experimental manipu¬ 

lations, and each pair of children will get a different combination. 

Call Ax Recitation, and A2 No Recitation. Call By Praise, and B2 Blame. The 

children in cell AyBy, then, will be taught with recitation and will be praised for their 

work. The children in cell AyB2 will be taught with recitation but will be blamed for 

their work. And similarly for the other two cells. If the experimental procedures have 

been handled adequately, it is possible to conceive of the variables as being indepen¬ 

dent; that is, two separate experiments are actually being run with the same partici¬ 

pants. One experiment manipulates Methods; the other, types of Motivations. The 

design of the experiment, in other words, makes it possible for the investigator to test 

independently the effects on a dependent variable, in this case, achievement, of (1) 

Methods and (2) Type of Motivation. To show this and other important facets of 

factorial designs, let us jump to the fictitious data of the experiment. These “data” 

are reported in Table 14.3, together with the necessary computations for a factorial 

analysis of variance. First, we calculate the sums-of-squares as we would for 
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[U Table 14.3 Data of Hypothetical Factorial Experiment with Analysis of Variance 

Calculations. 

Methods 

Type of Motivation A, A2 

5, 8,6 4,2 

b2 8, 6 4,2 

Methods 

Type of Motivation A1 a2 

Bi XX 14 6 SXBl = 20 

(SX)2 196 36 (XXBl)2 = 400 

M 7 3 II 

b2 XX 14 6 XXB2 — 20 

(XX)2 196 36 (XXB2)2 = 400 

M 7 3 Mb= 5 

XX^ = 28 XX/l2 = 12 XXf = 40 

(XX^)2 = 784 (XX,2)2 = 144 (XXf)2 = 1600 

MAl = 7 MAj — 3 Mt= 5 

XXr2 = 240 

a simple one-way analysis of variance. There is, of course, a total sum-of-squares, 
calculated from all the scores, using C, the correction term: 

or 

or 

1600 

8 
200 

C = M\N) = 52(8) = 200 

Total = 240 - 200 = 40 

402 
240 

Total = SD2(N) 
8 

8 
(8) - 40 
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Since there are four groups, there is a sum-of-squares associated with the means of 

the four groups. Simply conceive of the four groups placed side by side as in one-way 

analysis of variance, and calculate the sum-of-squares as in the last chapter. Now, 

however, we call this the between all groups sum-of-squares to distinguish it from 
sums-of-squares to be calculated later. 

Between all groups - C 

Between all groups = 
196 36 

_|_ - 
2 2 

200 = 32 

This sum-of-squares is a measure of the variability of all four group means. There¬ 

fore, if we subtract this quantity from the total sum-of-squares, we should obtain the 

sum-of-squares due to error, the random fluctuations of the scores within the cells 

(groups). This is familiar: it is the within-groups sum-of-squares: 

Within groups = 40 — 32 = 8 

To calculate the sum-of-squares for methods, proceed exactly as with one-way analysis 

of variance: treat the scores (Xs) and sums-of-scores (2Xs) of the columns (Methods) 
as though there were no Bx and B2: 

Methods 

A, a2 

8 4 

6 2 

8 4 

6 2 

28 12 

The calculation is: 

Between methods (A1, A2) 
(25y 

4 

784 

4 

(12)2 

4 
- 200 

- 200 = 32. 

Similarly, treat types of motivation (B{ and B2) as though there were no Methods: 
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Motivation 2X 

Bi 8 6 4 2 20 

b2 8 6 4 2 20 

The calculation of the between-types sum-of-squares is really not necessary. Since 

the sums (and the means) are the same, the between-types sum-of-squares is zero: 

Between types (Bb B2) 200 = 0 

There is another possible source of variance, the variance due to the interaction 

of the two independent variables. The between-all-groups sum-of-squares comprises 

the variability due to the means of the four groups: 7, 3, 7, and 3. This sum-of- 

squares is 32. If this were not a contrived example, part of this sum-of-squares would 

be due to Methods, part to Type of Motivation, and a remaining part left over, which 

is due to the joint action, or interaction, of methods and types. In many cases it would be 

relatively small, no greater than chance expectation. In other cases, it would be large 

enough to be statistically significant; it would exceed chance expectation. In the 

present problem it is clearly zero, since the between-methods sum-of-squares was 32, 

and this is equal to the between-all groups sum-of-squares. To complete the compu¬ 
tational cycle we calculate: 

Interaction: methods X types = between all groups 

- (between methods + between types) = 32-(32 + 0) = 0 

Note that in more complex factorial anlysis of variance the interactions are not so 

easy to compute. The reader should consult Hays (1994) or Kirk (1995) for more in¬ 

formation. We are now in a position to set up the final analysis of variance table. We 

postpone this, however, until we perform a minor operation on these scores. 

We use exactly the same scores, but rearrange them slightly: we reverse the 

scores AXB2 and A2B2. Since all the individual scores (Vs) are exactly the same, the 

total sum-of-squares must also be exactly the same. Further, the sums and sums-of- 

squares of B\ and B2 (types) must also be exactly the same. Table 14.4 shows just what 
was done, and its effect on the means of the four groups. 

Study the numbers of Tables 14.3 and 14.4 and note the differences. To empha¬ 

size the differences, the means have been boldfaced in both tables. To make the dif¬ 

ferences still clearer, the means of both tables have been laid out in Table 14.5. The 

table on the left shows two variabilities: between all four means, and between Ax and 

A2 means. In the table on the right, there is only one variability, that between the 

four means. In both tables, the variability of the four means is the same, since they 

both have the same four means: 7, 3, 7, and 3. Obviously, there is no variability of the 

B means in both tables. There are two differences between the tables, then: the A 

means and the arrangement of the four means inside the squares. If we analyze the 
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HO Table 14.4 Data of Hypothetical Factorial Experiment of Table 14.3 with B, 
Figures ReatTanged 

Methods 

Type of Motivation A, a2 

5, 8 4 

6 2 

2A 14 6 

o
 

Cx) II 

X
, 

w
 

M 7 3 II 

b2 4 8 

2 6 

2X 6 14 SXB2 - 20 

M 3 7 

in II 

£
 

^xA 20 20 

o
 

Ti¬ ll 

H
 

w
 

ma 5 5 Mt = 5 

2 V,2 = 240 

sum-of-squares of the four means (the between-all-groups sums-of-squares), we find 

that Bx and B2 contribute nothing to it in both tables, since there is no variability 

with 5, 5, the means of Bx and B2. In the table on the right, the Ax and A2 means of 5 

and 5 contribute no variability. In the table on the left, however, the Ax and A2 means 

differ considerably, 7 and 3, and thus contribute variance. 

Assuming for the moment that the means of 7 and 3 differ significantly, we can 

say that Methods of the data of Table 14.3 had an effect irrespective of Type of Moti¬ 

vation. That is, /jlAi or /iAl > iiAr As far as this experiment is concerned, 

Methods differ significantly no matter what the Type of Motivation. And, obviously, 

Type of Motivation had no effect, since fiB = /jlb In Table 14.4, on the other hand, 

the situation is quite different. Neither Methods nor Type of Motivation had an ef¬ 

fect by themselves. Yet there is variance. The problem is: What is the source of the 

variance? It is in the interaction of the two variables, the interaction of methods and 

types of motivation. 

If we had performed an experiment and obtained data like those of Table 14.4, 

we could then come to the likely conclusion that there was an interaction between 

the two variables in their effect on the dependent variable. In this case, we would in¬ 

terpret the results as follows. Methods Ax and A2, operating in and of themselves, do 

not differ in their effect. Type of Motivation Bx and B2, in and of themselves, do not 
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[Ml Table 14.5 Means of the Data of Table 14.3 and Table 14.4. 

Table 14.3 Means Table 14.4 Means 

A A2 At a2 

Bi 

b2 

1 

1 

3 

3 

5 

5 

Bi 

b2 ;x; 
5 

5 

7 3 \ 5 5 

differ in their effect. When Methods and Type of Motivation are allowed to “work 

together,” when they are permitted to interact, there are significant differences in 

their effect. Specifically, Method Ax is superior to Method A2 when combined with 

Type of Motivation Bx. When combined with Type of Motivation B2, it is inferior to 

A2. This interaction effect is indicated on the right-hand side of Table 14.5 by the 

crisscrossed arrows. Qualitatively interpreting the original methods, we find that 

Recitation seems to be superior to No Recitation under the condition of Praise, but 

that it is inferior to No Recitation under the condition of Blame (reproof). 

It is instructive to note, before going further, that interaction can be studied and 

calculated by a subtractive procedure. In a 2 X 2 design, this procedure is simple. 

Subtract one mean from another in each row, and then calculate the variance of these 

differences. Take the fictitious means of Table 14.5. If we subtract the Table 14.3 

means, we get 7 — 3 = 4; 7 — 3=4. Clearly the mean square is zero. Thus the in¬ 

teraction is zero. Follow the same procedure for the Table 14.4 means (right-hand 

side of the table): 7 3=4;3 — 7 = — 4. If we now treat these two differences as 

we did means in the last chapter and calculate the sum-of-squares and the mean 

square, we will arrive at the interaction sum-of-squares and the mean square, 32 in 

each case. The reasoning behind this procedure is simple. If there were no interac¬ 

tions, we would expect the differences between row means to be approximately equal 

to each other and to the difference between the means at the bottom of the table, the 

methods means, in this case. Note that this is so for the Table 14.3 means: the bot¬ 

tom row difference is 4, and so are the differences of each of the rows. The row dif¬ 

ferences of Table 14.4, however, deviate from the difference between the bottom row 

(methods) means. They are 4 and — 4, whereas the bottom row difference is 5 — 5 = 

0. From this discussion and a little reflection, it can be seen that a significant interac¬ 

tion can be caused by one deviant row. For example, the means of the above example 
might be: 
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PI Table 14.6 Final Analysis of Variance Tables: Data from Table 14.3 and 

Table 14.1 

Data from Table 14.3 Data from Table 14.4 

Source df ss ms F ss ms F 

Between Methods 

<4uA2) 1 32 32 16(.05) 0 0 

Between Types 

(BuB2) 

Interaction: 

1 0 0 0 0 

A X B 1 0 0 32 32 16(.05) 

Within Groups 4 8 2 8 2 

Totals 7 40 40 

Subtract the rows. 7 — 3 = 4; 5-5 = 0; and 6-4 = 2. There is obviously some 

variance in these remainders. 

It will be profitable to write the final analysis of variance tables in which the 

different variances and F-ratios are calculated. Table 14.6 gives the final analysis of 

variance tables for both examples. The between-all-groups sums-of-squares have not 

been included in the table. They are only useful for calculating the within-groups 

sums-of-squares. The degrees of freedom for the main effects (methods and types), 

and for between all groups, and within groups, are calculated in the same way as in 

one-way analysis of variance. This should become apparent upon studying the table. 

The interaction degrees of freedom is the product of the degrees of freedom of the 

main effects, that is, 1 X 1 = 1. If Methods had four groups, and Types three groups, 

the interaction degrees of freedom would have been 3x2 = 6. 
The sum-of-squares and mean square, and the resulting F-ratio of 16 on the left- 

hand side of the table, indicate what we already know from the preceding discussion: 

Methods are significantly different (at the 0.05 level), and Type of Motivation and 

Interaction are not significant. The parallel figures of the right-hand side of the table 

indicate that only the interaction is significant. 

Interaction: An Example 

In the last chapter, it was said that if sampling was random the means of the k groups 

would be approximately equal. If, for example, there were four groups and the gen¬ 

eral mean M, was 4.5, then it would be expected that each of the means would be ap¬ 

proximately 4.5. Similarly, in factorial analysis of variance, if random samples of 
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numbers are drawn for each of the cells, then the means of the cells should be ap¬ 

proximately equal. If the general mean, Mt were 10, then the best expectation for any 

cell means in the factorial design would be 10. These means, of course, would very 

rarely be exactly 10. Indeed, some might be considerably far from 10. The funda¬ 

mental statistical question is: Do they differ significantly from 10? The means of 

combinations of means, too, should hover around 10. For example, in a design like 

that of the previous example, the Ax and A2 means should be approximately 10, and 

the and B2 means should be approximately 10. In addition, the means of each of 
the cells, A{BU A^B2, A2BU and A2B2, should hover around 10. 

Using a table of random numbers, we drew 60 digits, 0 through 24, to fill the six 

cells of a factorial design. The resulting design has two levels or independent vari¬ 

ables, A and B. A is subdivided into AhA2 and A2; B into Bx and B2. This is called 

a 3 X 2 factorial design. (The examples in Table 14.3 and Table 14.4 are 2 X 2 
designs.) 

For the following example, the data are fictitious. The example is based on an 

actual study by Pury and Mineka (1997). This study examines the effect of two inde¬ 

pendent variables on emotional reaction. One independent variable, Degree of Fear, 

is a nonmanipulated (attribute), the second independent variable is the type of visual 

stimuli. One might hypothesize that people with different levels of blood-injury fears 

would have a different emotional response to different types of stimuli. For the Fear 

variable, we would examine high and low levels. For the visual stimuli, we would use 

pictures of (1) minor injuries (such as cuts, bites, bruises), (2) flowers, and (3) rabbits. 

The dependent variable would be the combined ratings on three emotional dimen¬ 

sions. The design of the study is a 3 X 2 factorial design. Imagine the experiment to 

have been done with the results given in Table 14.7, which gives the design paradigm 

and the means of each cell, as well as the means of the two variables, A and B, and the 

general mean, Mt. These means were calculated from the 60 random numbers drawn 
in lots of 10 each and inserted in the cells. 

We hardly need a test of statistical significance to know that these means do not 

differ significantly. Their total range is 10.4 to 13.6. The mean expectation, of 

coursers the mean of the numbers 0 through 24, 12.0. The closeness of the means 

to Mt - 12.00 is remarkable, even for random sampling. At any rate, if these were 

the results of an actual experiment, the experimenter would probably be most cha¬ 

grined. Type of Visual Stimuli, Degree of Fear, and the interaction between them are 
all not significant. 

Note how many different outcome possibilities other than chance there would 

be if one or both variables had been effective. The three means of Visual Stimuli 

/h/1’ 3nd Ma^ might bave been significantly different, with the means of Fear 
and n,ot significantly different. Or the Fear means might be significantly 

ijT1’jWrrh thC VTal mCanS n0t si&nificantly different; or both sets of means 
could be different; or both could turn out not to be different, with their interaction 

significant. The possibilities of kinds of differences and interactions are considerable, 

too, although it would take too many words and numbers to illustrate even a small 

number of them. If the student will juggle the numbers a bit, he or she can get 

considerable insight into both statistics and design possibilities. Since our present 
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d TABLE 14.7 Two-Way Factorial Design: Means of Groups of Random, Numbers 

0 through 9 

Type of Visual Stimuli 

A a2 A3 Fear 

Fear Minor Inj uries Flowers Rabbits Means 

Bx High 12.9 13.3 10.4 12.2 

B2 Low 10.5 11.5 13.6 11.9 

Visual Means 11.7 12.4 12.0 £
 

II C
O

 

O
 

preoccupation is with interaction, let us alter the means to create a significant inter¬ 

action. We increase the AXBX mean by 2, decrease the AXB2 mean by 2, increase 

the A2B2 mean by 2, and decrease the A2B2 mean by 2. We let the A2 means stand as 

they are, and alter the main effect means accordingly. The changes are shown in 

Table 14.8. 

Table 14.8 should be studied carefully. Compare it to Table 14.7. Interaction has 

been produced by the arbitrary alterations. The cell means have been unbalanced, so 

to speak, while the marginal means (Ay, A2, A}, Bx, B2) are almost undisturbed. The 

total mean remains unchanged at 12.03. The three A means are the same. (Why?) 

The two B means are changed very little. A factorial analysis of variance of the ap¬ 

propriately altered random numbers—which, of course, are no longer random— 

yields the final analysis of variance table given in Table 14.9. 

Neither of the main effects (Fear and Visual Stimuli) is significant. That is, the 

means of Ay, A2, and Ay do not differ significantly from chance. Neither do 

the means of By and B2. The only significant F-ratio is that of interaction, which is 

significant at the 0.05 level. Evidently the alteration of the scores has had an effect. If 

[□] Table 14.8 Means fromTable 14.7 Altered Systematically by Adding and 

Subtracting Constants 

Type of Visual Stimuli 

Fear Ay a2 A3 

Fear 

Means 

By 12.9 + 2 = 14.9 13.3 10.4 - 2 = 8.4 12.2 

b2 10.5 - 2 = 8.5 11.5 13.6 4- 2 = 15.6 11.9 

Visual Means 11.7 12.4 12.0 12.03 
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d Table 14.9 Final Analysis of Variance: Table of Altered Random Number Data* 

Source df ss ms F 

Between All Groups 5 485.13 

Within Groups 54 2984.80 SS.21 

Between Stimuli (Au A2, A}) 2 4.93 2.47 < 1.0 (n.s.) 

Between Fears (Bx, B2) 1 1.67 1.67 <1.0 (n.s.) 

Interaction: A X B 2 478.53 239.27 4.33 (0.05) 

Totals 59 3469.93 

an.s. equals not significant. 

we were interpreting the results, as given in Table 14.8 and Table 14.9, we would say 

that, in and of themselves, neither type of visual stimuli to the person nor the fear 

differs. The analysis found no differences between high and low fears, and no differ¬ 

ences between the three visual stimuli. However, people with high levels of fear 

will perceive the rabbit with lower negative emotional responses than the low fear 

group. On the other hand, high fear people will perceive minor injuries as being 
more negative than will low fear people. 

Kinds of Interaction 

To now, we have said nothing about kinds of interaction of independent variables in 

their joint influence on a dependent variable. To leap to the core of the matter of 

interactions, let us lay out several sets of means to show the main possibilities. There 

are, of course, many possibilities, especially when one includes higher-order interac¬ 

tions. The six examples in Table 14.10 indicate the main possibilities with two 

independent variables. The first three setups show the three possibilities of signifi¬ 

cant mam effects. They are so obvious that they need not be discussed. (There is, 
naturally, another possibility: neither A nor B is significant.) 

When there is a significant interaction, on the other hand, the situation is not so 

obvious. The setups (d), (e), and (/) show three common possibilities. In (d), the 

means crisscross, as indicated by the arrows in the table. It can be said that A is effec¬ 

tive in one direction at Bu but is effective in the other direction at B2. Or, Ax > A2 at 

Bu but Ax< A2 at B2. This sort of interaction with this crisscross pattern is called 

disordinal interaction (see below). In this chapter, the fictitious example of Table 14.4 

was a disordinal interaction (see also Table 14.5). The fictitious example in Table 

14.8, where interaction was deliberately induced by adding and subtracting con¬ 
stants, is another disordinal interaction. 



CHAPTER 14 m Factorial Analysis of Variance 363 

HD TABLE 14.10 Various Sets of Means Showing Different Kinds of Main Effects 

and Interaction. 

Ax A2 At A2 At a2 

Bj 30 20 25 30 30 30 30 20 25 

B2 30 20 25 20 20 20 40 30 35 

30 20 25 25 35 25 

(a) A significant; B not 

significant; Interaction not 

significant 

(b) A not significant; 

B significant; Interac¬ 

tion not significant 

(c) A significant; B 

significant; Interac¬ 

tion not significant 

Ax A2 At A2 A t A2 

B‘ 3°W^2° 

B, 20^H0 

25 30 20 25 20 20 20 

25 20 20 20 30 20 25 

25 25 25 20 25 20 

(d) Interaction significant 

(disordinal) 

(e) Interaction 

significant (ordinal) 

(/) Interaction 

significant (ordinal) 

The setups in (e) and (/), however, differ. Here one independent variable is ef¬ 

fective at only one level of the other independent variable. In (e), Ax > A2 at Bx, but 

Ax — A2 at B2. In (/), Ax = A2 at Bx, but Ax > A2 at B2. The interpretation changes 

accordingly. In the case of (e), we would say thatH is effective at Bx level, but makes 

no difference at B2 level. The case of (/) would take a similar interpretation. Such 

interactions are called ordinal interactions. 
A simple way to study the interaction with a 2 X 2 setup (it is more complex with 

more complex models) is to subtract one entry from another in each row, as we did 

earlier. If this be done for (a), we get, for rows Bx and B2, 10 and 10. For (b), we get 0 

and 0, and for (c), 10 and 10 again. When these two differences are equal, as in these 

cases, there is no interaction. But now try it with (d), (e), and (/). We get 10 and —10 

for (d), 10 and 0 for (e), and 0 and 10 for (/). When these differences are signifi¬ 

cantly unequal, interaction is present. The student can interpret these differences as 

an exercise. 
It is also possible — and often very profitable—to graph interactions, as we did 

earlier in Figure 14.1. Set up one independent variable by placing the experimental 

groups (Ax., A2, and so on) at equal intervals on the horizontal axis and appropriate 

values of the dependent variable on the vertical axis. Then plot, against the horizon¬ 

tal axis group positions (Ax, A2, and so on), the mean values in the table at the levels 

of the other independent variable (Bx, B2, and so on). This method can quite easily be 
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Figure 14.3 

40 

30 

20 

10 

0 
A A, 

(a) Interaction Not 

Significant 

40 

30 

20 

10 — 

0 
A A, 

(d) Interaction Significant 

(disordinal) 

40 

30 

20 
I 

10 

0 
A A, 

(c) Interaction Not 

Significant 

(e) Interaction Significant 
(ordinal) 

used with 2 X 3, 3 X 3, and other such designs. The plots of (a), (c), (d), and (e) are 
given in Figure 14.3. 

We will discuss these graphs only briefly, since both graphs and graphing rela¬ 

tions have already been discussed. In effect, we first ask if there is a relation between 

the main effects (independent variables) and the measures of the dependent variables. 

Each of these relations is plotted as in the preceding chapter, except that the relation 

between one independent variable and the dependent variable is plotted at both lev¬ 

els of the other independent variables; for instance, A is plotted against the depen¬ 

dent variable (vertical axis) at Bx and B2. The slope of the lines roughly indicates the 

extent of the relation. In each case, we have chosen to plot the relations using Ax and 

A2 on the horizontal axis. If the plotted line is horizontal, obviously there is no rela¬ 

tion. There is no relation between A and the dependent variable at level B2 in (e) of 

Figure 14.3, but there is a relation at level Bx. In (a), there is a relation between A 

and the dependent variable at both levels, 5, and B2. The same is true of (c). The 
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nearer the line comes to being diagonal, the higher the relation. If the two lines 

make approximately the same angle in the same direction (that is, they are parallel), 

as in (a) and (c), the relation is approximately the same magnitude at each level. 

To the extent that the lines form different angles with the horizontal axis (are not 

parallel), there is interaction present. 

If the graphs of Figure 14.3 were plotted from actual research data, we could in¬ 

terpret them as follows. Call the measures of the dependent variable (on the vertical 

axis) Y. In (a), A is related to Y regardless of B. It makes no difference what B is; Ax 

and A2 differ significantly. The interpretation of (c) is similar: A is related to Y at both 

levels of B. There is no interaction in either (a) or (c). In (d) and (e), however, the 

case is different. The graph of (d) shows interaction. A is related to Y, but the kind of 

relation depends on B. Under the Bx condition, Ax is greater than A2. But under the 

Bi condition A2 is greater than/Ij. The graph of (e) says that A is related to Yat level 

B\ but not at level By, or Ax is greater than A2 at B{ but at B2 they are equal. (Note 

that it is possible to plot B on the horizontal axis. The interpretations would, how¬ 

ever, differ accordingly.) 

N otes o f C aution 

Interaction is not always a result of the “true” interaction of experimental treatments. 

There are, rather, three possible causes of a significant interaction. One is “true” in¬ 

teraction, the variance contributed by the interaction that “really” exists between two 

variables in their mutual effect on a third variable. Another is error. A significant in¬ 

teraction can happen by chance, just as the means of experimental groups can differ 

significantly by chance. A third possible cause of interaction is some extraneous, 

unwanted, uncontrolled effect operating at one level of an experiment but not at an¬ 

other. Such a cause of interaction is particularly to be watched for in nonexperimen- 

tal uses of the analysis of variance; that is, in the analysis of variance of data gathered 

after independent variables have already operated. Suppose, for example, that the 

levels in an experiment on methods was schools. Extraneous factors in such a case 

can cause a significant interaction. Assume that the principal of one school, although 

he had consented to having the experiment run in his school, was negative in his atti¬ 

tude toward the research. This attitude could easily be conveyed to teachers and 

pupils, thus contaminating the experimental treatment and methods. In short, signif¬ 

icant interactions must be handled with the same care as any other research results. 

They are interesting, even dramatic, as we have seen. Thus they can perhaps cause us 

to momentarily lose our customary caution. A precept that researchers should take 

seriously is: Whenever possible, replicate research studies. Replication should be 

routinely planned. It is especially necessary when complex relations are found. If an 

interaction is found in an original study and in a replication, it is probably not due to 

chance, though it could still be due to other causes. The word replication is used 

rather than repetition because in a replication, although the original relation is studied 

again, it might be studied with different kinds of participants, under somewhat 

different conditions, and even with fewer, more, or even different variables. The 
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[Ml Table 14.11 Example of Disproportion and Unequal Cell ns Arising from 

Nonexperimental Variablesa 

Republican Democrat 

Male 30 20 50 

Female 20 30 50 

50 50 

aThe cell entries are frequencies. 

trend in the psychological research literature, happily, is to perform two or more 

related studies on the same basic problem. This trend is closely related to testing 

alternative hypotheses, whose virtue and necessity were discussed in an earlier chapter. 

Two related difficulties of factorial analysis are unequal ns in the cells of a design 

and the experimental and nonexperimental use of the method. If the ns in the cells of 

a factorial design are not equal (and are disproportionate; that is, not in proportion 

from row to row or column to column), the orthogonality or independence of the 

independent variables is impaired. At times, one will even get negative sums- 

of-squares. While adjustments can be made, they are a bit awkward and not too satis¬ 

factory.1 When doing experiments, the problem is not severe because participants 

can be assigned to the cells at random — except, of course, for attribute variables — 

and the ns kept equal or nearly equal. But in the nonexperimental use of factorial 

analysis, the ns in the cells get pretty much beyond the control of the researcher. In¬ 

deed, even in experiments, when more than one categorical variable is included (like 
Race and Sex), ns almost necessarily become unequal. 

To understand this, take a simple example. Suppose we divided a group into two 

by Sex: 50 males and 50 females. A second variable is Political Preferences and we 

want to come up with two equal groups of Republicans and Democrats. But suppose 

that Sex is correlated with Political Preference. Then there may be, for example, 

more males who are Republican compared to females who are Republican creating a 

disproportion. This is shown in Table 14.11. Add another independent variable and 
the difficulties increase exponentially. 

What can we do, then, in nonexperimental research? Can’t we use factorial 

analysis of variance? The answer is complex and is evidently not clearly understood 

Factorial analysis of variance paradigms can and should be used, because they guide 

and clarify research. There are devices for surmounting the unequal n difficulty One 

can make adjustments of the data, or equalize the groups by elimination of partici¬ 

pants at random, but these are unwieldy devices. One analytic solution that has 

potential is multiple regression analysis. While the problems do not all disappear 

many are minimized in the multiple regression framework. In general factorial 

‘Computer programs such as SPSS makes these adjustments, but can be confusing since the ad¬ 

justed sum of squares do not correspond to the actual sum-of-squares for independent variables. 
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analysis of variance is best suited to experimental research in which the participants 

can be assigned randomly to cells, the ns thus kept equal and the assumptions behind 

the method more or less satisfied. Nonexperimental research or experimental 

research that use a number of nonexperimental (attribute) variables might be better 

served with multiple regression analysis (see Keith, 1988). With equal ns and experi¬ 

mental variables, multiple regression analysis yields exactly the same sums-of- 

squares, mean squares, and F-ratios, including interaction F-ratios as the standard 

factorial analysis. Nonexperimental variables, which are a problem for factorial 

analysis, are less of a problem in multiple regression analysis. However, Simon (1975) 

and Lee (1995) have pointed out that multiple regression is no panacea for poorly 

designed research. We return to all this in a later chapter. 

Interaction and Interpretation 

We end this section on interaction with a complex and difficult problem: the inter¬ 

pretation of factorial analysis of variance results when interactions are significant. 

Suppose we have two variables, A and B. Both F-ratios are statistically significant and 

the interaction F-ratio is not significant. This is straightforward: there is no problem 

of interpretation. If, on the other hand, A, or B, or both are significant, and the inter¬ 

action of A and B is also significant, there is reason for concern. Some writers say 

that the interpretation of significant main effects in the presence of interaction is not 

possible and, if done, can lead to incorrect conclusions. The reason is that when one 

says that a main effect is significant, one may imply that it is significant under all 

conditions, that MA is greater than MAj with all kinds of individuals and in all kinds 

of places, for instance. If the interaction between A and B, however, is significant, the 

conclusion is empirically not valid. One has at least to qualify it: there is at least one 

condition, namely B that has to be taken into account. One must say, instead of 

the simple “Ifp, then q” statement, “If p, then q, under condition r” or, for example, 

MA is greater than MAj under condition Bx but not under condition B2. A method 

of reinforcement, say Praise, is effective with middle-class children but not with 

working-class children. 
Extended discussions of interactions can be found in: Edwards (1984). Although 

it is dated, a valuable and clear discussion of ordinal and disordinal interactions, and 

the virtue of graphing significant interactions is given in Lubin (1961). Pedhazur 

(1996) also discusses the interpretation of main effects when interactions are signifi¬ 

cant. Pedhauzer’s discussion is particularly cogent when he attacks the difficulty of 

interpreting interactions in nonexperimental research. 
A general rule is that when an interaction is significant, it may not be appropri¬ 

ate to try to interpret main effects, because the main effects are not constant but vary 

according to the variables that interact with them. This is especially true if the inter¬ 

action is disordinal [see Figure 14.3 (d)}, or if the main effect under study is weak. If a 

main effect is strong—the differences between means are large — and interaction is 

ordinal [see Figure 14.3 (e)], then one can perhaps interpret a main effect. Obviously, 

the interpretation of research data, when more than one independent variable is 

studied, is often complex and difficult. This is no reason to be discouraged, however. 
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Such complexity only reflects the multivariate and complex nature of psychological, 

sociological, and educational reality. The task of science is to understand this 

complexity. Such understanding can never be complete, of course, but substantial 

progress can be made with the help of modern methods of design and analysis. 

Factorial designs and analysis of variance are large achievements that substantially 

enhance our ability to understand complex psychological, sociological, and educa¬ 
tional reality. 

Factorial Analysis of Variance with Three 
or More Variables 

Factorial analysis of variance works with more than two independent variables. 

Three, four, and more variables are possible and do appear in the literature. Designs 

with more than four variables, however, are uncommon. It is not so much because 

the statistics become complex and unwieldy. Rather, it is a matter of practicality and 

tradition. Using current research paradigms, it is very difficult just to get enough 

participants to fill the cells of complex designs. And it is even more difficult to 

manipulate four, five, or six independent variables at one time. For instance, take an 

experiment with four independent variables. The smallest arrangement possible is 
2 X 2 X 2 X 2, which yields 16 cells into each of which some minimum number of 

participants must be placed. If 10 5s are placed in each cell, it will be necessary to 

handle the total of 160 5s in four different ways. Yet one should not be dogmatic 

about the number of variables. Perhaps in the next 10 years factorial designs with 

more than four variables will become common. Simon (1987) has argued for years 

for experiments to employ more independent variables. In fact, Simon and Roscoe 

(1984) have demonstrated the use of a new research paradigm that can be fruitful in 

terms of yielding good information. However, similar to the protest logged by 

Cohen (1994), academic psychology seems resistant to such changes. Indeed, when 

we later study multiple regression analysis, we will find that factorial analysis of vari¬ 

ance can be done with multiple regression analysis, and that four and five factors are 

easily accommodated analytically. That is, the complexities of analysis of variance 

calculations with four or five independent variables are considerably simplified. Such 

analytic facilitation of calculations, however, in no way changes the experimental 

difficulties of managing several manipulated independent variables through more 
traditional approaches. 

, . TheJlmPIest form of a three-variable factorial analysis of variance is a 2 X 2 X 2 
design. The study by Little, Sterling, and Tingstrom (1996) uses this design. Table 

. presents m tabular form the design of their study. Little, Sterling, and 

mgstrom studied the effects of in-group biases on attribution. They wanted to 

determine if the match between the actor’s origin and the participant’s origin would 

result m a higher evaluation. The actor’s location and the actor’s race were varied to 

form four written vignettes. The vignettes described either a homogeneous in-group 

homogeneous out-group, or one of two types of heterogeneous g?oup membership 
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pi Table 14.12 Three-variable Factorial Analysis of Variance Design* 

Participant Location 
y Aj (Northeast USA) A2 (Southeast USA) 

Mode 

C\ 
African 

American 

C2 
White 

American 

C, 

African 

American 

c2 
White 

American 

Actor’s Location Bx (North USA) A,BXCX A151C2 A2B\C\ A2BiC2 

B2 (South USA) A\B2CX A\B2C2 A2B2Cl a2b2c2 

“From Little, Sterling, & Tingstrom (1996). 

individual engaging in a negative behavior (fighting). Participants were recruited 

from two locations in the United States: Northeast and Southeast. Each participant 

was asked to read a short description of a behavior, and evaluate the person described. 

Evaluations were in the form of an attributional questionnaire, where high scores 

indicated high personal responsibility and low scores indicated low personal 

responsibility. 
The researcher can now test seven hypotheses: the differences between Ay and 

A2 (participant location), between Bx and B2 (Actor Location), and between C\ and C2 
(Actor Race). These are the main effects. Four interactions can also be tested: A X B, 
A X C, B X C, and A X B X C. A final analysis of variance table would look like 

Table 14.13. It is evident that a great deal of information can be obtained from this 

one experiment. Contrast it with the one variable experiment in which only one 

hypothesis can be tested. The difference is not only great—it indicates a fundamen¬ 

tally different way of conceptualizing research problems. 
Significant first-order interactions are reported more and more in published re¬ 

search studies. Some years ago they were considered to be rare phenomena. This is 

quite evidently not so anymore (see Gresham & Witt, 1997). Most of the method¬ 

ological and substantive preoccupation with interaction in the literature is in educa¬ 

tion. It even has a name: ATI (Aptitude-Treatment Interaction) research. Evidently 

it has flourished because much or most educational research is preoccupied with im¬ 

proving instruction, and interactions of pupils’ aptitudes and instructional methods 

are believed to be an important key to doing so. However, Gresham and Witt (1997) 

have pointed out that ATI research has not been fruitful. 
Indeed, it is now apparent that interactions of variables are hypothesized on the 

basis of theory (see Tingstrom, 1989; Martin and Seneviratne, 1997). Part of the 

essence of scientific theory, of course, is specifying the conditions under which a phe¬ 

nomenon can and will occur. For example, Christenfeld (1997) was interested in the 

effect of distractions on coping with pain. Christenfeld felt that memory and possibly 

demand characteristics played a role in people’s reported effectiveness of distraction 

on pain. This study tested the notion that the true effect of distraction may not be 
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01] Table 14.13 Final Analysis of Variance 

Figure 14.4 
Table for the 2X2X2 Design of 

Source df ss ms F 

Between Participant Location 
(A i, A2) 1 

Between Actor Location 
(Bu B2) 1 

Between Actor Race 
(C„ C2) 1 

Interaction: A X B 1 

Interaction: A X C 1 

Interaction: B X C 1 

Interaction: A X B X C 1 

Within Groups 

Total N - 1 

N- 7 

detectable until after a delay. Pain was introduced to. all participants by having each 
subject place a hand in an ice bath for 90 seconds. In Christenfeld’s study, partici¬ 
pants were assigned to either a low distraction or high distraction condition. Half of 
the participants in each group rated their pain immediately after the 90 seconds had 
elapsed. The other half filled out an identical form after performing an irrelevant 
cognitive task. Chnstenfeld found an interaction effect between distraction and time 
of pain ratings. The high distraction group who rated their pain immediately after 
removing their hand from the ice bath gave higher ratings than the low distraction 
group, for the group receiving a delay period before rating their pain, the pattern 
was reversed. Significant higher-order interactions, while not common, do occur. 

e trouble is that they are often hard to interpret. First- and second-order interac¬ 
tions can be handled, but third- and higher-order interactions make research life 
uncomfortable because one is at a loss as to what they mean. The literature does 
report some studies having a third-order interaction effect (see Bente, Feist, & Elder, 
1996; Bjorck, Lee, & Cohen, 1997). 

By now the reader no doubt realizes that in principle the breakdowns of the 
^dependent variables are not restricted to just two or three subpartitions. It is quite 

possible to have 2 X 4, 2 X 5, 4 X 6, 2 X 3 X 3, 2 X 5 X 4, 4 X 4 X 3 X 5. Blanton 

percention^ f(1"7^Se a 2 x 2 x 3 X 3 design to study sexual motivation and risk 
p ception of men. As always, the problem under investigation and the judgment of 

antanatySfbe" dettrmi"e what des'S" and 
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Advantages and Virtues of Factorial Design and 

Analysis of Variance 

Factorial analysis of variance, as we have seen, accomplishes several things, all of 

which are important advantages of this approach and method. First, it enables the 

researcher to manipulate and control two or more variables simultaneously. In educa¬ 

tional research, not only is it possible to study the effects of teaching methods on 

achievement; we can also study the effects of both methods and, say, kinds of 

reinforcement. In psychological research, we can study the separate and combined 

effects of many kinds of independent variables, such as anxiety, guilt, reinforcement, 

prototypes, types of persuasion, race, and group atmosphere, on many kinds of 

dependent variables, such as compliance, conformity, learning, transfer, discrimina¬ 

tion, perception, and attitude change. In addition, we can control variables such as 

sex, social class, and home environment. 

A second advantage is that factorial analysis is more precise than one-way 

analysis. Here we see one of the virtues of combining research design and statistical 

considerations. It can be said that, other things being equal, factorial designs are 

“better” than one-way designs. This value judgment has been implicit in most of the 

preceding discussion. The precision argument adds weight to it and will be elaborated 

shortly. 

A third advantage—and, from a large scientific viewpoint, perhaps the most im¬ 

portant—is the study of the interactive effects of independent variables on depen¬ 

dent variables. This has already been discussed, but a highly important point must be 

added. Factorial analysis enables the research to hypothesize interactions because the 

interactive effects can be directly tested. If we go back to conditional statements and 

their qualification, we see the core of the importance of this statement. In a one-way 

analysis, we simply say: If p, then q; If such-and-such methods, then so-and-so out¬ 

comes. In factorial analysis, however, we utter richer conditional statements. We can 

say: If p, then q and If r, then q, which is tantamount to talking about the main effects 

in a factorial analysis. In the problem of Table 14.4, for instance, p is Methods (A) 

and r is Type of Motivation (5). We can also say, however: If p and r, then q, which is 

equivalent to the interaction of Methods and Type of Motivation. Interaction can 

also be expressed by: If p, then q, under condition r. 

On the basis of theory, previous research, or hunch, researchers can hypothesize 

interactions. One hypothesizes that an independent variable will have a certain effect 

only in the presence of another independent variable. Christenfeld (1997), in the 

study of distraction and perceived pain, asked whether people who reported their 

pain immediately after the removal of the pain stimulus were more likely to report a 

higher level of pain than people who respond after a delay. Christenfeld found an in¬ 

teraction effect between the immediate-delayed condition and high-low distraction. 

Part of his results are given in Table 14.14. The means in the table reflect the 

amount of perceived pain. Neither main effect—time when the ratings were made or 

amount of distraction—was statistically significant, but the interaction between 

them was significant. When distraction was high, the immediate response condition 
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OH Table 14.14 Mean Pain Ratings Made Immediately After Ice Bath or After a 

Delay for Participants in Low- and High-Distraction Conditions 
(Christenfeld studyf 

Immediate Delayed 

High Distraction 5.61 4.67 

Low Distraction 5.44 5.67 

The higher the score the greater the pain. 

produced higher pain ratings. However, when the distraction was low, the delayed 

responding condition produced higher pain ratings. The interaction hypothesis was 

supported — a finding of both theoretical and practical significance. 

It has become common practice to partition a continuous variable into 

dichotomies or other polychotomies. In the Christenfeld study, for instance, a con¬ 

tinuous measure amount of distraction—was dichotomized. Note that we pointed 

out earlier that creating a categorical variable out of a continuous variable throws 

variance away, and thus should be avoided. Researchers should consider the power 

provided by multiple regression instead of analysis of variance. We will learn in a 

later chapter that factorial analysis of variance can be done with multiple regression 

analysis, and that with such analysis it is not necessary to sacrifice any variance by 

conversion of variables. Nevertheless, there are countervailing arguments: (1) If a 

difference is statistically significant and the relation is substantial, the variable con¬ 

version does not matter. The danger is in concealing a relation that in fact exists. (2) 

There are times when conversion of a variable may be wise — for example, for explo¬ 

ration of a new field or problem, and when measurement of a variable is at best 

rough and crude. In different words, although the rule is a good one, it is best not to 

be inflexible about using it. Good—even excellent—research has been performed 

using continuous variables that have been partitioned for one or another reason. 

Factorial Analysis of Variance. Control 

In a one-way analysis of variance, there are two identifiable sources of variance: that 

presumed to be due to the experimental effects, and that presumably due to error or 

chance variation. We now look at the latter more closely 

When participants have been assigned to the experimental groups at random, 

e only possible estimate of chance variation is the within-groups variance. But— 

and this is important—it is clear that the within-groups variance contains not only 

variance due to error, it also contains variance due to individual differences among 

the participants. Two simple examples are intelligence and sex; there are, of.course 

many others. If both girls and boys are used in an experiment, randomization can be 



CHAPTER 14 * Factorial Analysis of Variance 373 

used in order to balance the individual differences that are concomitant to sex. Then 

the number of girls and boys in each experimental group will be approximately equal. 

We can also arbitrarily assign girls and boys in equal numbers to the groups. This 

method, however, does not accomplish the overall purpose of randomization, which 

is to equalize the groups on all possible variables. It does equalize the groups as far as 

the sex variable is concerned, but we can have no assurance that other variables are 

equally distributed among the groups. Similarly for intelligence. Randomization, if 

successful, will equalize the groups such that the intelligence test means and standard 

deviations of the groups will be approximately equal. Here, again, it is possible to as¬ 

sign youngsters to the groups arbitrarily in a way to make the groups approximately 

equal, but then there is no assurance that other possible variables are similarly 

controlled, since randomization has been interfered with. 

Let us now assume that randomization has been “successful.” Then theoretically 

there will be no differences between the groups in intelligence and all other vari¬ 

ables. But there will still be individual differences in intelligence—and other variables— 

within each group. With two groups, for instance, Group 1 might have intelligence 

scores ranging from, say, 88 to 145, and Group 2 might have intelligence scores 

ranging from 90 to 142. This range of scores in and of itself shows, just as the pres¬ 

ence of boys and girls within the groups shows, that there are individual differences 

in intelligence within the groups. If this is true, how can we then say that the within- 

groups variance can be an estimate of error, of chance variation? The answer is that it 

is the best we can do under the design circumstances. If the design is of the simple 

one-way kind, there is no other measure of error obtainable. So we calculate the 

within-groups variance and treat it as though it were a “true” measure of error vari¬ 

ance. It should be clear that the within-groups variance will be larger than the “true” 

error variance, since it contains variance due to individual differences as well as error 

variance. Therefore, an F-ratio may not be significant when in fact there is “really” a 

difference between the groups. Obviously, if the F-ratio is significant, there is not 

much to worry about because the between-groups variance is sufficiently large to 

overcome the overestimated error variance. 

To summarize what has been said, let us rewrite an earlier theoretical equation: 

Vt=Vb+ Vw (14.3) 

Since the within-groups variance contains more variance than error variance, the 

variance due to individual differences, in fact, we can write 

Vw = Vi + Ve (14.4) 

where V, equals variance due to individual differences and Ve equals “true” error 

variance. If this is true, then we can substitute the right-hand side of Equation 14.4 

for the Vw; in Equation 14.3 as follows: 

V, = Vb + Vi + Ve (14.5) 
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In other words, Equation 14.5 is a shorthand way to say what we have been saying 

above. 

The practical research significance of Equation 14.5 is considerable. If we can 

find a way to control or measure Vt to separate it from Vw, then it follows that a more 

accurate measure of the “true” error variance is possible. Put differently, our igno¬ 

rance of the variable situation is decreased because we identify and isolate more sys¬ 

tematic variance. A portion of the variance that was attributed to error is identified. 

Consequently, the within-groups variance is reduced. 

Many of the principles and much of the practice of research design is occupied 

with this problem, which is essentially a problem of control — the control of vari¬ 

ance. When it was said earlier that factorial analysis of variance was more precise 

than simple one-way analysis of variance, we meant that, by setting up levels of an in¬ 

dependent variable, say sex or social class, we decrease the estimate of error, the 

within-groups variance, and thus get closer to the “true” error variance. Instead of 

writing Equation 14.5, let us now write a more specific equation, substituting for V, 

the variance of individual differences, Vsc, the variance for social class, and reintro¬ 

ducing Vw: 

Vt= Vh+ Vsc + Vw (14.6) 

Compare this equation to Equation 14.3. More of the total variance, other than the 

between-groups variance, has been identified and labeled. This variance, Vsc, has in 

effect been taken out of the Vw of Equation 14.3. 

Research Examples 

A large number of interesting uses of factorial analysis of variance have been re¬ 

ported in recent years in the behavioral research literature. Indeed, one is confronted 

with an embarrassment of riches. A number of examples of different kinds have been 

selected to further illustrate the usefulness and strength of the method. We include 

more examples than usual because of the complexity of factorial analysis, its 

frequency of use, and its manifest importance. 

Race, Sex, and College Admissions 

In an ingenious, elegantly conceived and classical study, Walster, Cleary, and Clifford 

(1970) asked whether colleges in the United States discriminate against women and 

African American applicants. They used a 2 X 2 X 3 factorial design in which race 

(white American, African American), sex (male, female), and ability (high, medium, 

low) were the independent variables; and Admission (scored on a five-point scale, 

with 1 equals rejection through 5 equals acceptance with encouragement) was the de¬ 

pendent variable. They selected 240 colleges randomly from a standard guide and 

sent specially prepared letters of application to the colleges from fictitious individuals 

who possessed, among other things, the race, sex, and ability levels mentioned above. 
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H] Table 14.15 Results of Walster, Cleary, and Clifford Study for Sex, Ability, and 

Admission (Meansf 

Sex High 

Ability 

Medium Low 

Male 3.75 3.48 3.00 3.41 

Female 4.05 3.48 1.93 3.15 

3.90 3.48 2.47 

^Marginal means were calculated from cell means. The higher the mean the greater the acceptance. 

For instance, the applicant might be an African American, male, with a medium level 

of ability. Note the clever manipulation of variables not usually amenable to experi¬ 

mental manipulation. Also note that the unit of analysis was Institutions. 

Factorial analysis of variance showed that none of the three main effects was 

statistically significant. If this was all the information the researchers had, they could 

have concluded that there was no discrimination practiced. But one of the 

interactions—sex by ability—was statistically significant. The means for Sex and 

Ability are given in Table 14.15. (The variable Race is omitted because the race main 

effect and the interactions of race with the other variables were not significant.) An 

intriguing finding! It seems that females are discriminated against at the lower level 

of ability but not at the high and medium levels. 

The Effect of Gender, Type of Rape, and 

Information on Perception 

The perception of people toward a rape victim has received much media attention. 

Research has been done to determine the decision-making process by jurors in rape 

trials. Johnson (1994) conducted such a study using three independent variables and 

two dependent variables. Johnson wanted to determine the effect of gender (male 

versus female), type of rape (acquaintance versus stranger) and information admissi¬ 

bility (yes versus no) on perceived victim enjoyment and attribution of responsibility. 

A 2 X 2 X 2 factorial design was used. 

To reduce possible demand biases in the study, Johnson gave participants three 

passages to read and they answered various questions about the content in the pas¬ 

sage. Participants were led to believe that the study was an impression formation 

study. Two of the passages were irrelevant to the study. In the experimental passage, a 

description was given of a female college student being raped. The passage was var¬ 

ied in the type of rape: acquaintance or stranger. The passage also gave the reactions 

of the victim’s classmates. It was implied that the rape victim had a history of sexual 

promiscuity. Half of the participants were explicitly instructed to ignore classmate 

comments when making a perception of the victim (inadmissible); half were not 
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H Table 14.16 Mean Perceptions by Type of Rape and 

Information Admissibility (Johnson studyf 

Information Admissibility 

Type of Rape Admissible Inadmissible 

Acquaintance 

Stranger 

4.0 4.8 

3.8 3.5 1.6 1.6 

3.1 3.9 

■’The numbers in italics record Perception of Enjoyment, the boldface values 
record Attribution of Responsibility. 

given such instructions (admissible). Each subject was asked to respond to questions 

concerning the victim’s enjoyment of the rape and the amount of responsibility 

attributed to the victim for the rape event. 

Part of the summary data from the study are presented in Table 14.16. The 

values given are means. Higher values indicate higher probability of enjoyment and 

greater attribution of responsibility. Male participants perceived a higher probability 

of victim enjoyment of the rape than female participants. Participants who were not 

instructed to disregard the comments of the victim’s classmates perceived a higher 

probability of victim enjoyment and attributed responsibility than those who were 

told not to consider the comments. Likewise, participants in the Acquaintance rape 

condition gave a higher probability of victim enjoyment and attribution of responsi¬ 

bility than Stranger rape. Note the suitability of factorial analysis of variance for the 

analytic problem and the applicability of the idea of interaction in this situation. 

Student Essays and Teacher Evaluation 



CHAPTER 14 ■ Factorial Analysis of Variance 377 

fal Table 14.17 Factorial Analysis of Variance Results of Rewriting Effects 

(Freedman study of evaluation of essays f 

Source df ms F 

Reader (R) 11 .448 

Content (C) 1 9.860 37.78** 

Organization (0) 1 5.195 29.69** 

Sentence Structure (SS) 1 1.500 2.54 

Mechanics (M) 1 5.042 9.77** 

C X SS 1 1.960 6.30 

C X M 1 .990 3.18 

0 X SS 1 3.767 12.11* 

0 X M 1 6.155 19.79** 

SS x M 1 .001 

“Significant at .01 level; * “significant at .001 level. 

Structure (SS) was not. But the 0 X SS and the 0 X M significant interactions 

showed that the strength or weakness of mechanics and sentence structure mattered 

when essays had strong organization. This study and its essay assessment are 

certainly on another level of discourse from the more or less intuitive and loose 

methods that most use when judging student writing. 

omputer Addendum 

We saw how to use SPSS to analyze data with a t-test and a one-way ANOVA in the 

last chapter. To use SPSS for a factorial analysis of variance is very similar. Table 

14.18 shows fictitious data presented in the traditional table form. Figure 14.4 shows 

[□] Table 14.18 Factorial Design with Fictitious Data. 

Difficulty 

Bi (Low) B2 (Medium) B3 (High) 

Ai (Traditional) 18,17,17 17,16,15 11,12,10 

Teaching Method ^ (Enhanced) 18,18,16 14,15,16 12,10,10 
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M Figure 14.4 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

Type Diffic Score 

1 1 1 18 

2 1 1 17 

3 1 1 17 

4 1 2 17 

5 1 2 16 

6 1 2 15 

7 1 3 11 

8 1 3 12 

9 1 3 10 

10 2 1 18 

11 2 1 18 

12 2 1 16 

13 2 2 14 

14 2 2 15 

15 2 2 16 

16 2 3 12 

17 2 3 10 

18 2 3 10 

msmmsssxiHzx 

how those data were restructured into SPSS spreadsheet format. It is very important 

Vat,the re.ader un,derstand how to move from the data presentation in Table 14 18 to 
the data table used by SPSS. This fictitious study involved the effects of two indepen- 

dent vanabies on achievement. One independent variable (A) was the type of teaching 

method (traditional enhanced). The second independent variable was difficulty of the 

test (low, medium, high). The dependent variable was the score on the test. 

o perform the desired two-way analysis of variance, click “Statistics ” This 

produces a menu of statistical analyses. Choose “ANOVA Models” (see Figure 14 5) 



CHAPTER 14 ■ Factorial Analysis of Variance 379 

M Figure 14.5 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

Type Diffic Score \ 
1 1 1 18 Su mmarize » ► 

2 1 1 17 Compare Means ► 
ANOVA Models ► 
Correlate ► 
Regression ► 
Log-linear ► 
Classify ► 
Data Reduction ► 
Scale ► 
Nonparametric Tests ► 

Simple Factorial 

General Factorial 

Multivariate 

Repeated Measures 

3 1 1 17 

4 1 2 17 

5 1 2 16 

6 1 2 15 

7 1 3 11 

8 1 3 12 

9 1 3 10 

10 2 1 18 

11 2 1 18 

12 2 1 16 

13 2 2 14 

14 2 2 15 

15 2 2 16 

16 2 3 12 

17 2 3 10 

18 2 3 10 

Choosing that option produces a new screen (see Figure 14.6) where you specify 

which of your variables are the dependent and independent variables. In the left¬ 

most box is a list of your three variables: “Diffic,” “Score,” and “Type.” First, high¬ 

light “Score” and click the right-pointing arrow for the box labeled “Dependent.” 

Next, highlight the variable name “Diffic.” You want to enter “Diffic” into the box 

labeled “Factor(s).” To do this, click on the right-pointing arrow associated with the 

“Factor(s)” box (Figure 14.7 shows this). 

After choosing the “Diffic” variable (Figure 14.7), you need to tell SPSS how 

many levels the “Diffic” variable has. Do this by clicking the “Define Range” button. 

When you do that, you get another screen (shown in Figure 14.8). Enter the 
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01 Figure 14.6 

Simple Factorial Analysis 

Dependent 
OK 

Diffic 

Score 

Type 

1 -► 1 

Factor(s) 

Paste 

F^l 
Insert 

i i 
Cancel 

Define Range 
Help 

Covariate(s) 

Options 

minimum and maximum values for the “Diffic” variable. There are three difficulty lev¬ 

els, so you can enter a “1” for the minimum value and a “3” for the maximum value. 

Then click on “Continue” when you are satisfied with your input. SPSS will now re¬ 

turn you to the previous screen. There is one major change. Question marks no longer 

follow the Diffic variable name in the Factor(s) box. Instead you see “(1, 3).” 

Figure 14.7 

Simple Factorial Analysis 

Dependent 

Score 

Factor (s) 

OK 

Paste 

Diffic (?, ?) 

Define Range 

Covariate(s) 

Insert 

Cancel 

Help 

Options 
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Figure 14.8 

Simple Factorial Analysis 

Dependent 

Score 

OK 

Factor(s) 

Diffic (?, ?) 

Paste 

Insert 

Cancel 

Define Range 
Help 

Factorial ANOVA: Define Range 

Continue 
is 

Minimum 

Maximum 

I Cancel 

3 Help 

Your next task is to select the “Type” variable. Highlight it and click on the 

right-pointing arrow associated with the Factor(s) box. When this is done, the 

variable name “Type” appears in that box followed by question marks enclosed in 

parentheses (see Figure 14.9). Repeat previous steps by again clicking on the “Define 

Range” button to get a screen where you can enter the levels for the variable “Type.” 

M Figure 14.9 

Simple Factorial Analysis 

Dependent OK 

1 “► 1 Score 

Paste 

Factor(s) 
Insert 

Diffic (1, 3) 

Type (?, ?) 
Cancel 

Help 
Define Range 

Covariate(s) 

I.-M Options 
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Figure 14.10 

Simple Factorial Analysis 

Dependent 

Score 

Factor(s) 

Diffic (1, 3) 

Type (?, ?) 

OK 

Paste 

Insert 

Cancel 

Define Range 
Help 

Factorial ANOVA: Define Range 

Continue 

Minimum 

Maximum 

Cancel 

Help 

Since “Type” has only two levels, enter a “1” for the minimum value and a “2” for 

the maximum value (see Figure 14.10). 

Figure 14.11 shows a screen where all of the variables have been defined. By 

clicking “OK,” SPSS will perform the analysis. The results of the analysis are given 

in the shaded box on the opposite page. 

H Figure 14.11 
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SCORE 
by DIFFIC 
TYPE 

“‘CELL MEANS' 
* * 

Total Population 14.56 ( 18) 

DIFFIC 

1 2 3 

17.33 15.50 10.83 

( 6) ( 6) ( 6) 

TYPE 

1 2 

14.78 14.33 

( 9) ( 9) 

TYPE 

DIFFIC 1 2 

1 17.33 17.33 

( 3) ( 3) 

2 16.00 15.00 

( 3) ( 3) 

3 11.00 10.67 

( 3) ( 3) 

* * * A N A LYSIS OF VARIANCE*** 

SCORE 
by DIFFIC 
TYPE 

EXPERIMENTAL sums of squares 

Covariates entered FIRST 

Sum of Mean Sig 

Source of Variation Squares DF Square F ofF 

Main Effects 135.661 3 45.222 45.222 .000 

DIFFIC 134.778 2 67.385 67.389 .000 

TYPE .889 1 .889 .889 .364 

2-Way Interactions .778 2 .389 .389 .686 

DIFFIC TYPE .778 2 .389 .389 .686 

Explained 136.444 5 27.289 27.289 .000 

Residual 12.000 12 1.000 

Total 148.444 17 8.732 



384 Part Five m Analysis ofVariance 

[U Figure 14.12 

Factorial ANOVA: Options 

Method Statistics Continue 
O Unique SI Means and counts 

O Hierarchical □ Covariate coefficier Cancel 
® Experimental □ MCA . 

Enter Covariates Maximum Interactions 
Help 

□ Before ® 5 way O 4 way 

□ With O 3 way O 2 way 

□ After O none 

H Display Labels 

The output above shows the analysis of variance table and the appropriate cell 

means. The outputting of the cell means was accomplished by selecting the “Op¬ 

tions” button in the screen shown in Figure 14.11. When the “Options” button is se¬ 

lected, the screen shown in Figure 14.12 appears. In order to get the means out¬ 

putted with the Analysis of Variance, select “Experimental” as the Method and then 

choose “Means and counts.” 

Chapter Summary 

1. Factorial designs are frequently used in behavioral science research to ana¬ 

lyze two or more independent variables simultaneously. The joint effect of 

the independent variables (interaction) on the dependent variable can be 
measured. 

2. Every level of each independent variable is completely crossed with every 

level of the other independent variables. 

3. Factorial designs are capable of handling complex designs. 

4. Factorial designs are limited only by practicality. 

5. These designs can deal with the differential effects of the variables and use 
conditional statements. 

6. The interaction is defined as the combined influence of two or more inde¬ 

pendent variables on a dependent variable. 

7. The interaction can occur in the absence of any separate effect of the inde¬ 
pendent variables. 
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8. The separate independent effects are called main effects. 

9. In ANOVA for factorial designs, the total sums-of-squares is partitioned 

into the main effects, interaction effect(s), and the error (within-group) ef¬ 

fect. The ANOVA summary table is a convenient way of presenting the 

analysis of the data. 

10. There are two basic types of interaction effects: (i) ordinal—where one of 

the independent variables is significant along with a significant interaction 

effect; and (ii) disordinal—where there is a crisscross pattern when the cell 

means are plotted. 

11. Factorial designs and the ANOVA for two independent variables is written 

as “i by j, ” where i is the number of levels of the first independent variable 

and j is the number of levels of the second independent variable. 

Study Suggestions 

1. Here are some varied and interesting psychological or educational studies that 

have used factorial analysis of variance in one way or another. Read and study 

two of them and ask yourself: Was factorial analysis the appropriate analysis? 

That is, might the researchers have used, say, a simpler form of analysis? 

Behling, D. (1995). Influence of dress on perception of intelligence and 

scholastic achievement in urban schools with minority populations. Cloth¬ 

ing and Textiles Research Journal, 13, 11-16. This study examines the 

“halo” effect using a6 X 2 X 2 X 3 X 3 (clothing style X sex of model X 

status X school X race) design. Results showed that teachers and students 

were influenced differently by clothing style. 

Cairns, E. (1990). Impact of television news exposure on children’s percep¬ 

tions of violence in Northern Ireland. Journal of Social Psychology, 130, 

447-452. Assessed the impact of TV news exposure on Irish children’s 

perceptions of the level of violence in their neighborhoods. A four-way 

ANOVA (area X sex X age X news exposure) was used. Results showed 

an effect for area and sex with respect to the high-violence area and boys. 

Two two-way interactions also reached statistical significance. 

Langer, E., & Imber, L. (1980). When practice makes imperfect: Debilitating 

effects of overlearning. Journal of Personality and Social Psychology, 31, 

2014-2024. Uses a 3 X 3 and 3x2 factorial design; unusual findings. 

Many, J. E. (1991). The effects of stance and age level on children’s literary 

responses. Journal of Reading Behavior, 23, 61-85. This study explored the 

effects of the use of aesthetic and efferent stances in response to litera¬ 

ture. All participants read the same three short stories and gave free re¬ 

sponses to each. Two-way ANOVA revealed significant effects for stance 

and grade level of understanding. The amount of understanding was 

found to increase with grade level. No interaction effects were found. 
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Wayne, S. J., Kaemar, K. M., & Ferris, G. R. (1995). Coworker responses to 

others’ ingratiation attempts. Journal of Management Issues, 7, 277-289. 

This study uses a2 X 2 X 2 X 2 (Ingratiation X Objective Performance 

X Reward X Time) factorial design to study coworker satisfaction and 

perception of fairness. 

2. We are interested in testing the relative efficacies of different methods of 

teaching foreign languages (or any other subject). We believe that foreign lan¬ 

guage aptitude is possibly an influential variable. How might an experiment 

be set up to test the efficacies of the methods? Now add a third variable, Sex, 

and lay out the paradigms of both researches. Discuss the logic of each design 

from the point of view of statistics. What statistical tests of significance would 

you use? What part do they play in interpreting the results? 

3. Write two problems and the hypotheses to go with them, using any three (or 

four) variables you wish. Scan the problems and hypotheses in Study Sugges¬ 

tions 2 and 3, Chapter 2, and the variables given in Chapter 3. Or use any of 

the variables of this chapter. Write at least one hypothesis that is an interac¬ 

tion hypothesis. 

4. From the random numbers of Appendix C draw 40 numbers, 0 through 9, in 

groups of 10. Consider the four groups as AXBU A\B2, A2Bh andH2F2. 

a. Do a factorial analysis of variance as outlined in the chapter. What should 

the A, B and A X B (interaction) F-ratios be like? 

b. Add 3 to each of the scores in the group with the highest mean. Which F- 

ratio or ratios should be affected? Why? Do the factorial analysis of vari¬ 

ance. Are your expectations fulfilled? 

5. Some students may wish to expand their reading and study of research design 

and factorial analysis of variance. Much has been written, and it is difficult to 

recommend books and articles. There are four books, however, that have rich 

resources and interesting chapters on design, statistical problems, assumptions 

and their testing, and the history of analysis of variance and related methods. 

Collier, R., & Hummel, T. (1977). Experimental Design and Interpretation. 

Berkeley, CA.: McCutchan. This book was sponsored by the American 

Educational Research Association. 

Harlow, L. L., Mulaik, S. A., & Steiger, J. H. (1997). What if there were no sig¬ 

nificance tests? Hillsdale, NJ: Lawrence Erlbaum. 

Keren, G., & Lewis, C. (1993). A handbook for data analysis in the behavioral sci¬ 

ences: Statistical issues. Hillsdale, NJ: Lawrence Erlbaum. 

Kirk, R. E. (1972). Statistical issues: A reader for the behavioral sciences. Mon¬ 

terey, CA.: Brooks/Cole. 
\ 
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■ Definition of the Problem 
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An Explanatory Digression 
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■ Extracting Variances by Subtraction 
Removal of Systematic Sources of Variance 

Additional Correlated Analysis of Variance Designs 

* Research Examples 
Ironic Effects of Trying to Relax Under Stress 

Learning Sets of Isopods 

Business: Bidding Behavior 

* Computer Addendum 

In the previous chapters, groups were independent on ANOVA. Participants who 

appeared in one group were not in any logical or meaningful way related to the 

participants in the other groups. In a 2 X 3 factorial, for example, there are six sepa¬ 

rate groups. Each group receives a different combination of treatments (independent 

variables) than the other groups. Generally, for independent groups, different partici¬ 

pants are used in each treatment combination. In this chapter we will consider the 

situation where the participants are not independent. The term “correlated groups” 

is used because it best expresses the basic and distinctive nature of the kind of analy¬ 

sis of variance discussed in this chapter. Other more commonly used terms are 

“randomized blocks,” “within subjects,” and “repeated measures,” but these are not 

completely general. 

387 
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dO Table 15.1 Design of Marijuana, Alcohol, and Simulator Driving Experiment: 

Repeated Measures (Fictitious Scoresf 

Marijuana Alcohol Control 

Subjects (T) (A2) (Aj Sums, Rows 

1 18 27 16 61 

2 24 29 21 74 

36 21 25 20 66 

Sums 710 820 680 2Xt= 2210 

"Although fictitious data were used, the design was taken from an actual research study by Crancer, 

Dille, Delay, Wallace, and Haykin (1969). 

Suppose a research team wants to test the effects of marijuana and alcohol on 

driving. It can, of course, set up a one-way design or a factorial design. Instead, the 

investigators decide to use participants as their own controls. That is, each subject is 

to undergo three experimental treatments or conditions: marijuana (Aj, alcohol (A2), 

and control (A3). After each of these treatments, the participants will operate a 

driving simulator. The dependent variable measure is the Number of Driving Errors. 

A paradigm of the design of the experiment, with a few fictitious scores, is given in 

Table 15.1. Note that the sums of both columns and rows are given in the table. 

Note, too, that the design looks like that of one-way analysis of variance, with one 

exception: the sums of the rows. These are the sums of each subject’s scores across 

the three treatments. 

This is quite a different situation from the earlier models in which participants 

were assigned at random to experimental groups. Here, all participants undergo all 

treatments, making each subject his or her own control. More generally, instead of 

independence we now have dependence or correlation between groups. What does 

correlation between groups mean? It is not easy to answer this question with a simple 

statement. 

D efinition of the Problem 

In one-way and factorial analysis of variance, the independence of groups, 

participants, and observations is a sine qua non of the designs. In both approaches 

participants are assigned to experimental groups at random. There is no question of 

correlation between groups — by definition. Except for variables specifically put into 

the design like adding Sex to treatments—variance due to individual differences is 

distributed randomly among the experimental groups, and the groups are thus 
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“equalized.” Variance due to individual differences is known to be substantial if it can 

be isolated and extracted from the total variance. Then there should be a substantial 

increase in precision because this source of variation in the scores can be subtracted 

from the total variance. Thus a smaller error variance is created to use to evaluate the 

effects of the treatments. 

In Chapter 14, one of the examples of factorial analysis of variance identified and 

subtracted variance due to social class from the total variance (see equations 

14.3-14.6 and accompanying discussion), thus reducing the within-groups variance, 

the error term. The reasoning in this chapter is similar: isolate and extract variance 

in the dependent variable due to individual differences. To make this abstract discus¬ 

sion concrete, we use an easy example in which the idea of “matching” is introduced: 

Using the same participants in the different experimental groups, and matching 

participants on one, two, or more variables. This involves the same basic idea of 

correlation between groups. In the example that follows, matching is used to show 

the applicability of correlated groups analysis to a common research situation, 

because certain points about correlation and its effect can be made conveniently. 

Matching as a research device, however, is not generally advocated, for reasons that 

will be discussed in a later chapter. 

A Fictitious Example 

A school principal and members of the staff decided to introduce a program of 

education in intergroup relations as an addition to the school’s curriculum. One of 

the problems that arose was in the use of motion pictures. Videos were shown in the 

initial phases of the program, but the results were not too encouraging. The staff 

hypothesized that the failure of the videos to have impact might have resulted from 

their not making any particular effort to bring out the possible applications of the 

video to intergroup relations. They decided to test the hypothesis that viewing the 

videos and then discussing them would improve the viewers’ attitudes toward minor¬ 

ity group members more than would just viewing the videos. 

For a preliminary study, the staff selected a group of students randomly from the 

total student body, and paired the students on intelligence until 10 pairs were 

obtained, each pair being approximately equal in intelligence. The reasoning behind 

the experiment was that intelligence is related to attitudes toward minority groups, 

and needs to be controlled. Each member of each pair was assigned randomly to 

either an experimental or a control group, and then both groups were shown a video 

on intergroup relations. The Ay (experimental) group had a discussion session after 

the video was shown; the A2 (control) group had no such discussion after the video. 

Both groups were tested with a scale designed to measure attitudes toward minority 

groups. The attitude scores and the calculations for an analysis of variance procedure 

to be described are given in Table 15.2. 

First we do a one-way analysis of variance as though the investigators had not 

matched the participants. We disregard the matching procedure and analyze the 

scores as though all the participants had been assigned to the two groups randomly, 
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[0] Table 15.2 Attitude Scores and Calculations of Analysis of Variance 

(Fictitious Example) 

Groups 

Pairs 

A, 

(Experimental) 

Aj 

(Control) I 

1 8 6 14 

2 9 8 17 

3 5 3 8 

4 4 2 6 

5 2 1 3 

6 10 7 17 

7 3 1 4 

8 12 7 19 

9 6 6 12 

10 11 9 20 

XX 70 50 XX, = 120 

M 7 5 XX,2 = 930 

without regard to intelligence. The calculations are: 

C = 
14,400 

20 
720 

Total = 930 - 720 = 210 

Between Columns(Au A2) 720 = 20 

The final analysis of variance table of this analysis is given in Table 15.3. Since the F- 

ratio of 1.89 is not significant, the two group means of 7 and 5 do not differ signifi¬ 

cantly. The interpretation of these data would lead the experimenters to believe that 

the video plus discussion had no effect. This conclusion would be wrong. The differ¬ 

ence in this case is really significant at the 0.01 level. Let us assume that this state¬ 

ment is true; if it is true, then there must be something wrong with the analysis. 

An Explanatory Digression 

When subjects are matched on variables significantly related to the dependent variable, 

correlation is introduced into the statistical picture. In Chapter 14 we saw that it was 
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d Table 15.3 Final Analysis of Variance 

Data from Table 15.2 

Table, One- Way Analysis of Fictitious 

Source df ss MS F 

Between groups (Au A2) 1 20.00 20.0 1.89 (n.s.) 

Within groups 18 190.00 10.56 

Total 19 210.00 

often possible to identify and control more of the total variance of an experimental 

situation by setting up levels of one or more variables presumably related to the 

dependent variable. The setting up of two or three levels of social class, for example, 

makes it possible to identify the variance in the dependent variable scores due to 

social class. Now, simply shift gears a bit. The matching of the present experiment 

has actually set up 10 levels, one for each pair. The members of the first pair had 

intelligence scores of say 130 and 132, the members of the second pair 124 and 125, 

and so on to the tenth pair, the members of which had scores of 89 and 92. Each pair 

(level) has a different mean. If intelligence is substantially and positively correlated 

with the dependent variable, then the dependent variable pairs of scores should 

reflect the matching on intelligence. That is, the dependent variable scores within 

each pair should be more like each other than they are like other dependent variable 

scores. So the matching on intelligence has “introduced” variance between pairs on 

the dependent variable, or between-rows variance. 

Consider another hypothetical example to illustrate what happens when there is 

correlation between sets of scores. Suppose an investigator has matched three groups 

of subjects on intelligence, and that intelligence was perfectly correlated with the 

dependent variable, achievement of some kind. This is highly unlikely, but let’s go 

along with it to get the idea. The first trio of subjects had intelligence scores of 141, 

142, and 140; the second trio 130, 126, and 128; and so on through the fifth trio of 

82, 85, and 82. If we check the rank orders in columns of the three sets of scores, 

they are exactly the same: 141, 130, . . . , 82; 142, 126, . . . , 85; 140, 128, . . . , 82. 

Since we assume that r = 1.00 between intelligence and achievement, then the rank 

orders of the achievement scores must be the same in the three groups. The assumed 

achievement-test scores are given on the left-hand side of Table 15.4. The rank 

orders of these fictitious scores, from high to low, are given in parentheses beside 

each achievement score. Note that the rank orders are the same in the three groups. 

Now suppose that the correlation between intelligence and achievement was 

approximately zero. In such a case, no prediction could be made of the rank orders of 

the achievement scores or, to put it another way, the achievement scores would not 

be matched. To simulate such a condition of zero correlation, we broke up the rank 

orders of the scores on the left-hand side of Table 15.4 with the help of a table of 

random numbers. After drawing three sets of numbers 1 through 5, we rearranged 

the scores in columns according to the random numbers. (Before doing this, all the 
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m Table 15.4 Correlated and Uncorrelated Scores (Fictitious Example) 

I. Correlated Groups II. Uncorrelated Groups 

T a2 A3 M A, a2 Aj M 

73 (1) 74(1) 72(1) 73 63 (2) 74(1) 46 (5) 61.00 

63 (2) 65 (2) 61(2) 63 45 (5) 55(3) 61(2) 53.67 

57(3) 55(3) 59(3) SI 50(4) 50(4) 59(3) 53.00 

50(4) 50(4) 53(4) 51 57(3) 65(2) 53(4) 58.33 

45 (5) 44(5) 46 (5) 45 73 (1) 44(5) 72 (1) 63.00 

Mt = 57.80 Mt = 57.80 

column rank orders were 1, 2, 3, 4, 5.) The first set of random numbers was 2, 5, 4, 3, 

and 1. The second number of column Ax was put first. We next took the fifth number 

of Ax and put it second. This process was continued until the former first number 

became the fifth number. The same procedure was used with the other two groups of 

numbers, with, of course, different sets of random numbers. The final results are 

given on the right-hand side of Table 15.4. The means of the rows are also given, as 

are the ranks of the column scores (in parentheses). 

First, study the ranks of the two sets of scores. In the left-hand portion of the 

table, labeled I, are the correlated scores. Since the ranks are the same in each col¬ 

umn, the average correlation between columns is 1.00. The numbers of the set 

labeled II, which are essentially random, present quite a different picture. The 15 

numbers of both sets are exactly the same. So are the numbers in each column (and 

their means). Only the row numbers and, of course, the row means, are different. 

Look at the rank orders of II. No systematic relations can be found between them. 

The average correlation should be approximately zero, since the numbers were ran¬ 
domly shuffled. Actually it is 0.11. 

Next, study the variability of the row means. Note that the variability of the 

means of I is considerably greater than that of II. If the numbers are random, the 

expectation for the mean of any row is the general mean. The means of the rows of 

II hover rather closely around the general mean of 57.80. The range is 63 - 53 = 

10. But the means of the rows of I do not hover closely around 57.80; their variability 

is much greater, as indicated by a range of 73 - 45 = 28. Calculating the variances of 

these two sets of means (called between-rows variance), we obtain 351.60 for I and 

5827 for II. The variance of I is six times greater than the variance of II. This large 

difference is a direct effect of the correlation that is present in the scores of I but not 

ln iL lt may be said that the between-rows variance is a direct index of individual 

differences^ The reader should pause here to review this example, especially the 

entries in Table 15.4, until the effect of correlation on variance is clear. 
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What is the effect of the estimate of the error variance of correlated scores? 

Clearly the variance due to the correlation is systematic variance, which must be 

removed from the total variance if a more accurate estimate of error variance is 

desired. Otherwise, the error variance estimate will include the variance due to indi¬ 

vidual differences, and the result will thus be too large. In the example of Table 15.4, 

we know that the shuffling procedure has concealed the systematic variance due to 

the correlation. By rearranging the scores the possibility of identifying this variance 

is removed. The variance is still in the scores of II, but it cannot be extracted. To 

show this, we calculate the variances of the error terms of I and II; that of I is 3.10, 

that of II, 149.77. By removing from the total variance the variance due to the corre¬ 

lation, it is possible to reduce the error term greatly, with the result that the error 

variance of I is 48 times smaller than the error variance of II. If there is substantial 

systematic variance in the sets of measures, and it is possible to isolate and identify 

this variance, then it is clearly worthwhile to do so. 

Actual research data will not be as dramatic as the above example. Correlations 

are almost never 1. But they are often greater than .50 or .60. The higher the correla¬ 

tion, the larger the systematic variance that can be extracted from the total variance, and the 

more the error term can be reduced. This principle becomes very important not only in 

designing research, but also in measurement theory and practice. Sometimes it is 

possible to build correlation into the scores and then extract the variance due to 

the resulting correlated scores. For example, we can obtain a “pure” measure of indi¬ 

vidual differences by using the same participants on different trials. Obviously a 

participant’s own scores will be more alike than they will be like the scores of others. 

Reexamination of Table 15.2 Data 

We return to the fictitious research data of Table 15.2—the effects of videos on atti¬ 

tudes toward minority groups. Earlier we calculated a between-columns (between- 

groups) sum-of-squares and variance, exactly as we did in one-way analysis of vari¬ 

ance. We found that the difference between the means was not significant when this 

method was used. From the above discussion, we can surmise that if there is correla¬ 

tion between the two sets of scores, then the variance due to the correlation should be 

removed from the total variance and, of course, from the estimate of the error vari¬ 

ance. If the correlation is substantial, this procedure should make quite a difference: 

the error term should get considerably smaller. The correlation between the sets of 

scores of Ax and A2 of Table 15.2 is .93. Since this is a high degree of correlation, the 

error term (when properly calculated) should be much lower than it was before. 

The additional operation required is simple. Just add the scores in each row of 

Table 15.2 and calculate the between-rows sum-of-squares and the variance. Square 

the sum of each row and divide the result by the number of scores in the row; for ex¬ 

ample, in the first row: 8 + 6 = 14; (14)2 -h 2 = 196 -e 2 = 98. Repeat this procedure 

for each row, add the quotients, and then subtract the correction term C. This yields 

the between-rows sum-of-squares. (Since the number of scores in each row is always 

2, it is easier, especially with a hand calculator, to add all the squared sums and then 

divide by 2.) 
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Between rows (1, 2, 3,.10) 
(14)2 + (17)2 + • • • • + (20)2 

2~ 

902 - 720 = 182 

This between-rows sum-of-squares is a measure of the variability due to individual 

differences, as indicated earlier. 

We have extracted from the total sum-of-squares the between-columns and the 

between-rows sums-of-squares. Now, set up the familiar equation used in one-way 

analysis of variance: 

sst = ssb + ssw (15.1) 

The analysis of Table 15.3 is an example. We must alter this equation to suit the pre¬ 

sent circumstances. The former between-groups sum-of-squares, ssh, is relabeled ssc, 

which means the sum-of-squares of the columns. The sum-of-squares of the rows, 

ssr, is added, and ssw, must be relabeled since we now no longer have a within-groups 

variance. (Why?) We label it ssres, meaning the sum-of-squares of the residuals. As the 

name indicates, the residual sum-of-squares means the sum-of-squares remaining 

after the sums-of-squares of columns and rows have been extracted from the total 

sum-of-squares. The equation then becomes 

N = ssc + ssr + ssns (15.2) 

Briefly, the total variance has been broken down into two identifiable, or systematic, 

variances and one error variance. And this error variance is a more accurate estimate 

of error, or chance variation, of the scores than that of Table 15.3. 

Rather than substitute in the equation, we set up the final analysis of variance 

table (Table 15.5). The T-ratio of the columns is now 20.00 t .89 = 22.47, which is 

significant at the .001 level. In Table 15.3 the T-ratio was not significant. 

This is quite a difference. Since the between-columns variance is the same, the 

difference is due to the greatly decreased error term, now .89 when it was 10.56 

before. By calculating the rows sum-of-squares and the variance, it has been possible 

to reduce the error term to about 1/12 of its former magnitude. In this situation, 

obviously, the former error variance of 10.56 was greatly overinflated. Some statistics 

texts (e.g., Kirk, 1990; Mendenhall & Beaver, 1997) refer to the columns as “treat¬ 

ments” and the rows as “blocks.” Returning to the original problem, it is now possi¬ 

ble to say that adding discussion after the video seems to have had a significant effect 
on attitudes toward minority groups. 

Further Considerations 

Before we leave this example, additional points need to be made. The first'involves 

the error term and the within-groups and residual variances. When the variances of 

the columns and the rows are calculated, it is not possible to calculate a within- 
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f^1 Table 15.5 Complete Analysis of Variance Table: Data from Table 15.2 

Source df ss MS F 

Between columns (Au A2) 1 20 20.0 22.47 (0.001) 

Between rows (1, 2,3,.., 10) 9 182 20.22 22.72 (0.001) 

Residual 9 8 0.89 

Totals 19 210 

groups variance, since there is in effect only one score per cell. Also bear in mind 
that both error variances, as calculated, are only estimates of the error variance. In the 
one-way situation, the only estimate possible is the within-groups variance. In the 
present situation, a better estimate is possible; “better” in the sense that there is more 
systematic variance. When it is possible to extract systematic variance we do so. It 
was possible to do so with the data from Table 15.2. 

A second point is: Why not use the t-test? The answer is simple: Do so if you 
wish. If there is only one degree of freedom, that is, two groups, then t equals the 
square root of F, or F = t2. The t-ratio of the data from Table 15.5 is simply: 
the square root of 22.47 = 4.74. But if there is more than one degree of freedom, the 
£-test must give way to the F-test. Moreover, the analysis of variance yields more in¬ 
formation. The analysis of Table 15.5 tells us that the difference between the mean 
attitude scores of the experimental and control groups is significantly different. The 
r-test would have yielded the same information. But Table 15.5 also tells us — simply 
and clearly—that the matching was effective, or that the correlation between the 
dependent variable scores of the two groups is significant. Had the between-rows 
F-ratio not been significant, we would know that the matching had not been success¬ 
ful. Important information, indeed. Finally, the calculations of the analysis of vari¬ 
ance, once understood, are easily remembered; whereas the equations used for esti¬ 
mating the standard error of the differences between the means seem to confuse the 
beginning student. (The simple formula given earlier has to be altered because of the 
correlation.) 

Point three: post hoc tests of the significance of the differences between individ¬ 
ual means can be made with, of course, more than two groups. The Scheffe, Tukey 
and other tests used for multiple comparisons are applicable. The Scheffe’s test was 

covered in Chapter 13. 
Finally, and most important, the principles discussed above are applicable to a 

variety of research situations. Their application to matching is perhaps the least im¬ 
portant, though maybe the easiest to understand. Whenever the same subjects and 
repeated measures are used, the principles apply. When different classes or different 
schools are used in educational research, the principles apply: variance due to class 
and school differences can be extracted from the data. Indeed, the principles can be 
invoked for any research in which different experimental treatments are used in 
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different units of a larger organization, institution, or even geographical area — 

provided these units differ in variables of significance to the research. 

To see what is meant, imagine that the rows of the left side of Table 15.4 are dif¬ 

ferent schools or classes in a school system, that the schools or classes differ signifi¬ 

cantly in achievement, as indicated by the row means, and that Ah A2, and A3 are 

experimental treatments of an experiment done in each of the schools or classes (see 

Study Suggestion 2). 

Two-way (two independent variables) analysis of variance is useful in the solution 

of certain measurement problems, particularly in psychology and education, as we 

will see in later chapters. Individual differences are a constant source of variance that 

needs to be identified and analyzed. A good example is seen in the study of raters and 

ratings. One can separate the variance of raters (judges) from the variance of the ob¬ 

jects being rated. The reliability of measuring instruments can be studied because the 

variance of the items can be separated from the variance of the persons responding to 

the items. We return again and again to these important points and the principles be¬ 
hind them. 

To illustrate the use of judges or raters as “blocks,” consider the following 

example. Eight different judges evaluate four videos. Each video covers the same ma¬ 

terial. Each judge assigned a score between 0 and 20 to each video in terms of 

effectiveness of presentation. Each judge viewed the videos in random order. The 

table below gives the data, analysis, and summary. The analysis shows that the judges 

differ in their ratings of the videos. Hence, partitioning out their variance increases 
the effect between videos. 

Videos 
Judges/Blocks A B C D Row Totals 

1 6 4 14 8 32 
2 8 2 10 7 27 
3 7 8 10 7 32 
4 12 6 11 12 41 
5 5 0 9 8 22 
6 7 3 10 7 27 
7 10 9 16 11 46 
8 9 4 12 9 34 

Column Totals 64 36 92 69 261 

SST„, = SD2(N) = 3.37372(32) = 364 .22 

Video 

642 + 362 + 922 + 692 " 
M2(N) 

8 = 2327.13 - 8.15625(32) = 198.34 

Judges 

r 322 + 272 + .+ 342 1 

4 
— 2128.78125 = 106 97 ' 

SSResidual ^ ^Total ^ ^ Video S SJudges ~~ 58/91 
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Source df ss MS F 

Videos 3 198.34 66.11 23.53 (0.01) 

Judges (Blocks) 7 106.97 15.28 5.44(0.01) 

Residual 21 58.91 2.81 
Total 31 364.22 

Extracting Variances by S ubtraction 

To be sure that the reader understands the points being made, previous examples are 

repeated here. In Table 15.6, two sets of numbers, labeled I and II, are given. The 

numbers in these sets are exactly the same, only their arrangements differ. In I, there 

is no correlation between the two columns of numbers; the coefficient of correlation 

[Ml TABLE 15.6 Analyses of Variance of Randomized and Correlated Fictitious Data 

r = 

1 

0.00 r = 

II 

= 0.90 

Ay A2 2 Ay a2 2 

1 5 6 1 2 3 

2 2 4 2 4 6 

3 4 7 3 3 6 

4 6 10 4 5 9 

5 3 8 5 6 11 

2X 15 20 2X( = 35 15 20 M
 

><
 

II
 

G
O

 

G
n

 

M 3 4 2X,2 = 145 3 4 %Xt2 = 145 

s
;

 

ii
 

G
O

 

G
n

 

£
 

II
 

G
O

 

Ln
 

C = 

Total = 

Between C — 

(35)2 

10 
= 122.50 

145 - 122.50 = 22.50 

152 + 202 
122.50 = 2.50 

C = 

Total = 

Between C = 

(3 5)2 

10 
122.50 

145 - 122.50 = 22.50 

“ 152 + 202 
122.50 = 2.50 

62 + 42 4- . . + 82 

132.50 - 122.50 = 10 

32 + 62 4 ... + 92 

141.50 - 122.50 = 19 

Between R = 122.50 Between R — - 122.50 
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HD Table 15.7 Final Analysis of Variance Tables. 

I (r = 0.00) 
— 

II (r = 0.90) 

Source df ss MS F ss MS F 

Between C 1 2.50 2.50 1.0 2.50 2.50 10.0 (0.05) 

Between R 4 10.00 2.50 (n.s.) 19.00 4.75 

Residual C X R 4 10.00 2.50 1.00 0.25 

Totals 9 22.50 22.50 

is exactly zero. This is analogous to the assignment of participants to the two groups 

at random. One-way analysis of variance is applicable. In II, on the other hand, the 

A2 numbers have been rearranged so that there is correlation between the A^nd A2 

numbers. (Check the rank orders.) In fact, r = 0.90. One-way analysis of variance is 

not applicable here. If it is used with the numbers of II, the result will be exactly the 

same as it will be with the numbers of I, but we will then be disregarding the variance 
due to the correlation. 

The calculations in Table 15.6 yield all the sums-of-squares except the residual 

sums-of-squares, which are obtained by subtraction. Since the calculations are so 

straightforward, we proceed directly to the final analysis of variance tables that are 

given in Table 15.7. The sums-of-squares for totals, columns, and rows are entered as 

indicated, with the appropriate degrees of freedom. The between-rows degrees of 

freedom are the number of rows minus one (5 - 1 = 4). The residual degrees of free¬ 

dom, like the interaction degrees of freedom in factorial analysis of variance, are 

obtained by multiplying the between-columns and between-rows degrees of free¬ 

dom: 1 X 4 = 4. Or simply subtract the between-columns and between-rows degrees 

of freedom from the total degrees of freedom: 9 - 1 - 4 = 4. The residual sums-of- 

squares, similarly, are obtained by subtracting the between-columns and between- 

rows sums-of-squares from the total sums-of-squares. ForI 225-25 = 100=10- 
for II, 22.5 - 2.5 - 19.0 = 1. 

These analyses need little elaboration. Note particularly that where there is cor¬ 

relation, the between-columns F-ratio is significant, but where the correlation is zero 

it is not significant. Note, too, the error term: for I (r = .00), it is 2.5: for II (r = .90), 
it is .25, which is 10 times smaller. 

Removal of Systematic Sources of Variance 

We now use the subtractive procedure of Chapter 6 to remove the two systematic 

sources of variance in the two sets of scores. First, remove the between-columns vari¬ 

ance by correcting each mean so that it equals the general mean of 3.5. Then correct 
each score in each column similarly (as done for I and II in Table 15.8). 
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[Ml TABLE 15.8 Removal of Between-Columns Variance by Equalizing Column 

Means and Scores 

r 

I 
= 0.00 r 

II 
= 0.90 

Correction .5 -.5 .5 -.5 

A a2 M A A M 

1.5 4.5 3.0 1.5 1.5 1.5 

2.5 1.5 2.0 2.5 3.5 3.0 

3.5 3.5 3.7 3.5 2.5 3.0 

4.5 5.5 5.0 4.5 4.5 4.5 

5.5 2.5 4.0 5.5 5.5 5.5 

M 3.5 3.5 £
 

II 
G

*
J 

G
O

 

3.5 3.5 £
 

II 
G

/J
 

G
O

 

If we now calculate the total sums-of-squares of I and II, in both cases we obtain 

20. Compare this result to the former figure of 22.5. The correction procedure has 

reduced the total sums-of-squares by 2.5. These are, of course, the between-columns 

sums-of-squares. Note, again, that the correction procedure has had no effect what¬ 

ever on the variance within each of the four groups of scores. Neither has it had any 

effect on the means of the rows. 

[Ml Table 15.9 Removal of Between-Columns Variance by Equalizing Row Means 

and Scores 

r = 

I 
0.00 r = 

II 
= 0.90 

Correction Ay A2 M Correction Ay A2 M 

+ 0.5 2.0 5.0 3.5 + 2.0 3.5 3.5 3.5 

+ 1.5 4.0 3.0 3.5 + 0.5 3.0 4.0 3.5 

0 3.5 3.5 3.5 + 0.5 4.0 3.0 3.5 

-1.5 3.0 4.0 3.5 -1.0 3.5 3.5 3.5 

-0.5 5.0 2.0 3.5 -2.0 3.5 3.5 3.5 

M 3.5 3.5 

L
O

 

II 3.5 3.5 M, = 3.5 
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Next, remove the rows variance by letting each row mean equal 3.5, the general 

mean, and by correcting the row scores accordingly. This has been done in Table 

15.9, which should be carefully studied. Note that the variability of both sets of 

scores has been reduced, but that the variability of the correlated set (II) has been 

sharply reduced. In fact, the scores of II have a range of only 4—3 = 1, whereas the 

range of the I scores is 5 — 2 = 3. The matching of the scores in II and its concomi¬ 

tant correlation enables us, via the corrective procedure, to reduce the error term 

sharply by “correcting out” the variance due to the correlation. The only variance 

now in the twice-corrected scores is the residual variance. 

“Residual variance” is an apt term. It is the variance remaining after the two 

systematic variances have been removed. If we calculate the total sums-of-squares of I 

and II, we find them to be 10 and 1, respectively. If we calculate the sums-of-squares 

within the groups as with one-way analysis of variance, we find these also to be 10 

and 1. Evidently there is no more systematic variance left in the scores — only error 

variance remains. The most important point to note is that the residual sum- 

of-squares of the uncorrelated scores is 10 times greater than the residual sum-of- 

squares of the correlated scores. Exactly the same operation was performed on both 

sets of scores. With the uncorrelated scores, however, it is not possible to extract as 
much variance as with the correlated scores. 

Additional Correlated Analysis of Variance Designs 

So far in our discussion concerning the analysis of variance we have seen three of the 

five basic designs. Chapter 13 covered the completely randomized design. This was a 

one-way ANOVA with independent groups. Independent groups are usually accom¬ 

plished through random selection of participants and the random assignment of 

participants to treatment conditions. Chapter 14 introduced us to the randomized 

factorial design. Here we studied two or more independent or experimental variables 

at a time. Like the completely randomized design, the groups involved in the analy¬ 

ses were independent. With two independent variables, the analysis is referred to as a 

two-way ANOVA. In this chapter we have considered the randomized block design. 

This is a one-way ANOVA where the subjects are not independent. These designs 

involve the use of matching participants or using the same subject over a number of 

different treatment conditions. It is referred to as randomized block because the treat¬ 
ments are given to each subject in random order. 

The two remaining basic ANOVA designs are variations of the randomized 
block design. One of these designs is called the split-plot or mixed factorial ANOVA 

1 he other is the rc-way within-participants design. Conceptually the simpler of the 

two is the n-way within-participants design. This design resembles the randomized 

factorial design However, the participants are not assigned randomly to the treat¬ 

ments. In this design, one group of participants is exposed to all treatment combina¬ 

tions. You might remember that in the randomized factorial design, different groups 

of participants were used in each different treatment combination. With two inde¬ 

pendent variables, this would be called a two-way within-subjects ANOVA or a 
subjects-by-treatment-by-treatment ANOVA. 
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OH Table 15.10 Layout of the Five ANOVA Designs 

(a) The completely randomized design (one-way ANOVA) 

Independent Variable 

N A-2 A3 

S, S4 S7 

s2 S5 S8 

S3 S6 S9 

Group 1 Group 2 Group 3 

(b) Randomized block desigi n (one-way ANOVA) 

Independent Variable 

N A2 A3 

Si S, Si 

S2 S2 s2 

S3 S3 S3 

S4 S4 S4 

S5 S5 S5 

Group 1 Group 1 Group 1 

(c) Randomized factorial design (two-way ANOVA) 

Independent Variable 1 

Independent Variable 2 A, A2 A3 

Si s7 Si 3 

S2 S8 Si4 

5, S3 s9 S15 

Group 1 Group 3 Group 5 

s4 S10 Si6 

b2 s5 Sn S17 

S6 S12 Si8 
Group 2 Group 4 Group 6 

cont. 



402 Part Five ■ Analysis of Variance 

H Table 15.10 (continued) 

(d) Two-way within-subjects design (two-way ANOVA) 

Independent Variable 1 

Independent Variable 2 Aj A2 A3 

Sy N Si 
s2 s2 S2 

By Si S3 

Group 1 Group 1 Group 1 

5, s, Si 
b2 s2 s2 S2 

s3 S3 S3 

Group 2 Group 2 Group 2 

(e) Spilt-plot, mixed factorial design (two-way ANOVA) 

Independent Variable 2 
Independent Variable 1 

A-i A2 A3 

Si Si s, 
s2 s2 s2 

By Si S3 S3 

Group 1 Group 1 Group 1 

S4 s4 s4 
b2 S5 Ss S5 

S6 S6 S6 

Group 2 Group 2 Group 2 

With the mixed factorial ANOVA with two independent variables, each subject 

is exposed to all levels of one independent variable but only to one level of the 

second independent variable. The design is termed “mixed” because it has the 

features of both uncorrelated and correlated ANOVA. It can alternatively be 

escribed as a design having at least one between-subjects factor and at least one 

within-subjects factor Table 15.10 (a), (b), (c), (d), and (e) shows the difference 
between the five ANOVA designs. 
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We have seen earlier in this chapter the procedure for partitioning the sum-of- 

squares in the completely randomized and randomized block ANOVAs. Similar logic 

toward partitioning is true for the mixed and within-subjects designs. Purdy, Avery, 

and Cross (1978) give a very good account of this as well as the layout of the data and 

the ANOVA summary table. Other excellent references are Hays (1994), Kirk 

(1995), Linton and Gallo (1975), McGuigan (1997), and Howell (1997). 

Research Exam pies 

Ironic Effects of Trying to Relax Linder Stress 

When we are in a stressful situation does it help to tell ourselves to relax and calm 

down? One would think that this is the best procedure to use in order to be healthier. 

Recently, a professional basketball player entered into a heated argument with the 

coach. After being separated, the player went to the locker room only to return 20 

minutes later to attack the coach again. A number of researchers have documented 

the fact that telling ourselves to calm down and relax is not easy. In one such study, 

Wegner, Broome, and Blumberg (1997) demonstrated that conscious efforts to relax 

usually lead to a higher state of agitation. This study found that when participants 

were instructed to relax under high mental load they exhibited a higher level of agita¬ 

tion. On the other hand, participants who were under a low mental load or who 

were not told to relax tended to be less agitated. Wegner and associates used skin 

conductance level (SCL) as a measure of agitation. Higher values of SCL indicated 

higher the levels of agitation. While SCL served as the dependent variable for the 

study, the independent variables were load (high versus low), instruction (told to 

relax versus not told to relax), and period (Pre: first 5 minutes; Test: next 3 minutes; 

and Post: last 5 minutes). The last independent variable is the repeated measures. 

Each subject was exposed to all three levels of the period variable. The other two 

independent variables were between-subjects variables. Each subject was exposed to 

only one condition of high or low load and one of instructions. The design of this 

study can be classified as a mixed or split-plot ANOVA. The layout of the design 

with the means is given in Table 15.11. The analyses showed a significant effect for 

period, F(2, 166) = 137.7, p < 0.001. 

Learning Sets of Isopods 

In an interesting and effective demonstration of the use of participants as their own 

controls, in which two-way analysis of variance and the testing of learning theory 

with lower organisms were used, Morrow and Smithson (1969) showed that isopods 

(small crustaceans) can learn to learn. Many students, humanists, sociologists, educa¬ 

tors, and even psychologists have criticized learning theorists and other psychologi¬ 

cal investigators for using animals in their research. While there can be legitimate 

criticism of psychological and other behavioral research, criticizing it because 
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[1 Table 15.11 Means for Load, Instructions, and Period, 

(Wegner, Broome, if Blumberg study f 

Period 

Instruction/Load Pre Test Post 

None/Low -0.51 4.27 1.58 

None/High -0.46 3.80 1.68 

Relax/Low 0.38 3.50 1.80 

Relax/High 0.10 5.70 2.58 

'These values were estimated from examining Wegner, Broome and Blumberg’s figure 

animals are used is part of the frustrating, but apparently unavoidable, irrationality 

that plagues all human effort. Yet, it does have a certain charm, and can itself be the 

object of scientific investigation. Bugelski (1956) has written an excellent defense of 

the use of rats in learning research that should be read by students of behavioral 

research. Another excellent essay on a somewhat broader base is by Hebb and 

Thompson (1968). In any case, one of the reasons for testing similar hypotheses with 

different species is the same reason as why we replicate research in different parts of 

the United States and in other countries: generality. How much more powerful a 

theory is if it holds up with southerners, northerners, easterners, and westerners; 

with Germans, Japanese, Israelis, and Americans; and with rats, pigeons, horses, and 

dogs. Morrow and Smithson’s (1969) study attempted to extend learning theory to 

little creatures whose learning one might believe governed by different laws than the 
learning of men and rats. 1 hey succeeded at least to some extent. 

They trained eight isopods, through water deprivation and subsequent rein¬ 

forcement for successful performance (wet blotting paper), to make reversals of their 

“preferences” for one or the other arm of a T-maze. When the 5s had reached a 

specified criterion of correct turns in the maze, the training was reversed — that is, 

H Table 15.12 Analysis of Variance of Morrow and Smithson Data 

Source df ss MS F 

Reversal trials 9 3095.95 343.994 4.78 (0.01) 

Isopods (blocks) 7 1587.40 226.771 3.15 (0.01) 

Residual 63 4532.85 71.950 

Totals 79 9216.20 
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turning in the direction of the other arm of the T-maze was reinforced until the 

criterion was reached. This was done with each isopod for nine reversals. The ques¬ 

tion is: Did the animals learn to make the reversals sooner as the trials progressed? 

Such learning should be exhibited by fewer and fewer errors. 

Morrow and Smithson analyzed the data with two-way analysis of variance. The 

mean number of errors of the initial trial and the nine reversal trials consistently got 

smaller: 27.5, 23.6, 18.6, 14.3, 16.8, 13.9, 11.1, 8.5, 8.6, 8.6. The two-way analysis of 

variance table is given in Table 15.12. The analysis of variance was computed by the 

first author (FNK) from the original data given by Morrow and Smithson in their 

Table 1. 
The ten means differ significantly, since the F-ratio for columns (reversal trials), 

4.78, is significant at the .01 level. The F shows that there is correlation between the 

columns, and thus individual differences among the isopods, significant at the .01 

level. It is a piquant note that even little crustaceans are individuals! 

Business: Bidding Behavior 

This example is taken from the marketing research literature. The study of behavior 

is prevalent in business research. A number of well-known businesses such as Proctor 

& Gamble hire a number of behavioral scientists to help conduct research on con¬ 

sumer products. 

[M] Table 15.13 Bids from Three Contracting Companies (Reinmuth & Barnes data) 

Bid Trials Company A Company B Company C 2 

1 $45.00 42.50 $39.75 127.25 

2 45.00 40.25 42.70 127.95 

3 46.00 45.50 40.00 131.50 

4 43.75 43.50 40.20 127.45 

5 46.00 44.50 40.65 131.15 

6 43.50 43.25 40.00 126.75 

7 44.50 40.90 41.45 126.85 

8 45.50 45.00 45.75 136.25 

9 50.00 45.50 45.60 141.10 

10 46.50 44.50 44.15 135.15 

2 455.75 435.40 420.25 
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HD Table 15.14 Analysis of Variance of Reinmuth and Barnes Data 

Source df ss MS F 

Contractors 2 63.463 31.7215 14.75(0.001) 

Bid trials (blocks) 9 72.708 8.0787 3.76 (0.01) 

Residual 18 38.7237 
V 

2.1513 

Totals 29 174.8947 

A study by Reinmuth and Barnes (1975) did not use the randomized block 

ANOVA to analyze their data. However, the data they collected in their study of the 

bidding behavior of three petroleum drilling companies fits the mode of randomized 

blocks. The study was actually a marketing problem involving the development of a 

mathematical model for competitive bidding. The data provided by Reinmuth and 

Barnes were 10 randomly selected bids out of 35 possible bids. The data are the cost 

estimates plus profit for using a drilling rig and a four-man crew on an hourly basis. 

Table 15.H gives the data collected. The goal in using a randomized block analysis is 

to see if the three companies differ on bidding while accounting for the individual 

trial differences. The trials here are the 10 measurements taken on each company. 

The analysis of variance summary table is given in Table 15.14. The ANOVA 

shows that the difference between contracting companies’ bids are highly significant 

(p < 0.001). The blocks or the trial bids were also statistically significant. Company 

A was consistently the highest bidder whereas Company C was consistently the low¬ 

est bidder. Since the block source of variance was statistically significant, this tells us 

that the correlation between the contract companies and the bids contributed signifi¬ 

cantly to systematic variance. The r,2 for the data was .363. The correlations between 
the three contract companies were r^ = 0.55, rAC = 0.64 and rBC = 0.29. 

Computer Addendum 

To show you how to use SPSS to perform an analysis of variance for correlated de¬ 

signs, we have chosen the data given for the Reinmuth and Barnes study. The data 

from Table 15.13 are converted to an SPSS spreadsheet and shown in Figure 15.1. 

15:1 ar<( menus/screens that appear when “Statistics” and 
ANOVA Models are selected (highlighted). 

From the menu of ANOVA models, select “Repeated Measures.” After selecting 

ae Repeated Measures option, a new screen is presented (shown in Figure 15.2). 

n the first box labeled “Within-Subject Factor Name,” enter the label “Type” (to 

represent type of company”) In the box below it, enter the number “3.” This tells 
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[U Figure 15.1 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

10 

compa 

45.00 

45.00 

46.00 

43.75 

46.00 

43.50 

44.50 

45.50 

50.00 

46.50 

compb 

42.50 

40.25 

45.50 

43.50 

44.50 

43.25 

40.90 

45.00 

45.50 

44.50 

compc 

39.75 

42.70 

40.00 

40.20 

40.65 

40.00 

41.45 

45.75 

T 

Summarize 

Compare Means 

ANOVA Models 

Correlate 

Regression 

Log-linear 

Classify 

Data Reduction 

Scale 

Nonparametric Tests 

45.60 

44.15 

Simple Factorial 

General Factorial 

Multivariate 

Repeated Measures 

SPSS that there are three groups or blocks. After this is done, click the “ADD” but¬ 

ton. You will then see “Type (3)” appear in the box next to the “ADD” button. 

Next, click the “Define” button, which will produce a new panel (shown in Fig¬ 

ure 15.3). In the left-most box, you will see the variable names of all three groups: 

“compa,” “compb,” and “compc.” Highlight each of them, one at a time, and click on 

U Figure 15.2 

ANOVA: Repeated Measures 

Within-Subject Factor Name 

Number of Levels 

Type 
Define 

Reset 

3 Cancel 

ADD 

Change 

Remove 

Type (3) Help 

Measures 
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HI Figure 15.3 

Repeated Measures ANOVA 

Within-Subjects Variable type] OK 

compa E ?[1] 
compb ?[2] Paste 

compc ?[3] 

Insert 

Between Subject Factor(s) 
Cancel 

Help 

Define Range 

Covariate Contrasts Model Options 

the right-point arrow associated with ’’Within-Subjects Variable” box. The result of 
this procedure is shown in Figure 15.4. 

After you have done this for each group you are interested in, click the “OK” 
button and SPSS will execute and produce the output desired. 

The abbreviated SPSS output is as shown in Figure 15.5. The blocking variable 

is represented as Within+Residual in the top half of the table. The Within+Resid- 

IH Figure 15.4 
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M Figure 15.5 

Source of Variation SS DF MS FSig ofF 

WITHIN+RESIDUAL 72.71 9 8.08 

CONSTANT 57325.67 1 57325.67 7095.93 000 

Source of Variation SS DF MS FSig of F 

WITHIN+RESIDUAL 38.72 18 2.15 

TYPE 63.46 2 31.73 14.75 000 

ual in the bottom half is the error component. You will see that it corresponds to our 

hand-calculated summary in Table 15.14. 

Chapter Summary 

1. Examines the analysis of variance for subjects who were not assigned ran¬ 

domly; that is, not independent (correlated) groups. 

2. Subjects or groups are either matched or used in a repeated measures 

situation. 
3. Demonstrates a one-way ANOVA with subjects matched across treatment 

conditions. When this occurs a significant difference may be masked by the 

correlation between treatment conditions and subjects. 

4. Partitioning out the contribution of subjects or (correlation) blocks is another 

systematic source of variance. 
5. With a high correlation between subjects and conditions, the amount of sys¬ 

tematic variance removed from unaccounted for, or error, variance can be 

substantial. 
6. Presents a summary of the types of ANOVAs covered in chapters 13, and 14: 

completely randomized design, the randomized block design, the randomized 

factorial design, the mixed factorial design, and the within-subjects 

design. 
7. The mixed factorial design contains both independent and correlated groups. 

Study Suggestions 

1. Do two-way analysis of variance of the two sets of fictitious data from Table 

15.6. Use the text as an aid. Interpret the results. Next, do two-way analysis of 
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variance for the two sets of Table 15.8; and Table 15.9. Lay out the final 

analysis of variance tables and compare. Carefully think through how the 

adjustive corrections have affected the original data. 

2. Three sociologists were asked to judge the general effectiveness of the 

administrative offices of 10 elementary schools in a particular school district. 

One of their measures was Administrative Flexibility (the higher the score the 

greater the flexibility). The 10 ratings on this measure of the three sociolo¬ 
gists are given below. 

Si s2 s3 

1 9 7 5 
2 9 9 6 
3 7 5 4 
4 6 5 3 
5 3 4 2 
6 5 6 4 
7 5 3 1 
8 4 2 1 
9 5 4 4 

10 7 5 5 

a. Do a two-way analysis of variance as described in the chapter. 

b. Do the three sociologists agree in their mean ratings? Does one of the so¬ 
ciologists appear to be severe in his ratings? 

c. Are there substantial differences among the schools? Which school 

appears to have the greatest administrative flexibility? Which school has 
the least flexibility? 

[Answers: (a) F (columns) = 24.44 (.001); F (rows) = 14.89 (.001); (b) no, 
yes; (c) yes, no, 2, no, 8.] 

3. Draw 30 digits, 0 through 9, from a table of random numbers (use Appendix 

C if you wish, or generate the numbers on a computer, microcomputer, or 

programmable calculator). Arbitrarily divide these drawn numbers into three 
groups of 10 digits each. 

a. Do a two-way analysis of variance. Assume that the numbers in each row 
are data from one individual. 

b. Now add constants to the three numbers of each row as follows: 20 to the 

first two rows, 15 to the second two rows, 10 to the third two rows, 5 to 

the fourth two rows, and 0 to the last two rows. Do a two-way analysis of 
variance of these “data.” 

c. In effect, what have you done by “biasing” the row numbers in this 
fashion? 

d. Compare the sum-of-squares and the mean squares of (a) and (b). Why are 

the total sums-of-squares and mean squares different? Why are the between- 
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U TABLE 15.15 Conditioning of Urine Secretion Data 

(Miller and DiCare Studyf 

.(7 ~ In) 
Two Samples Before Sample Rewarded for 

Conditioning Urine Increase 

Sample 1 Sample 2 Before After 

.023 .018 1 .023 .030 

.014 .015 2 .014 .019 

.016 .012 3 .016 .029 

.018 .015 4 .018 .030 

.007 .030 5 .007 .016 

.026 .027 6 .026 .044 

.012 .020 7 .012 .026 

aThe measures are millimeters per 100 grams of body weight. The data listed under I are those of 

two samples of rats assigned randomly to the two groups. The data listed under II are the before 

and after reward measures of Sample 1 of I. The data of I were analyzed with one-way analysis of 

variance; the data of II were analyzed with two-way, or repeated measures, analysis of variance. 

columns and the residual sums-of-squares and mean squares the same? Why 

are the between-roros sums-of-squares and mean squares different? 

e. Create a research problem out of all this and interpret the “results.” Is the 

example realistic? 
4. In an extraordinary series of studies, Miller (1969) has shown that, contrary to 

traditional belief, it is possible to learn to control autonomic responses like 

heartbeat, urine secretion, and intestinal contractions. In one of these studies, 

Miller and DiCara (1968) published all their data on the secretion of urine. 

Parts of the data are reproduced in Table 15.15. The data contained in II on 

the right are the increases in urine secretion of seven rats selected randomly 

from a group of 14 rats before and after “training.” The training was instru¬ 

mental conditioning: whenever a rat secreted urine it was rewarded. These 

data, then, are repeated measures. If the conditioning “worked,” the means 

should be significantly different. The data of I (on the left) are the 

before measures of two randomly assigned groups (for another experimental 

purpose). Since these are urine secretion measures before the experimental ma¬ 

nipulation, the means should not be significantly different. The analyses sug¬ 

gested above were not the analyses done by Miller and DiCara in their study. 
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a. Do a one-way analysis of variance of the measures of I (use six 

decimal places). 

b. Do a two-way, or repeated measures, analysis of variance of the measures 

of II (use six decimal places). (Note: It might be easier to multiply each of 

the scores by 1,000 before doing the analyses; that is, move the decimal 

point three places to the right. Does this affect the F-ratios? If you do this, 
three decimal places are sufficient.) 

c. Interpret the results. 

[Answers: (a) F = .73(n.s.); (b) F = 43.88 (p < 0.01).] 
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The Friedman Test on SPSS 

It is, of course, possible to analyze data and to draw inferences about relations among 

variables without statistics. Sometimes, for example, data are so obvious that a statis¬ 

tical test is not really necessary. If all the scores of an experimental group are greater 

than (or lesser than) those of a control group, then a statistical test is superfluous. It 

is also possible to have statistics of a quite different nature than those we have been 

studying, statistics that use properties of the data other than the strictly quantitative. 

We can infer an effect of X on Y if the scores of an experimental group are mostly of 

one kind, say high or low, as contrasted to the scores of a control group. This is 

because, on the basis of randomization and chance, we expect about the same num¬ 

bers of different kinds of scores in both experimental and control groups. Similarly, if 

we arrange all the scores of experimental and control groups in rank order, from high 

to low, then on the basis of chance alone we can expect the sum or average of the 

413 
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ranks in each group to be about the same. If they are not, if the higher or the lower 

ranks tend to be clustered in one of the groups, then we infer that “something” other 
than chance has operated. 

Indeed, there are many ways to approach and analyze data other than comparing 

means and variances. But the basic principle is always the same if we continue to 

work in a probabilistic world: compare obtained results to chance or theoretical 

expectations. If, for example, we administer four treatments to participants and 

expect that one of the four will excel over the others, we can compare the mean of 

the favored group with the average of the other three groups in an analysis of vari¬ 

ance and planned comparisons manner. But suppose our data are highly irregular in 

one or more ways, and we fear for the validity of the usual tests of significance. What 

can we do? We can rank order all the observations, for one thing. If none of the four 

treatments has any more influence than any other, we expect the ranks to disperse 

themselves among the four groups more or less evenly. If treatment A2, however, has 

a preponderance of high (or low) ranks, then we conclude that the usual expectation 

is upset. Such reasoning is a good part of the basis of so-called nonparametric 

and distribution-free statistics. There is no single name for the statistics we are 

discussing. The two most appropriate names are “nonparametric statistics” and 

“distribution-free statistics.” The latter, for instance, says that the statistical tests of 

significance make no assumptions about the precise form of the sampled population. 

In this book we will use “nonparametric statistics” to identify those statistical tests of 

significance not based on so-called classical statistical theory, which is based largely 
on the properties of means and variances, and the nature of distributions. 

In this chapter, we examine certain interesting forms of nonparametric analysis 

of variance. Other forms of nonparametric statistics will be briefly mentioned. The 

chapter has two main purposes: to introduce the reader to the ideas behind nonpara¬ 

metric statistics, but especially nonparametric analysis of variance, and to bring out 
the essential similarity of most inference-aiding methods. 

The student should be aware that careful study of nonparametric statistics gives 

depth of insight into statistics and statistical inference. The insight gained is proba¬ 

bly due to the considerable loosening of thinking that seems to occur when working 

tangential to the usual statistical structure. One sees, so to speak, a broader perspec¬ 

tive; one can even invent statistical tests, once the basic ideas are well understood. In 

short, statistical and inferential ideas are generalized on the basis of relatively simple 
fundamental ideas. 

Parametric and Nonparametric Statistics 

One of the more common questions posed to statisticians has been whether or not to 

use parametric and nonparametric statistical methods when analyzing data (see Alli¬ 

son, Gorman, & Primavera, 1993). A parametric statistical test, the kind of test we 

ave studied to now, depends on a number of assumptions about the population from 

which the samples used in the test are drawn. The best-known assumption is that the 
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population scores are normally distributed. A nonparametric or distribution-free 

statistical test depends on no assumptions as to the form of the sample population or 

the values of the population parameters. For example, nonparametric tests do not 

depend on the assumption of normality of the population scores. The problem of 

assumptions is difficult, thorny, and controversial. Some statisticians and researchers 

consider the violation of assumptions a serious matter that leads to invalidity of para¬ 

metric statistical tests. Others believe that, in general, violation of the assumptions is 

not so serious because tests like the F- and t-tests are robust, which roughly means 

that they operate well even under assumption violations, provided the violations are 

not gross and multiple. But some have claimed that this view is tantamount to using a 

shoe as a hammer. Yes, a shoe can be used as a hammer in certain situations, but it 

really was designed to be worn to protect one’s foot. Prokasy (1962) stated years ago 

that it may be fine to use parametric methods for questionable data in some situa¬ 

tions, but the power of this analytical deduction is illusory if it is used to make infer¬ 

ences about psychological attributes. Brady (1988) states that social science data are 

generally imprecise. With such data, only the most conservative (nonparametric) 

statistical methods should be used on the data. Toothaker and Newman (1994), 

however, favor the use of parametric tests for nonnormal data. The argument goes 

back and forth concerning the use of robust parametric statistics for questionable 

data. Sawilowsky (1993) discusses the myths behind the argument between the use of 

parametric and nonparametric methods. The work of Zimmerman (see Zimmerman, 

1995a,b; Zimmerman & Zumbo, 1993a,b, 1992) provides an alternative solution to 

this argument. Nevertheless, let’s examine three important assumptions and the evi¬ 

dence for believing parametric methods to be robust. We also discuss a fourth 

assumption—independence of observations — because of its generality. It applies no 

matter what kind of statistical test is used. More important, its violation invalidates 

the results of most statistical tests of significance. Lix, Keselman, and Keselman 

(1996) present an analysis of all the literature on violations of the assumptions, and 

recommend which method to use under certain situations. 

ssumption of Normality 

The best-known assumption behind the use of many parametric statistics is the 

assumption of normality. It is assumed in using the t- and F-tests (and thus the analysis 

of variance), for example, that the samples with which we work have been drawn 

from populations that are normally distributed. It is said that if the populations from 

which samples are drawn are not normal, then statistical tests that depend on the 

normality assumption are vitiated. As a result, the conclusions drawn from sampled 

observations and their statistics will be in question. Supposedly, when in doubt about 

the normality of a population, or when one knows that the population is not normal, 

one should use a nonparametric test that does not make the normality assumption. 

Some teachers urge students of education and psychology to use only nonparametric 

tests on the questionable ground that most educational and psychological popula¬ 

tions are not normal. But the issue is not that prosaic. 
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Homogeneity of Variance 

The next most important assumption is that of homogeneity of variance. It is assumed, 

in analysis of variance, that variances within the groups are statistically the same. 

That is, variances are assumed to be homogeneous from group to group, within the 

bounds of random variation. If this is not true, the F-test is vitiated. There is good 

reason for this statement. We saw earlier that the within-groups variance was an 

average of the variances within the two, three, or more groups of measures. If the 

variances differ widely, then such averaging is questionable. The effect of widely 

differing variances is to inflate the within-groups variance. Consequently, an F-test 

may be not significant, when in reality there are significant differences between the 
means (Type II error). 

Both of these assumptions have been examined rather thoroughly by empirical 

methods. Artificial populations have been set up, samples drawn from them, and t- 

and F-tests performed. The evidence to date is that the importance of normality and 

homogeneity is overrated, a view shared by the first author, but not necessarily by the 

second author. The paper by Zimmerman and Zumbo (1993 b) shows situations 

where nonparametric methods fare better than parametric methods when certain 

assumptions were not met, and vice versa. If the populations are not too far off from 

normality, one could use parametric methods instead of nonparametric ones without 

too much concern. The reason for this is that parametric tests are almost always 

more powerful than nonparametric tests. (The power of a statistical test is the proba¬ 

bility that the null hypothesis will be rejected when it is actually false.) There is one 

situation, or rather, combination of situations, that may be dangerous. Boneau (1960) 

found that when there was heterogeneity of variance and differences in the sample 

sizes of experimental groups, significance tests were adversely affected. Also, Zim¬ 

merman (1995b) has pointed out that outliers have a greater influence on parametric 
tests such as the f-test and F-test than nonparametric tests. 

Continuity and Equal Interva Is of M easures 

A thiid assumption is that the measures to be analyzed are continuous measures with 

equal intervals. As we shall see in a later chapter, this assumption is behind the arith¬ 

metic operations of adding, subtracting, multiplying, and dividing. Parametric tests 

like the F- and f-tests depend on this assumption of course, but many nonparametric 

tests do not. This assumption’s importance has also been overrated. Anderson (1972) 

has effectively disposed of it, and Lord (1972) has lampooned it in a well-known arti¬ 
cle on football numbers. 

Despite these conclusions, one is well advised to bear these assumptions in mind. 

It is not wise to use statistical procedures — or, for that matter, any kind of research 

procedures—without due respect for the assumptions behind the procedures. If they 

are seriously violated, the conclusions drawn from research data may be in error. To 

the reader who has been alarmed by some statistics texts, the best advice probably is: 

se parametric statistics, as well as the analysis of variance, routinely, but keep a 

sharp eye on data for gross departures from normality, homogeneity of variance, and 
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equality of intervals. Be aware of measurement problems and their relation to statisti¬ 

cal tests, and be familiar with the basic nonparametric statistics so that they can be 

used when necessary. Also bear in mind that nonparametric tests are often quick and 

easy to use and are excellent for preliminary, if not always definitive, tests. 

dependence of Observations 

Another assumption that is important in both measurement and statistics is that of 

independence of observations — also called statistical independence. We have already 

studied statistical independence in Chapter 7, where we examined independence, 

mutual exclusiveness, and exhaustiveness of events and their probabilities. (The 

reader is urged to review that section of Chapter 7.) We reexamine independence 

here, however, in the context of statistics because of the special importance of the 

principle involved. The independence assumption applies on both parametric 

and nonparametric statistics. That is, one cannot escape its implications by using a 

different statistical approach that does not involve the assumption. 

The formal definition of statistical independence is: If two events, Al and A2, are 

statistically independent, the probability of their intersection is: p(Ax fl A2) = 

p(A{) U p(A2). If, for example, a student takes a test of 10 items, the probability of 

getting any item to connect by chance (guessing) is 1/2. If the items and the re¬ 

sponses to them are independent, then the probability of getting, say, items two, 

three, and seven to connect by chance is: 1/2 X 1/2 X 1/2 = .125. And similarly for 

all 10 items: 0.001. 

It is assumed in research that observations are independent, that making one 

observation does not influence the making of another observation. Example: If we 

are observing the cooperative behavior of children, and note that Anna seems to very 

cooperative, then we are likely to violate the independence assumption because we 

will expect her future behavior to be cooperative. If, indeed, the expectation operates, 

then our observations are not independent. 

Statistical tests assume independence of the observations that yield the numbers 

that go into the statistical calculations. If the observations are not independent, arith¬ 

metic operations and statistical tests are vitiated. For example, if item 3 in the 

10-item test really contained the correct answer to item 9, then the responses to the 

two items will not be independent. The probability of getting all 10 items correct by 

chance is altered. Instead of .001, the probability is some larger figure. The calcula¬ 

tion of means and other statistics will be contaminated. Violation of this assumption 

seems to be fairly common, probably because it is easy to do. 

In Chapter 7 we encountered an interesting and subtle example of violation of 

the assumption when we reproduced a table (Table 7.3) whose entries were aggres¬ 

sive acts rather than the numbers of animals who acted aggressively. Let’s say we have 

a crossbreak tabulation of frequencies and calculate y2 to determine whether the cell 

entries depart significantly from chance expectation. The total N must be the 

total number of units in the sample. The units are individuals or some sort of aggre¬ 

gate (like groups), who have been independently observed. The Ns of statistical 
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formulas assume that sample sizes are the numbers of units of the calculation, each 

unit being independently observed. 

If, for example, one has a sample of 16 participants, then N — 16. Suppose one 

had observed varying acts of some of the participants and entered the frequencies of 

occurrence of these acts. Suppose, further, that a total of 54 such acts were observed 

and 54 was used as N. This would be a gross violation of the independence of obser¬ 

vations assumption. In short, the entries in frequency tables must be the numbers of 

independent observations. One cannot count several occurrences of a kind of event 

from one person. If N is the number of persons, then it cannot become the number 

of occurrences of events of the persons. This is a subtle and dangerous point. The 

statistical analyses of a number of published studies suffer from violation of this prin¬ 

ciple. We have even seen a factorial analysis of variance table in which the tabled 

entries were numbers of occurrences of certain events and not the true units of 

analysis — the individuals of the sample. The difficulty is not so much that violation 

of independence is immoral; it is a research delinquency because it can lead to quite 
erroneous conclusions about the relation among variables. 

Nonparametric Analysis of Variance 

The nonparametric analysis of variance methods studied here, like so many other 

nonparametric methods, depend on ranking. We study basic forms: one-way and 
rv/o-way analysis, or repeated measures analysis. 

One-Way Analysis of Variance: 

The Kruskal - Wallis Test 

An investigator interested in the differences in conservatism of three boards of edu¬ 

cation is unable to administer a measure of conservatism to the board members. The 

investigator therefore has an expert judge rank order all the members of the three 

boards on the basis of private discussions with them. The three boards have six, six, 

and five members, respectively. The ranks of all the board members are given in 
Table 16.1. 

If there are no differences in conservatism between the three boards, then the 

ranks should be distributed randomly in the three columns; then the sums of the 

ranks (or their means) in the three columns should be approximately equal. On the 

other hand, if there are differences in conservatism between the three groups, then 

the ranks in one column should be higher than the ranks in another column—with a 
consequent higher sum or mean of ranks. 

Kruskal and Wallis (1952) give a formula for assessing the significance of these 

differences. This formula and alternatives can be found in a number of statistics text¬ 
books (see Comrey & Lee, 1995; Hays, 1994). 

H = 
12 

N(N + 1) 

Rj 

-s— 

n: 
w+ l) (16.1) 
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HD Table 16.1 Ranks of 17 Members of Three Boards of 

Education on Judged Conservatism 

Boards 

I II III 

12 11 4 

14 16 3 

10 5 8 

17 7 1 

15 6 9 

13 2 

2 Ranks 81 47 25 

M 13.5 7.83 5.00 

0 

where N equals total number of ranks; n.j equals number of ranks in group j; and Rj 

equals sum of the ranks in group/ Applying Equation 16.1 to the ranks of Table 

16.1, we first calculate 'ERj/nJ 

„Rj (81)2 (47)2 (25)2 
2— =-+-+- = 1093.5 + 368.17 + 125.0 = 1586.67 

nj 6 6 5 

Substituting in Equation 16.1, we find: 

12 
H =-1586.67 - 54 = 62.22 - 54 = 8.22 

17(17 + 1) 

H is approximately distributed as \2- The degrees of freedom are k — 1, where k is 

the number of columns or groups, or 3 — 1 =2. Checking the \2 table, we find this 

to be significant at the .02 level. Thus the ranks are not random. 

The Kruskal and Wallis method is analogous to one-way analysis of variance. It 

is simple and effective. Measurement is sometimes such that it is doubtful whether 

parametric analysis is legitimate. Of course, doubtful measures can also be trans¬ 

formed. The essence of the idea of transformations is to alter measures that are 

not respectable (these measures may lack normality or other reasons). They are 
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transformed to respectability via a linear function of the sort y = fix), where y is a 
transformed score, x the original score, and/is some operation (“the square root of”) 
on x (see Zimmerman, 1995a; Draper & Smith, 1981; Box, Hunter, & Hunter, 1978). 

But in many cases it is easily possible to rank order the scores and do the analysis 
on the ranks. There are also research situations in which the only form of measure¬ 
ment possible is rank order, or ordinal measurement. The Kruskal and Wallis test is 
most useful in such situations. But it is also useful when data are irregular but 
amenable to ranking. 

Two-Way Analysis of Variance: The Friedman Test 

In situations in which participants are matched or the same participants are observed 
more than once, a form of rank-order analysis of variance, first devised by Fried¬ 
man (1937), can be used. An ordinary two-way analysis of variance of the ranks can 
also be used. 

An educational researcher, concerned with the relation between Role and 
Perception of Teaching Competence, asked groups of professors to rate each other 
on an instructor evaluation rating instrument. He also asked administrators and 
students to rate the same professors. Since the numbers of professors (“peers”), ad¬ 
ministrators, and students differed, he averaged the ratings of the members of each 
rating group. In effect, the hypothesis stated that the three groups of raters would 
differ significantly in their ratings. The researcher also wanted to know whether 

HO Table 16.2 Hypothetical Means of Ratings of Professors by Peers, 
Administrators, and Students, with Ranks of the Three Groups 
of Raters of the Mean Ratingsa 

Professors Peers Administrators Students 

A 28 (3) 19 (1) 22 (2) 

B 22 (1) 23 (2) 36 (3) 

C 26 (2) 24 (1) 29 (3) 

D 44 (2) 34 (1) 48 (3) 

E 35 (1) 39 (2) 40 (3) 

F 40 (2) 38 (1) 45 (3) 

XRanks 11 8 17 

The numbers in the table are composite ratings. The numbers in parentheses are ranks: the higher 
the number (or rank), the greater the perceived competence. Note: The ratings of each row are 
ranked, reflecting the differences among the three groups of each professor. 
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there were significant differences among the professors. The data of one part of the 
study are given in Table 16.2. 

There are a number of ways these data can be analyzed. First, of course, ordinary 

two-way analysis of variance can be used. If the numbers being analyzed seem to 

conform reasonably well to the assumptions discussed earlier, this would be the best 

analysis. In the analysis of variance, the F-ratio for columns (between raters) is 4.70, 

significant at the 0.05 level; and the F-ratio for rows is 12.72, significant at the 0.01 

level. The hypothesis of the investigator is supported. This is indicated by the signifi¬ 

cant differences between the means of the three groups. The professors, too, differ 
significantly. 

Now assume that the investigator is disturbed by the type of data collected and 

decides to use nonparametric analysis of variance. Clearly one should not use the 

Kruskal-Wallis method. The investigator decides to use the Friedman method, rank 

ordering the data by rows. In so doing he tests the differences between the columns. 

Obviously, if two or more raters are given the same ranking system, say 1, 2, 3, 4, 5, 

it is apparent that the sums and means of the ranks of the different raters will always 

be the same. In this analysis, then, the concentration is on the differences between 

the raters. One would ignore the differences between the professors (as rated). In 

what follows, then, we focus on the ranks in the parentheses to the right of each 

composite rating. We also focus on the sums of the ranks at the bottom of the table. 

The formula given by Friedman is: 

A'-2 = i) - 3*(h +13 (16-2) 

where \2 — \2, ranks; k equals number of rankings; n equals number of objects being 

ranked;. XR, equals sum of the ranks in column (group) j; and XRf equals sum of the 

squared sums. First calculate XRf 

XF/ = ll2 + 82 + 172 = 474 

Now determine k and n. The number of rankings is k, or the number of times that 

the rank-order system, whatever it is, is used. Here k = 6. The number of objects be¬ 

ing ranked, n or the number of ranks, is 3. (Actually, the raters are not being ranked: 

3 is the number of ranks in the rank-order system being used.) Now calculate \r • 

^ = Wlir474 -(3)<6)(4) = 79‘72 = 7 

This value is checked against a x2 table, at df = n — 1 = 3 — 1=2. The value is sig¬ 

nificant at the 0.05 level. The reader should be warned that the level of significance is 

questionable since the n and k were relatively small. 

The investigator was also interested in the significance of the differences among 

the professors as rated. He assigns ranks to the rating composites in columns 



Part Five m Analysis of Variance 

[El Table 16.3 Hypothetical Means of Ratings of Professors by Peers, 

Administrators, and Students, with Ranksa 

Professors Peers Administrators Students 1R 

A 28 (3) 19 (1) 22 (2) 5 

B 22 (1) 23 (2) 36 (3) 6 

C 26 (2) 24 (3) 29 (3) 7 

D 44 (6) 34 (4) 48 (6) 16 

E 35 (4) 39 (6) 40 (4) 14 

F 40 (5) 38 (5) 45 (15) 

The numbers in the table are composite ratings. The numbers in parentheses are ranks: the higher 

the number (or rank), the greater the perceived competence. Note: The ratings of each column are 

ranked, reflecting the differences among the six professors, as rated by each group. 

(in parentheses in Table 16.3). These are the ranks that the rater groups assigned to 

the six professors. Professors who are rated high should get the higher ranks, which 

can be determined by adding their ranks across the rows (see SR column on the 

right-hand side of the table). This time k = 3 and n — 6. We calculate y} again using 
Equation 16.2: 

Xr2 = q^(7) -787 - (3)(3)(7) = 11.95 

Checking this value in a x2 table, at df = n - 1 = 6 - 1 = 5, we find it to be signifi¬ 
cant at the .05 level. The instructors, as rated, seem to be different. 

Compare these results to the ordinary analysis of variance results. In the latter, 

the three groups were found to be significantly different at the .05 level. In the case 

of the significance of the differences between the professors, the analysis also showed 
significance. In general, the methods should agree fairly well. 

Using another method of analysis of variance based on ranges rather than vari¬ 

ances, the results of the Friedman test were confirmed. This method, called the 

studentized range test (see Pearson & Hartley, 1954) is useful. Ranges are good 

measures of variation for small samples but not for large samples. The principle of 

the studentized range test is similar to that of the E-test in that a within-groups range 

is used to evaluate the range of the means of the groups. Another useful method, that 

of Link and Wallace, is described in detail in Mosteller and Bush (1954). Both meth¬ 

ods have the advantage that they can be used with one-way and two-way analyses. 

Still another method, which has the unique virtue of testing an ordered hypothesis of 
the ranks, is the L-test by Page (1963). 
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The Coefficient of Concordance, W 

Perhaps using a measure of the association of the ranks provides a more direct-test of 

the investigator’s hypothesis. Kendall (1948) has worked out such a measure, called 

the coefficient of concordance, W. We are now interested in the degree of agreement 

or association in the ranks of the columns of Table 16.2. Each rater group has virtu¬ 

ally assigned a rank to each professor. If there was no association whatever between 

two of the rater groups, and a rank-order coefficient of correlation was computed 

between the ranks, it should be near zero. On the other hand, if there is agreement, 

the coefficient should be significantly different from zero. 

The coefficient of concordance, IV, expresses the average agreement, on a scale 

from .00 to 1.00, among the ranks. There are two ways to define W. The Kendall 

method will be presented first. According to this method, W can be expressed as the 

ratio between the between-groups (or ranks) sum-of-squares and the total sum-of- 

squares of a complete analysis of variance of the ranks. This ratio, then, is the corre¬ 

lation ratio squared, r/2, of ranked data. 

Where there are k rankings of n individual objects, Kendall’s coefficient of 

concordance is defined by 

125 
W=--- (16.3) 

k2{n3 — n) 

S is the sum of the deviations squared of the totals of the n ranks from their mean. 5 

is a between-groups sum-of-squares for ranks. It is like ssh. (In fact, if we divide 5 by 

k, S -e k, we obtain the same between-groups sum-of-squares we would obtain in a 

complete analysis of variance of the ranks.) 

5 = (52 + 62 + ... + 152) - (63)76 = 787 - 661.5 = 125.5 

Since k = 3 and n = 6, 

12 X 125.50 1506 1506 
W =-=-=-= 0.797 = 0.80 

32(63 - 6) 9(216 - 6) 1890 

The relation between the three sets of ranks is substantial. To assess the significance 

of W, the following formula can be used, provided that k > 8 and n >7 (degrees of 

freedom are n — 1): 

X2=k(n - 1 )W (16.4) 

If k and n are small, appropriate tables of 5 can be used (see Bradley, 1968, 

pp. 323-325). F-ratios are also possible. One way is to do a two-way analysis of vari¬ 

ance using the ranks as scores. Then 172 = W, and the F-ratio tests both the statistical 

significance of p2 and of W W = .80 is statistically significant at the 0.01 level. The 
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relation is high: evidently there is high agreement of the three groups in their 
rankings of the professors. 

Properties of Nonparametric Methods 

A large number of efficacious nonparametric methods are readily available, many or 

most of which are in Bradley’s (1968) book or in Siegel and Castellan (1988). They 

are usually based on some property of data that can be tested against chance expecta¬ 

tion. For example, the odds and evens of coin tossing are a dichotomous property 

that is conveniently tested with binomial statistics (see Chapter 7). Another data 

property is range. With small samples, the range is a good index of variability. A 

quick method of estimating the standard error of the mean, for instance is: 

Largest Observation - Smallest Observation 

A f-test of the difference between two means can be made with the following 
formula: 

Mx - M2 

te = ~l-~ 
y(*i - Ri) 

where te equals estimated t; Rx equals range of group 1, and R2 equals range of 
Group 2. 

Another property of data is what can be labeled periodicity. If there are different 

kinds of events (heads and tails, male and female, religious preference, etc.), and 

numerical data from different groups are combined and ranked, then by chance there 

should be no long runs of any particular event, like a long run of females in one 
experimental group. The runs test is based on this idea. 

Still another property of data was discussed in Chapter 11: distribution. The 

distributions of different samples can be compared with each other or with a “crite¬ 

rion” group (like the normal distribution) for deviations. The Kolmogorov-Smirnov 

test analyzes goodness-of-fit of the distributions. It is a useful test, especially 
for small samples. 

The most ubiquitous property of data, perhaps, is rank order. Whenever data 

can be ranked, they can be tested against chance expectation. Many, perhaps most, 

nonparametric tests are rank-order tests. The Kruskal-Wallis and the Friedman 

tests are, of course, both based on rank order. Rank-order coefficients of correlation 

are extremely useful. W is one of these. So are the Spearman rank-order coefficient 
ol correlation and Kendall’s tau. 

Nonparametric methods are virtually inexhaustible. There seems to be no end to 

w at can be done, given the relatively simple principles involved and the various 
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properties of data that can be exploited: range, periodicity, distribution, and rank 

order. While means and variances have desirable statistical properties and advan¬ 

tages, we are in no way restricted to them. Medians and ranges, for example, are 

often appropriate ingredients of statistical tests. Much of the point of this chapter has 

been a covert repetition of the principle emphasized again and again — perhaps a bit 

tediously: Assess obtained results against chance expectation. There is no magic to 

nonparametric methods. No divine benison has been put on them. The same proba¬ 

bilistic principles apply. 

Another point made earlier needs repetition and emphasis: Most analytic prob¬ 

lems of behavioral research can be adequately handled with parametric methods. The 

F-test, t-test, and other parametric approaches are robust in the sense that they 

perform well even when the assumptions behind them are violated—unless, of 

course, the violations are gross or multiple. Nonparametric methods, then, are highly 

useful secondary or complementary techniques that can often be valuable in behav¬ 

ioral research. Perhaps most important, they again show the power, flexibility, and 

wide applicability of the basic precepts of probability and the phenomenon of 

randomness enunciated in earlier chapters. 

omputer Addendum 

The Kruskal — Wallis Test on SPSS 

To show how to use SPSS to analyze data in the Kruskal-Wallis test, we created data 

for a fictitious study. In this study, three diet plans were compared on the percentage 

of weight loss. Table 16.4 shows the layout of the data. Note that for Plan A there 

were five participants, four participants for Plan B, and three participants for Plan C. 

Figure 16.1 shows how the data are entered into the SPSS spreadsheet for analy¬ 

sis. People in Plan A were given a value of “1” on the “plan” variable; Plan B received 

a “2,” and Plan C received a “3.” In addition to the data layout, we also present the 

ensuing menus and screens when the “Statistics” option is selected. 

Choose “Nonparametric Tests” from the first menu. This produces another 

menu. From this second menu select “K Independent Samples.” After selecting “K 

Independent Samples” SPSS presents you with a screen where you define your 

variables (shown in Figure 16.2). This screen asks you to specify which variable is the 

dependent variable (“Test Variable List”) and which one is the independent variable 

[U Table 16.4 Data from a Fictitious Study Comparing Diet Plans 

Plan A 23 41 42 

Plan B 20 24 25 

Plan C 40 42 37 

26 
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[Ml Figure 16.1 Related Data from Table 16.4 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

plan weight 

1 1 23 Summa rize ► 

2 1 41 
Compare Means 

ANOVA Models 

Correlate 

► 

3 1 42 ► 

4 1 36 
Regression ► 
Log-linear ► 
Classify ► 
Data Reduction ► 
Scale ► 

Nonparametric Tests ► 

Chi-Square 

5 1 30 
Binomial 

Runs 

1 Sample K-S 

2 independent samples 

k independent sample 

2 related samples 

6 2 20 

7 2 24 

8 2 25 

9 2 26 k related s amples 

10 3 40 

11 3 42 

12 3 37 

[Ml Figure 1.2 SPSS Panel for Variable Specification 

Tests for Several 

plan 

weight 

Independent Samples 

Test Variable List 

Group Variable 

Define Range 

Test Type 

I Kruskal-Wallis H □ Median 

OK 

Paste 

Insert 

Cancel 

Help 

Options 
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[□] FIGURE 16.3 Moving the Variables “Weight” and, “Plan” into Appropriate Boxes 

Tests for Several Independent Samples 

Test Variable List 

Test Type 

I Kruskal-Wallis H D 

weight 

Group Variable 

plan (?, ?) 

Define Range 

Median 

OK 

Paste 

Insert 

Cancel 

Help 

Options 

(“Group Variable”). Highlight the variable “weight” (see Figure 16.3) and click the 

button associated with the “Test Variable List” box. Next, highlight the variable 

labeled “plan” and click the arrow button associated with the “Group Variable” box. 

You will need to define the range of values for the independent variable. Figure 16.3 

FIGURE 16.4 SPSS Screen to Define the Range of the Group Variable 

Tests for Several Independent Samples 

Test Variable List 

Group Variable 

Test Type 

I Kruskal-Wall 

plan (?, ?) 

Define Range 

Define Range 

OK 

Paste 

Insert 

Cancel 

Help 

ns 

Continue 

Minimum 

Maximum 

Cancel 

Help 
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GU Figure 16.5 SPSS Screen Before Requesting Analysis 

Tests for Several Independent Samples 

Test Type 

I Kruskal-Wallis H □ 

Test Variable List 

weight 

Group Variable 

plan (1, 3) 

Define Range 

Median 

OK 

Paste 

Insert 

Cancel 

Help 

Options 

shows the resulting screen after you have specified the variables. Note that the inde¬ 

pendent variable plan has two question marks encased by parentheses. This 

says you have to tell SPSS the range of values you have assigned to levels of the 
independent variable. 

U Figure 16.6 SPSS Output of Kruskal-Wallis Test 

-Kruskal-Wallis One-Way ANOVA 

WEIGHT by PLAN 

Mean Rank Cases 

7.30 5 PLAN = 1 

3.25 4 PLAN = 2 

9.50 3 PLAN = 3 

12 Total 

Corrected for ties 

Chi-Square D.L Significance Chi-Square D.L. Significance 

5.5731 2 .0616 5.5926 2 .0610 
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IeI Figure 16.7 SPSS Spreadsheet for Data Given in Table 16.2 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

peers admin student 
1 ~ 

Summarize ► 
Compare Means ► 
ANOVA Models ► 
Correlate ► 
Regression ► 
Log-linear ► 
Classify ► 
Data Reduction ► 
Scale ► 
Nonparametric Tests ► 

1 28 19 22 

- 

Chi-Square 

Binomial 

Runs 

1 Sample K-S 

2 independent samples 

k independent sample 

2 related samples 

k related samples 

2 22 23 36 

3 26 24 29 

4 44 34 48 

5 35 39 40 

6 40 38 45 

"T 

You have three independent groups (i.e., diet plans) and have numbered them “1, 

2, and 3.” When you click the “Define Range” button, you get another screen that 

allows you to define the range of discrete values assigned to your groups or levels of 

the independent variable (shown in Figure 16.4). Enter a “1” for the minimum value 

and a “3” for the maximum value. After you are finished, click the “OK” button. 

SPSS will now show the previous screen with the “plan” variable defined (shown in 

Figure 16.5). After you make sure that the “Kruskal-Wallis H” option is selected 

(the bullet is darkened), click the “OK” button and SPSS will perform the statistical 

analysis. An abbreviated version of the output is given in Figure 16.6. 

[HO FIGURE 16.8 SSPS Screen for Specifying Variables for Analysis 

Test of Several Related Samples 

Test Variable List 

Test Type 

■ Friedman □ Kendall’s W □ Cochran Q 

Statistics 

admin 

peers 

students 

OK 

Paste 

Insert 

Cancel 

Help 
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[Ml Figure 16.9 Resulting SPSS Screen Prior to Analysis 

Test of Several Related Samples 

Test Variable 

Test Type 

■ Friedman □ Kendall’s W □ Cochran Q 

Statistics 

admin 

EE1 
peers 

students 

OK 

Paste 

Insert 

Cancel 

Help 

The Friedman Test on SPSS 

The data from Table 16.2 was used to demonstrate the use of SPSS for the Friedman 

Test of ^-related samples. Figure 16.7 shows the SPSS spreadsheet layout of the data. 

Figure 16.7 also shows the “Statistics” menu. From this menu, select “Nonparamet- 

ric Tests,” which leads to another menu. From this menu, choose “k related sam¬ 

ples. When this is chosen, SPSS presents a new screen where you define the vari¬ 

ables. Under “Test Type,” choose “Friedman” test by clicking its bullet (shown in 

Figure 16.8). Next, highlight the three variables: “admin,” “peers,” “students” and 

move them to the Test Variable” box by clicking the right arrow button. The result 

of this operation is shown in Figure 16.9. When you click the “OK” button, SPSS 

will perform the Friedman Test on the data. An edited version of the SPSS output is 
given in Figure 16.10. 

[Ml Figure 16.10 SPSS Output for Friedman Test 

-Friedman Two-Way ANOVA 

Mean Rank Variable 

1.33 ADMIN 

1.83 PEERS 

2.83 STUDENT 

Cases Chi-Square D.F. Significance 
6 7.0000 2 .00302 
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Chapter Summary 

1. Chapter considers analysis of variance for data that come from a questionable 

or unknown population. 

2. Discusses the differences between parametric methods (e.g., f-test, F-test) 

and nonparametric methods (Wilcoxon, Mann-Whitney, Kruskal-Wallis) 

3. There are four important assumptions which some feel must be met in order 

to use parametric methods: 

a. Assumption of normality 

b. Homogeneity of variance 

c. Continuity and equal intervals of measures 

d. Independence of observations 
3. Research results on what happens in using parametric methods when these as¬ 

sumptions are violated have been equivocal. 

4. There is still controversy as to which method is generally superior. 

5. Coverage of nonparametric analysis of variance methods covers: 

a. Kruskal-Wallis nonparametric one-way ANOVA 

b. Friedman Test for two-way ANOVA 

c. Kendall’s coefficient of concordance 

Study Suggestions 

1. A teacher interested in studying the effect of workbooks decides to conduct a 

small experiment with her class. She divides the class randomly into three 

groups of seven pupils each, calling these groups, Au A2, and A3. Ax was 

taught without any workbooks, A2 was taught with the occasional use of 

workbooks at the teacher’s direction, and T3 was taught with heavy depen¬ 

dence on workbooks. At the end of four months, the teacher tested the chil¬ 

dren in the subject matter. The scores she obtained were in percentage form, 

and she thought that it might be questionable to use parametric analysis of 

variance. She did not know that when scores are in percentage form, they can 

easily be transformed to scores amenable to parametric analysis. The appro¬ 

priate transformation is called the arc-sine transformation. So she used the 

Kruskal-Wallis method. The data are as follows: 

A, a2 A3 

55 82 09 

32 24 35 

74 91 25 

09 36 36 

48 86 20 

61 80 07 

12 65 36 
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Convert the percentages into ranks (from 1 through 21) and calculate H. 

Interpret. (To be significant, H must be 5.99 or greater for the 0.05 level, and 

9.21 for the 0.01 level. This is at k — 1 = 2 degrees of freedom, the x2 table.) 

Note: Two cases of tied percentages and consequently tied ranks occur in 

these data. When ties occur, simply take the median (or mean) of the ties. For 

example, there are three 36s in the above table. The median (or mean) of the 

tenth, eleventh, and twelfth ranks, is 11. All three 36s, then, will be assigned 

the rank of 11. The next higher rank must then be 13, since 10, 11, and 12 

have been “used up.” Similarly there are two 09s, which occur at the second 

and third ranks. The median of 2 and 3 is 2.5. Both 09s are assigned 2.5 and 
the next higher rank, of course, is 4.) 
[Answer: H = 7.86 (0.05).] 

2. A social psychological researcher studied the relation between the discussion 

behavior of members of boards of education and their decisions. In this 

research, a particularly complex facet of discussion behavior, say Antagonistic 

Behavior, was to be measured. She wondered if this behavior could be reliably 

measured. She trained three observers and had them rank order the antago¬ 

nistic behavior of the members of one board of education during a two-hour 

session. The ranks of the three observers are given below (high ranks show 
high antagonism): 

Board Members O! 
Observers 

o2 Oi 

1 3 2 2 

2 2 4 1 

3 6 6 7 

4 1 1 3 

5 7 7 6 

6 4 3 5 

7 5 5 4 

What is the degree of 

servers (use IV)} 
agreement or concordance among the three ob- 

b. Is IT statistically significant? (Calculate y2 using Equation 16 4 If v2 = 
12.59, df= 6, it is significant at 0.05.) " X 

c. Can the social psychologist say that she is reliably measuring “Antago¬ 
nism” or “Antagonistic Behavior”? 

[Answers: (a) W= .86; x2 =15.43 (p < .05); (b) Yes. (c) Yes.] 

. sing the data of Study Suggestion 2 above, do a one-way analysis of vari- 
ance ol the board members' Antagonism scores. 
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a. What is the F-ratio? Is it statistically significant? 

b. Calculate r\2. (Recall that 172 = ssb/sst.) Compare to W calculated in Study 

Suggestion 2 above. 

c. Do the board of education members differ in antagonistic behavior? 

[Answers: (a) F = 14.00 (p < .01); (b) 172 = W — .86; (c) Yes.] 

4. Suppose you obtained the following scores on a complexity measure: 27, 21, 

14, 12,6. Do a rough and quick estimate of the standard error of the mean 

(see text). 

[Answer: (27— 6)/5 = 4.20.] 
5. Imagine that you are an analytic specialist and have been asked to invent and 

produce a method for assessing the statistical significance of runs. A run is a 

group of values or identifications connected with one population or sample. 

Suppose that you have a sample of men and women and are measuring some 

attribute but have no interest in Sex as a variable. Rank order the sample ac¬ 

cording to the sizes of the attribute scores. If Sex has no relation to the at¬ 

tribute, then when you rank-order the cases, the men and women should be 

mixed as though you had placed them throughout the sample at random. In 

this case, there would be many runs, for example, MM, F, M, FF, M, F, MM, 

FF, M, F, and thus little or no relation between Sex and the attribute. (Re¬ 

member: the cases were ranked by the attribute.) There are 10 runs; they are 

italicized. This is relatively many runs in a sample of 15 cases. If, on the other 

hand, there were relatively few runs, for example: MMMM, F, MM, F, M, 

FFFFFF, or six runs, there could well be a relation between the attribute and 

Sex. 
a. How would you go about creating a test to assess the statistical significance 

of numbers of runs in a sample of n cases? (Hint: Think of using a random 

number generator on a computer or a table of random numbers. Don’t try 

to find a formula. Just use brute force!) 
b. Make up two cases of samples of 20 each containing different numbers of 

runs and use your test to assess the significance of numbers of runs. 

c. Outline the basic principles of what you have done so that someone who 

does not know or understand statistics will understand you. Is your test a 

nonparametric test? Explain. 
[Special note: This is probably a difficult exercise, but one well worth working 

at and discussing with others, especially in class.] 
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Chapter l 7 

Ethical Considerations 
in Conducting Behavioral 

Science Research 

■ Fiction and Reality 

A Beginning? 

Some General Guidelines 
Guidelines from the American Psychological Association 

General Considerations 

Participant at Risk 

Fairness, Responsibility, and Informed Consent 

Deception 

Debriefing 

Freedom from Coercion 

Protection of Participant 

Confidentiality 

Ethics of Animal Research 

Fiction and Reality _ 

In previous chapters we discussed science and the variables involved in social and 

behavioral sciences. We have also introduced some of the basic statistical methods 

used to analyze the data gathered from such research studies. In the chapters follow¬ 

ing this one, we will be discussing the actual conduct of the research process. Before 

doing this, we must present a very important topic. This topic involves the issue of 

437 
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research ethics. Some books have placed this topic in the latter part of the book after 

the research plan and designs have been discussed. We feel that this topic should be 

presented earlier. The student of research needs this information in order to design 

an ethically sound study using the methods given in the chapters that follow. It would 

be ideal if the researcher read this chapter, then read the chapters on research design 
and then return to reread the points made in this chapter. 

What is “research ethics”? What is “research”? These two terms are difficult to 

define. Shrader-Frechette (1994) provides a definition by contrasting “research” 

from “practice.” As we saw in an earlier chapter, research is an activity done to test 

theories, make inferences, and add or update information on a base of knowledge. 

Professional practice does not usually involve testing theories or hypotheses but 

rather enhances the welfare of clients using actions and information that have been 

demonstrated to be successful. Some of these actions were established through 

earlier scientific research. Even though both “research” and “practice” have ethics, 

the ethics involved with the research process are directed toward the individuals who 

do research and their conduct of the research process. Shrader-Frechette states 

that research ethics specifies the behavior researchers ought to show during the 

entire process of their investigation. Keith-Spiegel and Koocher (1985) discuss the 
ethics of psychological practice. Dawes (1994) gives a very critical view of the 

practice of psychology and psychotherapy. Part of Dawes’s discussion concerns ethics 
of practice. 

The discussion, emphasis, and practice of research ethics are relatively recent 

events. Before the twentieth century, those scientists who were caught experimenting 

on people without proper consent were punished. However, there were instances in 

history where the violations of research ethics yielded fruitful results. When one 

thinks about the ethics of doing research on humans or animals one cannot avoid 

mixed feelings. In examining history, there were those brave individuals like Edward 

Jenner who injected a child with a weaker form of the smallpox virus and in doing so 

developed a vaccine for smallpox. History has it that Edward Jenner did not get 

permission from anyone before doing this. Or consider Dr. Barry Marshall who, in 

order to show that peptic ulcers were caused by bacteria and not acids, swallowed the 

culture of bacteria himself and then successfully treated himself with doses of antibi¬ 

otic drugs. Yet there are also documented cases of tragic consequences for 

researchers who failed to follow proper ethical principles of research, and those who 

committed scientific fraud. Some of these instances are noted and discussed in 

Shrader-Frechette (1 "4). This is an excellent book worth reading; we also recom¬ 

mend Miller and Hersen (1992) and Erwin, Gendin, and Kleiman (1994). Evidence 

of known or suspected fraud can be traced to research done in ancient Greece. 

In conducting research, the sensitive researcher is often confronted with ethical 

dilemmas. Prior to the 1960s, researchers from all fields of science were left to their 

own consciences in terms of research ethics. Scholarly publications on the appropri¬ 

ate behavior of scientists provided some guidance, but none or few of the guidelines 

were mandated The fictional story of Martin Arrowsmith, the protagonist in Sinclair 

Lewis s novel Arrowsmith, exemplifies an ethical dilemma. In this novel, Dr. Martin 

Arrowsmith in a laboratory study discovers by accident a principle that is effective in 
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destroying bacteria. Arrowsmith calls it a “phage.” When the bubonic plague breaks 

out in a third world country, Arrowsmith is sent to that country to help the afflicted 

and to test his phage. Arrowsmith had been taught that the true effectiveness of a 

phage can be determined by giving it to only half of the infected population. The 

other half would be given a placebo or no treatment at all. However, Arrowsmith 

upon seeing the alarming death rate (including the deaths of his wife and close 

friend) decides to give the phage to the entire population. If he followed his experi¬ 

mental plan and his phage was truly effective, the people receiving the phage would 

survive and those receiving the placebo would not. Arrowsmith’s conscience would 

not allow him to deceive half of the population and let them die in the name of scien¬ 

tific research. He administered the phage to everyone. The plague did end after the 

natives were inoculated, but Arrowsmith never really knew whether or not his phage 

was effective. Although this is fiction, actual research scientists are at times faced 

with similar dilemmas. 

Beginning? 

It was studies done in the 1960s and 1970s, where there was evidence of research 

fraud and deception of research participants, that led to a demand for specific man¬ 

dated rules for the conduct of research. In 1974, the United States Congress called 

for the creation of institutional review boards. The purpose of these boards was to 

review the ethical conduct of those research studies that had received federal 

research grants. Later, in the 1980s, legislation passed which required federally 

funded research involving humans and animals to be reviewed for both ethical ac¬ 

ceptability and research design. By the 1980s many of the major universities in the 

United States had guidelines for dealing with misconduct in research. Other coun¬ 

tries also began to put forth guidelines and rules. The governments of Sweden and 

the Netherlands required that independent review committees evaluate all biomed¬ 

ical studies. Shrader-Frechette (1994) describes two broad categories in terms of eth¬ 

ical problems in scientific research: (1) processes, and (2) products. The research 

process is deemed harmful if participants do not give informed consent to the proce¬ 

dures used on them. The research process is also considered harmful if the partici¬ 

pants are deceived or recruited using deceptive methods. The research product is 

harmful if the conduct of that research results in a harmful environment for anyone 

who comes into contact with it. Shrader-Frechette refers to this as “downwinders.” 

The case of radiation poisoning due to scientific tests of nuclear weapons is an exam¬ 

ple of a research product that is harmful. Shrader-Frechette briefly describes this re¬ 

search and the consequences. Saffer and Kelly (1983) give a more complete account 

in an informative book titled Countdown Zero. Saffer and Kelly describe how the at¬ 

mospheric tests of the atomic bomb in the desert of Nevada in the late 1940s carried 

over into other parts of the desert. The crew, staff, and actors in the movie The Con¬ 

queror were all exposed to radioactive sand during the filming of the movie in the 

desert. All of these people developed cancer and later died from cancer-related ill¬ 

nesses. Some of the well-known actors and actresses included John Wayne, Susan 

Hayward, and Dick Powell. Saffer and Kelly also describes how the United States 
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military’s research on how to fight a nuclear war in the 1950s led to the exposure of 

many military personnel to radiation fallout. Saffer himself was one of the soldiers 

who participated in such studies. Several years after leaving the service he noticed 

that fellow soldiers developed cancer. 

One of the most infamous cases on the unethical use of deception was the 

Tuskegee Study (see Brandt, 1978). In 1932, the U.S. Public Health Service did an 

experiment on 399 poor, semiliterate, African American males who had contracted 

syphilis. One purpose of this study was to examine the effects of syphilis on untreated 

individuals. In order to get afflicted African American males to participate in the 

study, they were told they were being treated when in fact they were not. Symptoms 

of syphilis were measured and recorded periodically. Autopsies were performed on 

each individual after each death. It took 40 years for the public to become aware of 

this research tragedy. At the time of its disclosure, the study was still in progress. The 

research was clearly unethical; one reason was because treatment was still being with¬ 

held from the survivors as late as 1972. They could have been effectively treated with 

penicillin that became available in the 1940s. One of the major outcries of unethical 
research behavior has been focused on the use of deception. 

Deception is still used in some research studies today. However, the research is 

critically evaluated before it can be done. All major universities in the United States 

have a research ethics and human usage committee that screens and evaluates studies 

for potential deceptions and harmful effects. It is their task to make sure no harm is 
inflicted on any of the participants. 

One of the most noted studies in psychology that used deception was conducted 

by social psychologist Stanley Milgram, who recruited participants in a “learning” 

experiment (see Milgram, 1963). Those who volunteered were told that some would 

be teachers and the others would be learners. The teachers were in charge of teach¬ 

ing lists of words to the learners. The teachers were told to administer increasingly 

painful shocks each time the learners made an error. The real purpose of the experi¬ 

ment, however, was not to study learning but to study obedience to authority. 

Milgram was particularly interested in whether there was any truth to the claims of 

Nazi war criminals who said they did the atrocious acts because they were “ordered” 

to do so by their superiors. Unknown to the participants, all participants served as 

“teachers.” That is, all participants were told that they were teachers. None of the 

participants served as learners.” The learners were confederates of the experi¬ 

menter. They pretended to be participants who were chosen randomly to serve as 

learners. Furthermore, there were actually no shocks administered at any time. The 

teachers were tricked into believing that the learners’ cries of pain and requests for 

assistance was real. When instructed to increase the severity of the shocks, some of 

the participants hesitated. However, when they were instructed by the experimenter 

to continue, they did so. They even continued “shocking” the learners beyond the 

point where the learners “begged” to be released from the experiment. The results 

were to Milgram as well to others, almost beyond belief. A great many subjects (the 

teachers ) unhesitatingly obeyed the experimenter’s “Please continue” or “You have 

no choice, you must go on” and continued to increase the level of the shocks, no 

matter how much the learner pleaded with the “teacher” to stop. What particularly 
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surprised Milgram was that no one ever walked out of the laboratory in disgust or 

protest. This remarkable obedience was seen time and time again in several universi¬ 

ties where the experiment was repeated. Public anger over this experiment centered 

on the deception that might have caused psychological discomfort and harm to the 

participants. More than that, some people overgeneralized and thought that many 

such psychological experiments were being conducted. 

For years following this now-famous study, critics of his study repeatedly dogged 

Milgram. There was very little publicity surrounding the fact that Milgram did a 

number of follow-up studies on the participants and found that there were no nega¬ 

tive effects. In fact, at the conclusion of each experimental session, the participants 

were debriefed and introduced to the “learner” to show that no dangerous electrical 

shocks were administered. 
Another sensitive area has been one directed at fraud. This includes situations 

where the researcher altered data from a research study in order to show that a 

certain hypothesis or theory was true. Other cases of fraud involved the reporting of 

research findings for research studies that never took place. History shows that there 

have been a number of prominent individuals who have been involved in fraud (see 

Erwin, Gendin, & Kleiman, 1994). One of the more sensational cases of alleged 

fraud comes from psychology. The person involved was Sir Cyril Burt, a prominent 

British psychologist who received knighthood for his work on statistics and the 

heritability of intelligence. His work was marked by the use of identical twins whose 

genetic composition was the most alike. Burt supposedly demonstrated that there 

was a strong genetic component to intelligence by examining the intelligence 

of twins who were raised together versus those who were separated at birth and 

hence were reared apart. The intention was to determine how much influence the 

environment or heredity had on intelligence. In the mid 1970s after the death of 

Burt, Leon.. Kamin (1974) reported that a number of the correlations that Burt 

reported were identical to the third decimal place. By chance alone this was highly 

improbable. Later it was discovered that a few of Burt’s co-authors on research 

articles published around the time of the Second World War could not be found. 

Many of Burt’s critics felt that Burt created these co-authors in order to mislead the 

scientific community. Even Leslie Hearnshaw, who was commissioned by Burt’s 

family to write a biography of Burt, claimed to have found evidence of fraud. This 

particular view of Burt’s fraud is detailed in Gould (1981). However, Jensen (1992) 

presents a different sociohistorical view of Burt. Jensen states that the charges against 

Burt were never adequately proved. Jensen also gives information concerning Burt 

that was never mentioned in Gould’s book or in other publications that were critical 

of Burt. 
Such instances as Tuskegee, Milgram, and Burt brought about the creation of 

laws and regulations to restrict or stop unethical research behavior in the medical, 

behavioral, and social sciences. Professional organizations, such as the American 

Psychological Association and the American Physiological Society developed com¬ 

missions to investigate and recommend action on reported cases of unethical 

research behavior. However, the reported incidence of unethical research by 

scientists has been minimal. Among the cases that have received the most negative 
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publicity in behavioral science research involved Steven Breuning of the University 

of Pittsburgh. Breuning was convicted in 1988 of fabricating scientific data about 

drug tests (Ritalin and Dexedrine) on hyperactive children. Breuning’s falsified 

results were widely cited and influenced several states to change their regulations on 

the treatment of these children. The Breuning case illustrates how dangerous the 

fraudulent behavior of a scientist can be. 

In the physical sciences and medicine, Maurice Buchbinder, a cardiologist, was 

broached for research problems associated with his testing of the Rotablator. This 

device is a coronary vessel-cleaning device. Investigation revealed that the device was 

manufactured by a company in which Buchbinder had millions of dollars invested in 

stock. Among his ethical violations were (1) the failure to conduct follow-up exami¬ 

nations on about 280 patients, (2) the improper use of the device on patients with 

severe heart disease, and (3) not properly reporting some of the problems 
experienced by patients. 

Douglas Richman was another research physician who received notoriety in his 

study of a new hepatitis treatment drug. Richman was cited for failing to report the 

death of the patients in the study, failing to inform the drug’s manufacturer about the 

serious side effects, and failing to properly explain risks to patients in the study. Even 

though the reported incidence of fraud and unethical behavior by scientists is scarce, 

Shrader-Frechette (1994) has pointed out that many unethical behaviors go 

unnoticed or unreported. Even research journals do not mention anything about 

requiring an author to present information that a study was done ethically (e.g., with 

informed consent). It is possible that when a researcher studies the behavior of 

humans, that those humans are put at risk through coercion, deception, violation of 

privacy, breaches of confidentiality, stress, social injury, and failure to obtain free 
informed consent. 

Some General Guidelines 

The following guidelines are summaries taken from Shrader-Frechette’s excellent 

book. Shrader-Frechette lays down the codes that should be followed by researchers 

in all areas of study where animals and humans are used as participants. One of the 

topics centers on situations where the researcher should not perform the research 

study. There are five general rules to follow when determining that the research 
should not be done. 

• Scientists should not do research that puts people at risk. 

Scientists should not do research that violates the norms of free informed 
consent. 

Scientists should not do research that converts public resources to private 
gains. 

Scientists should not do research that could seriously damage the 
environment. 

• Scientists ought not do biased research. 
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In the fifth and last point made by Shrader-Frechette, the implication is toward racial 

and sexual biases only. One should realize that in all research studies there are biases 

inherent in the research design itself. 

However, one major criterion in deciding the execution of a research study is the 

consequences from that study. Shrader-Frechette states that there are studies that 

will put humans and animals at risk, but the nonexecution of that research may lead 

to even greater risks to humans and animals. In other words, not all potentially 

dangerous research should be condemned. Shrader-Frechette states: 

Just as scientists have a duty to do research but to avoid ethically questionable 

research, so also they have a responsibility not to become so ethically scrupulous 

about their work that they threaten the societal ends research should serve” 

(p. 37)- 

Hence, the researcher must exercise some degree of common sense when decid¬ 

ing to do or not do the research study involving human and animal participants. 

Guidelines from the 

American Psychological Association 

In 1973, the American Psychological Association published ethical guidelines for 

psychologists. The original guidelines have gone through a number of revisions since 

then. The latest guidelines and principles were published in the March 1990 issue of 

American Psychologist. The Ethical Principles of Psychologists and Code of Conduct can be 

found in the 1994 edition of the Publication Manual of the American Psychological 

Association. The following section gives a brief overview of the ethical principles and 

codes that are relevant of behavioral science research. These guidelines are directed 

toward both human and animal research. All persons working on a research project 

are bounded by the codes of ethics regardless of whether or not they are professional 

psychologists or a member of the American Psychological Association. 

General Considerations 
The decision to undertake a research project lies solely with the researcher. 

Questions the researcher needs to ask himself or herself are: Is it worth doing? Will 

the information obtained from the study be valuable and useful for science and hu¬ 

man welfare? Will it help improve the human health and welfare? If the researcher 

feels that the research is worthwhile, then the research must be conducted with re¬ 

spect and concern for the welfare and dignity of the participants. 

The Participant at Minimal Risk 
One of the major considerations on whether or not the study should be conducted is 

the decision concerning the well-being of the participant: Will there be a “subject at 

risk” or a “subject at minimal risk”? If there is the possibility of serious risk for the 

participant, the possible outcome of the research should indeed be of considerable 
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value before proceeding. Researchers in this category should consult with colleagues 

before continuing. At most universities, there is a special committee that reviews 

research proposals to determine if the value of the research is worth placing partici¬ 

pants at risk. At all times, the researcher must take steps to prevent harm befalling 

the participant. Student research projects should be conducted with the minimum 

amount of risk on the participants. 

Fairness, Responsibility, and Informed Consent 

Prior to participation, the researcher and the participant should enter into an 

agreement that clarifies the obligation and responsibilities. With certain studies this 

involves informed consent. Here the participant agrees to tolerate deception, 

discomfort, and boredom for the good of science. In return, the experimenter 

guarantees the safety and well-being of the participant. Psychological research differs 

from medical research in this regard. Medical research ethics requires the researcher 

to inform the participant what will be done to him or her and for what purpose. 

Most behavioral and social science research is not this restrictive. The behavioral 

science researcher needs to tell only those aspects of the study that may influence 

the participant’s willingness to participate. Informed consent is not required in 

minimal-risk research. Still, it is a good idea for investigators in all fields of research 

to establish a clear and fair agreement with research participants prior to their 
participation. 

Deception 

Demand characteristics exist with many behavioral science studies. Participants 

volunteer with the belief that nothing harmful will be done to them. Their expecta¬ 

tions and their desire to “do what the researcher wants” could influence the outcome 

of the study. Hence validity of the study would be compromised. The famous 

Hawthorne study is a case in point. In the Hawthorne study, factory workers were 

told ahead of time that some people will be coming to the factory to do a study on 

worker productivity. The workers, blowing that they would be studied for their 

productivity, behaved in ways they would not normally behave; that is, punctual, 

working harder, shorter breaks, and so on. As a result, the investigators were unable 

to get a true measure of worker productivity. This is where deception enters. Like a 

magic show, the participants attentions are misdirected. If the investigators had 

entered the factory as ordinary” workers, they could have obtained a clearer picture 
of worker productivity. 

If the researcher can justify that deception is of value, and if alternative proce¬ 

dures are not available, then the participant must be provided with a sufficient expla¬ 

nation as soon as possible after the end of the experiment. This explanation is called 

debriefing. Any deceptive procedure that presents the participants with a negative 
perception of themselves must be avoided. 

Debriefing 

After collecting the data from the participant the nature of the research is carefully 

explained to the participant. Debriefing is an attempt to remove any misconceptions 
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the participant may have about the study. This is an extremely important element in 
conducting a research study. Even the explanation of the study should not be aver¬ 
sive. It needs to be worded in a way such that those who have just been deceived will 
not feel foolish or stupid or embarrassed. In the event of student researchers, it 
would be beneficial for both the researcher and participant to review the data. The 
debriefing session could be used as a learning experience so that the student partici¬ 
pant can become more knowledgeable about behavioral science research. Showing a 
student around the laboratory and explaining the apparatus is also advised if time 
permits. 

For those studies where an immediate debriefing would compromise the validity 
of the study, the researcher may delay debriefing. However, the researcher must 
make all possible attempts to contact the participant once the entire study (data 
collection) is completed. 

Freedom front Coercion 

Participants must always be made to feel that they can withdraw from a study at any 
time without penalty or repercussions. Participants need to be informed of this prior 
to beginning the experimental session. The researcher at a university that uses 
introductory psychology students as participants should make it clear that their 
participation is voluntary. At some universities, the introductory psychology course 
has a graded research component. This component cannot be based solely on partici¬ 
pation in research studies. For those who wish it, the research component can be 
satisfied through other means such as a research paper. Giving extra credit points for 
participation can be perceived as coercion. 

Protection of Participants 
The researcher must inform the participant of all risks and dangers inherent in the 
study. The researcher should realize that the participant is doing the researcher a 
favor by participating. Participation in any research may produce at least some 
degree of stress. Additionally, the researcher is obligated to remove any undesirable 
consequences of participation. This is relevant in cases where the participant is 
placed in a “do nothing” or control group. It would be unethical in a study that 
examines pain-management programs to place persons who are in chronic pain into a 
control group where they will receive no treatment. 

Confidentiality 
The issue of protecting the participant from harm includes confidentiality. The 
researcher must assure the participant that the data collected from them will be 
safeguarded. That is, the information collected from the participant will not be 
disclosed to the public in a way that could identify the participant. With sensitive 
data, the researcher must inform the participant how the data will be handled. In one 
study dealing with sexual behavior and AIDs, participants were asked to fill out a 
questionnaire, place the questionnaire in an unmarked envelope, and deposit the 
envelope in a sealed box. The researcher assured the participants that the question¬ 
naires would only be seen by data-entry people who “won’t know and cannot guess 
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who they are.” Smith and Garner (1976), for example, took extra precautions to as¬ 

sure the anonymity of participants in their study of homosexual behavior among 

male college athletes. 

Ethics of Animal Research 

To some people, the use of animals in research is inhumane and not necessary. 

However, research studies using animals have provided a number of worthwhile 

advancements for both animals and humans. Miller (1985) notes the major contribu¬ 

tions that animal research has provided for society. Unlike human participants, 

animals do not volunteer. Contrary to the belief of animal right activists, very few 

studies today involve inflicting pain on animals. Experiments using animals as partici¬ 

pants are generally permissible so long as the animals are treated humanely. APA 

provides guidelines on the use of animals for behavioral research and also logistical 

guidelines for their housing and care. There are eleven major points covered in APA’s 

guidelines: 

1. General: This involves the code behind the acquisition, maintenance, and 

disposal of animals. The emphasis is on the familiarity with the code. 

2. Personnel: This point involves the people who will be caring for the animals 

and includes the availability of a veterinarian and supervisor of the facility. 

3. Facilities: The housing of the animals must conform to the standard set by 

National Institute of Health (NIH) for the care and use of laboratory 
animals. 

4. Acquisition of Animals: This point deals with how the animals are acquired. 

Covered are the rules for breeding and/or purchasing of animals. 

5. Care and Housing of Animals: This deals with the condition of the facilities 
where the animals are kept. 

6. Justification of Research: The purpose of the research using animals must be 
stated clearly. 

7. Experimental Design: The research design of the study should include 

humane considerations. This would include the type of animal and how 
many animals. 

8. Experimental Procedure: All experimental procedures must take into 

consideration the animal’s well-being. Procedures must involve no 

inflicted pain. Any amount of induced pain must be justified by the 

value of the study. Any aversive stimuli should be set at the lowest level 
possible. 

9. Field Research. Researchers doing field research should disturb the 

population as little as possible. There must be respect for property and 
privacy of inhabitants. 

10. Educational Use of Animals: Alternative nonanimal studies should be 

considered. Classroom demonstrations using animals should be used only 
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when educational objectives cannot be made through the use of media. 

Psychologists need to include a presentation on the ethics of using animals 
in research. 

11. Disposition of Animals: This point deals with what to do with the animal 
once the study is finished. 

These guidelines (available from the American Psychological Association) should 

be made known to all personnel involved in the research and conspicuously posted 
wherever animals are maintained and used. 

In assessing the research, the possibility of increasing knowledge about behavior, 

including benefit for health or welfare of humans and animals, should be sufficient to 

outweigh any harm or distress to the animals. Humane consideration for the well¬ 

being of the animals should thus always be kept uppermost in mind. If the animal is 

likely to be subjected to distress or pain, the experimental procedures specified in the 

guidelines of the American Psychological Association should be carefully followed, 

especially for surgical procedures. No animal should be discarded until its death is 

verified, and should be disposed of in a manner that is legal and consistent with 
health, environmental, and aesthetic concerns. 

A recent book by Shapiro (1998) presents the history and current status on the 

use of animals in scientific research. This book contains articles that deal with ethics 

and situations when animal research is necessary and when it is not. 

Chapter Summary 

1. The Tuskegee and Milgrim studies used a form of deception and are often 

cited as reasons why scientific research with humans and animals need to be 

regulated. 

2. Fraud is also an issue of concern, since the work of individuals such as Burt 

and Breuning had a lot of influence on legislation and how people perceived 

themselves and others. 

3. Organizations such as the American Psychological Association have set up 

guidelines on the ethics of doing research. They have also set up review 

boards to evaluate and take action on claims of ethical misconduct. 

4. Researchers are obligated to do no physical or psychological harm to research 

participants. 

5. Researchers must do research in a way that will produce useful information. 

6. The ethical standards set up by the American Psychological Association 

include provisions for planning the research, protection of participants, 

confidentiality, debriefing, deception, informed consent, and freedom from 

coercion. 

7. Guidelines are also provided for the use of animals in research on the care, 

feeding, and housing of animals; and what to do with animals after the end of 

the study. 
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Study Suggestions  

1. Some feel that society has placed too many restrictions of scientists on how to 

conduct their research. List the strong and weak points behind these 

regulations. 
2. What is the purpose of debriefing? Why is it necessary? 

3. A student who is a fan of daytime talk shows wants to determine if the way a 

woman dresses influences men’s behavior. She plans to attend two bars on a 

single night. In one bar she will dress provocatively and in the other she will 

dress in a business suit. Her dependent variable is the number of men who ap¬ 

proach and talk to her. Do you see any ethical problems with this study de¬ 

sign? 
4. Visit the library and try to locate material pertaining to other incidences of 

fraud and unethical behavior by behavioral and medical scientists. How many 

of these can you find? 

5. In the novel Arrow smith, can you propose an alternative method that would 

have enabled Martin Arrowsmith to fully test his phage? 

6. Locate and read at least one of the following articles: 

Braunwald, E. (1987). On analyzing scientific fraud. Nature, 325, 215-216. 

Broad, W. J., & Wade, N. (1982). Betrayers of the truth. New York: Touch¬ 

stone. 

Brody, R. G., & Bowman, L. (1998). Accounting and psychology students’ 

perceptions of whistle blowing. College Student Journal. 32, 162-166. 

(Does the college curriculum need to include ethics?) 

Fontes, L. A. (1998). Ethics in family violence research: Cross-cultural issues. 

Family Relations: Interdisciplinary Journal of Applied Family Studies, 41, 
53-61. 

Herrmann, D., & Yoder, C. (1998). The potential effects of the implanted 

memory paradigm on child subjects. Applied Cognitive Psychology, 12, 

198-206. (Discusses the danger of implanted memory.) 

Knight, J. A. (1984). Exploring the compromise of ethical principles in sci¬ 

ence. Perspectives in Biology and Medicine, 27, 432-442. (Explores the rea¬ 
sons for fraud and dishonesty in science.) 

Stark, C. (1998). Ethics in the research context: Misinterpretations and mis¬ 

placed misgivings. Canadian Psychology. 39, 202-211. (A look at the ethics 

codes for the Canadian Psychological Association.) 
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Research Design: 

Purpose and Principles 

■ Purposes of Research Design 
An Example 
A Stronger Design 

m Research Design as Variance Control 
A Controversial Example 

■ Maximization of Experimental Variance 

■ Control of Extraneous Variables 

■ Minimization of Error Variance 

Research Design is the plan and structure of investigation, conceived so as to obtain 

answers to research questions. The plan is the overall scheme or program of the 

research. It includes an outline of what the investigator will do, from writing the 

hypotheses and their operational implications to the final analysis of data. The struc¬ 

ture of research is harder to explain because the word structure is difficult to define 

clearly and unambiguously. Since it is a concept that becomes increasingly important 

as we continue our study, we here break off and attempt a definition and a brief 

explanation. The discourse will necessarily be somewhat abstract at this point. Later 

examples, however, will be more concrete. More important, we will find the concept 

powerful, useful, even indispensable, especially in our later study of multivariate 

analysis where “structure” is a key concept whose understanding is essential to 

understanding much contemporary research methodology. 

A structure is the framework, organization, or configuration of elements of the 

structure related in specified ways. The best way to specify a structure is to write a 

mathematical equation that relates the parts of the structure to each other. Such a 

449 
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mathematical equation, since its terms are defined and specifically related by the 

equation (or set of equations), is unambiguous. In short, a structure is a paradigm or 

model of the relations among the variables of a study. The words structure, model, and 

paradigm are troublesome because they are hard to define clearly and unambiguously. 

A “paradigm” is a model, an example. Diagrams, graphs, and verbal outlines are 

paradigms. We use “paradigm” here rather than “model” because “model has 

another important meaning in science — a meaning we return to in Chapter 37 when 

we discuss the testing of theory using multivariate procedure and “models” of aspects 

of theories. 
A research design expresses both the structure of the research problem and the 

plan of investigation used to obtain empirical evidence on the relations of the 

problem. We will soon encounter examples of both design and structure that will 

perhaps enliven this abstract discussion. 

Purposes of Research Design 

Research design has two basic purposes: (1) to provide answers to research questions and 

(2) to control variance. Design helps investigators obtain answers to the questions of 

research and also to control the experimental, extraneous, and error variances of the 

particular research problem under study. Since all research activity can be said to 

have the purpose of providing answers to research questions, it is possible to omit 

this purpose from the discussion and to say that research design has one grand pur¬ 

pose: to control variance. Such a delimitation of the purpose of design, however, is 

dangerous. Without strong stress on the research questions and on the use of design 

to help provide answers to these questions, the study of design can degenerate into 
an interesting, but sterile, technical exercise. 

Research designs are invented to enable researchers to answer research questions 

as validly, objectively, accurately, and economically as possible. Research plans are 

deliberately and specifically conceived and executed to bring empirical evidence to 

bear on the research problem. Research problems can be, and are, stated in the form 

of hypotheses. At some point in the research they are stated so that they can be 

empirically tested. Designs are carefully worked out to yield dependable and valid 

answers to the research questions epitomized by the hypotheses. We can make one 

observation and infer that the hypothesized relation exists on the basis of this one 

observation, but it is obvious that we cannot accept the inference so made. On the 

other hand, it is also possible to make hundreds of observations and to infer that the 

hypothesized relation exists on the basis of these many observations. In this case we ; 

may or may not accept the inference as valid. The result depends on how the obser- 

vations and the inference were made. An adequately planned and executed design 

helps greatly in permitting us to rely on both our observations and our inferences. 

How does design accomplish this? Research design sets up the framework for 

study of the relations among variables. Design tells us, in a sense, what observations 

to make, how to make them, and how to analyze the quantitative representations of 
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the observations. Strictly speaking, design does not “tell” us precisely what to do, but 

rather “suggests” the direction of observation-making and analysis. An adequate 

design “suggests,” for example, how many observations should be made, and which 

variables are active and which are attribute variables. We can then act to manipulate 

the active variables and to categorize and measure the attribute variables. A design 

tells us which type of statistical analysis to use. Finally, an adequate design outlines 
possible conclusions to be drawn from the statistical analysis. 

Example 

It has been said that colleges and universities discriminate against women in hiring 

and in admissions. Suppose we wanted to test discrimination in admissions. The idea 

for this example came from the unusual and ingenious experiment cited earlier: 

Walster, Cleary, and Clifford (1970). We set up an experiment as follows. To a 

random sample of 200 colleges we send applications for admission, basing the appli¬ 

cations on several model cases selected over a range of tested ability, with all details 

the same except for gender. Half the applications will be those from men and half 

from women. Other things being equal, we expect approximately equal numbers of 

acceptances and rejections. Acceptance, then, is the dependent variable. It is 

measured on a three-point scale: full acceptance, qualified acceptance, and rejection. 

Call male A\ and female A2. The paradigm of the design is given in Figure 18.1. 

The design is the simplest possible, given minimum requirements of control. 

The two treatments will be assigned to the colleges at random. Each college, then, 

will receive one application, which will be either male or female. The difference 

between the means, MAl and MAl will be tested for statistical significance with a t- or 

F-test. The substantive hypothesis is: MAi > MAl, or more males than females will 

be accepted for admission. If there is no discrimination in admissions, then MA{ is 

statistically equal to MAr Suppose that an F-test indicates that the means are not 

significantly different. Can we then be sure that there is no discrimination practiced 

(on the average)? While the design of Figure 18.1 is satisfactory as far as it goes, 
perhaps it does not go far enough. 

[1] Figure 18.1 
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(Male) 
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Acceptance Scores 
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[H Figure 18.2 

Ability 

Gender 

Bx (High) 

B2 (Medium) 

f?3 (Low) 
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Acceptan ce Scores mB2 

A Stronger Design 

Walster and her colleagues used two other independent variables, Race and Ability, 

in a factorial design. We drop Race — it was neither statistically significant, nor did it 

interact significantly with the other variables — and concentrate on gender and 

ability. If a college bases its selection of incoming students strictly on ability, there is 

no discrimination (unless, of course, ability selection is called discrimination). Add 

Ability to the design of Figure 18.1; use three levels. That is, in addition to the appli¬ 

cations being designated Male and Female, they are also designated as High Ability, 

Medium Ability, and Low Ability. For example, three of the applicants may be: male, 

medium ability; female, high ability; female, low ability. Now, if there is no signifi¬ 

cant difference between genders and the interaction between Gender and Ability is 

not significant, this would be considerably stronger evidence for no discrimination 

than that yielded by the design and statistical test of Figure 18.1. We now use the 

expanded design to explain this statement and to discuss a number of points about 

research design. The expanded design is given in Figure 18.2. 

The design is a 2 X 3 factorial. One independent variable, A, is gender, the same 

as in Figure 18.1. The second independent variable, B, is ability, which is manipu¬ 

lated by indicating in several ways what the ability levels of the students are. It is 

important not to be confused by the names of the variables. Gender and Ability are 

ordinarily attribute variables and thus nonexperimental. In this case, however, they 

are manipulated. The students’ records sent to the colleges were systematically 

adjusted to fit the six cells of Figure 18.2. A case in the AXB2 cell, for instance, would 

be the record of a male of medium ability. It is this record that the college judges for 
admission. 

Let’s assume that we believe discrimination against women takes a more subtle 

form than simply across-the-board exclusion: that it is the women of lower ability 

who are discriminated against (compared to men). This is an interaction hypothesis. 

At any rate, we use this problem and the paradigm of Figure 18.2 as a basis for 
discussing some elements of research design. 

Research problems suggest research designs. Since the hypothesis just discussed 

is one of interaction, a factorial design is evidently appropriate. A is Gender; B is 

Ability. A is partitioned into Ax and A2, and B into Bh B2, and B}. 



Chapter 18 n Research Design: Purpose and Principles 453 

The paradigm of Figure 18.2 suggests a number of things. First and most obvi¬ 

ous, a fairly large number of participants is needed. Specifically, 6n participants are 

necessary (n equals number of Ss ip each cell). If we decide that n should be 20, then 

we must have 120 Ss for the experiment. Note the “wisdom” of the design here. If 

we were only testing the treatments and ignoring ability, only 2n Ss would be 

needed. Please note that some, such as Simon (1976, 1987); Simon and Roscoe 

(1984); and Daniel (1976) disagree with this approach for all types of problems. They 

feel that many designs contains hidden replications and that one can do with a lot 

fewer participants than 20 per cell. Such designs do require a lot more careful 

planning, but the researcher can come out with a lot more useful information and 
study more independent variables than just two or three. 

There are ways to determine how many participants are needed in a study. Such 

determination is part of the subject of “power,” which refers to the ability of a test of 

statistical significance to detect differences in means (or other statistics) when such 

differences indeed exist. Chapter 8 discusses sample sizes and their relationship to 

research. Chapter 12, however, presents a method for estimating sample sizes to 

meet certain criteria. Power is a fractional value between 0 and 1.00 that is defined as 

1 — /3, where (3 is the probability of committing a Type II error. The Type II error is 

failing to reject a false null hypothesis. If power is high (close to 1.00), this says that if 

the statistical test was not significant, the research can conclude that the null hypoth¬ 

esis is true. Power also tells you how sensitive the statistical test is in picking up real 

differences. If the statistical test is not sensitive enough to detect a real difference, 

the test is said to have low power. A highly sensitive test that can pick up true 

differences is said to have high power. In Chapter 16, we discussed the difference 

between parametric and nonparametric statistical tests. Nonparametric tests are 

generally less sensitive than parametric tests. As a result, nonparametric tests are said 

to have lower power than parametric tests. One of the most comprehensive books on 

the topic of power estimation is by Cohen (1988). Jaccard and Becker (1997) give an 
easy-to-follow introduction to power analysis. 

Second, the design indicates that the “participants” (colleges, in this case) can be 

assigned randomly to both A and B because both are experimental variables. If 

Ability was a nonexperimental attribute variable, however, then the participants 

could be randomly assigned to Ax and A2, but not to Bh B2, and F3. 

Third, according to the design the observations made on the “participants” must 

be made independently. The score of one college must not affect the score of another 

college. Reducing a design to an outline like that shown in Figure 18.2 in effect pre¬ 

scribes the operations necessary for obtaining the measures that are appropriate for 

the statistical analysis. An F-test depends on the assumption of the independence of 

the measures of the dependent variable. If Ability here is an attribute variable and 

individuals are measured for intelligence, say, then the independence requirement is 

in greater jeopardy because of the possibility of one subject seeing another subject’s 

paper, and because teachers may unknowingly (or knowingly) “help” students with 

answers, among other reasons. Researchers try to prevent such things—not on 

moral grounds but to satisfy the requirements of sound design and sound statistics. 

A fourth point is quite obvious to us by now: Figure 18.2 suggests factorial 

analysis of variance, F-tests, measures of association and, perhaps, post hoc tests. If 
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the research is well designed before the data are gathered — as it certainly was by 

Walster et al. — most statistical problems can be solved. In addition, certain trouble¬ 

some problems can be avoided before they arise, or can even be prevented from 

arising at all. With an inadequate design, however, problems of appropriate statistical 

tests may be very troublesome. One reason for the strong emphasis in this book on 

treating design and statistical problems concomitantly is to point out ways to avoid 

these problems. If design and statistical analysis are planned simultaneously, the 

analytical work is usually straightforward and uncluttered. 
A highly useful dividend of design is this: A clear design, like that in Figure 18.2, 

suggests the statistical tests that can be made. A simple one-variable randomized 

design with two partitions, for example, two treatments, Aj and A2, permit, only a 

statistical test of the difference between the two statistics yielded by the data. These 

statistics might be two means, two medians, two ranges, two variances, two percent¬ 

ages, and so forth. Only one statistical test is ordinarily possible. With the design of 

Figure 18.2, however, three statistical tests are possible: (1) between Ax and A2; (2) 

among Bu B2, and S3, and (3) the interaction of A and B. In most investigations, all 

the statistical tests are not of equal importance. The important ones, naturally, are 

those directly related to the research problems and hypotheses. 

In the present case the interaction hypothesis [or (3) above] is the important one, 

since the discrimination is supposed to depend on ability level. Colleges may practice 

discrimination at different levels of ability. As suggested above, females (A2) may be 

accepted more than males (A3) at the higher ability level (Bj), whereas they may be 

accepted less at the lower ability level (f?3). 

It should be evident that research design is not static. A knowledge of design can 

help us to plan and do better research, and can also suggest the testing of hypotheses. 

Probably more important, we may be led to realize that the design of a study is not 

adequate to the demands we are making of it. What is meant by this somewhat pecu¬ 
liar statement? 

Assume that we formulate the interaction hypothesis as outlined above without 

knowing anything about factorial design. We set up a design consisting, actually, of 

two experiments. In one of these experiments we test A { against A2 under condition 

Bx. In the second experiment we test^j against A2 under condition B2. The paradigm 

would look like that shown in Figure 18.3. (To make matters simpler, we are only 

U Figure 18.3 
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using two levels of Bx, B2, and Z?3, but changing B2 to B2. The design is thus reduced 
to 2 X 2.) 

The important point to note is that no adequate test of the hypothesis is possible 

with this design. Ax can be tested against A2 under both Bx and B2 conditions, to be 

sure. But it is not possible to know, clearly and unambiguously, whether there is a 

significant interaction between A and B. Even if > MAl | B2 (MAl is greater than 

M.AlJ under condition B2), as hypothesized, the design cannot provide a clear possi¬ 

bility of confirming the hypothesized interaction, since we cannot obtain information 

about the differences between Ax and A2 at the two levels of B, Bx and B2. Remember 

that an interaction hypothesis implies, in this case, that the difference between Ax 

and A2 is different at Bx from what it is at B2. In other words, information of both A 

and B together in one experiment is needed to test an interaction hypothesis. If the sta¬ 

tistical results of separate experiments showed a significant difference between Ax 

and A2 in one experiment under the Bx condition, and no significant difference in 

another experiment under the B2 condition, then there is good presumptive evidence 

that the interaction hypothesis is correct. But presumptive evidence is not good 

enough, especially when we know that it is possible to obtain better evidence. 

In Figure 18.3, suppose the means of the cells were, from left to right: 30, 30, 40, 

30. This result would seem to support the interaction hypothesis, since there is a 

significant difference between Ax and A2 at level B2, but not at level Bx. But we could 

not know this to be certainly so, even though the difference between Ax and A2 is 

statistically significant. Figure 18.4 shows how this would look if a factorial design 

had been used. (The figures in the cells and on the margins are means.) Assuming 

that the main effects, Ax and A2\ Bx and B2, were significant, it is still possible that the 

interaction is not significant. Unless the interaction hypothesis is specifically tested, 

the evidence for interaction is merely presumptive, because the planned statistical 

interaction test, that a factorial design provides, is lacking. It should be clear that a 

knowledge of design could have improved this experiment. 

search Design as Variance Control 

The main technical function of research design is to control variance. A research de¬ 

sign is, in a manner of speaking, a set of instructions to the investigator to gather and 

analyze data in certain ways. It is therefore a control mechanism. The statistical 

M Figure 18.4 
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principle behind this mechanism, as stated earlier, is: Maximize systematic variance, 

control extraneous systematic variance, and minimize error variance. In other words, we 

must control variance. 
According to this principle, by constructing an efficient research design the 

investigator attempts to: (1) maximize the variance of the variable or variables of the 

substantive research hypothesis, (2) control the variance of extraneous or “unwanted” 

variables that may have an effect on the experimental outcomes, and (3) minimize the 

error or random variance, including so-called errors of measurement. Let’s look at an 

example. 

A Controversial Example 

Controversy is rich in all science. It seems to be especially rich and varied in behav¬ 

ioral science. Two such controversies have arisen from different theories of human 

behavior and learning. Reinforcement theorists have amply demonstrated that 

positive reinforcement can enhance learning. As usual, however, things are not so 

simple. The presumed beneficial effect of external rewards has been questioned; 

research has shown that extrinsic reward can have a deleterious influence on 

children’s motivation, intrinsic interest, and learning. A number of articles and stud¬ 

ies were published in the 1970s showing the possible detrimental effects of using 

reward. In one such study Amabile (1979) showed that external evaluation has a dele¬ 

terious effect on artistic creativity. Others included Deci (1971), and Lepper and 

Greene (1978). At the time, even the seemingly straightforward principle of 

reinforcement is not so straightforward. However, in recent years a number of 

articles have appeared defending the positive effects of reward (see Eisenberger & 

Cameron, 1996; Sharpley, 1988; McCullers, Fabes, & Moran, 1987; Bates, 1979). 

There is a substantial body of belief and research that indicates that college stu¬ 

dents learn well under a regime of what has been called mastery learning. Very briefly 

mastery learning’ means a system of pedagogy based on personalized instruction 

and requiring students to learn curriculum units to a mastery criterion (see Abbott & 

Falstrom, 1975; Ross & McBean, 1995; Senemoglu & Fogelman, 1995; Bergin, 

1995). Although there appears to be some research supporting the efficacy of mastery 

learning, there is at least one study—and a fine study it is—by Thompson (1980) 

whose results indicate that students taught through the mastery learning approach do 

no better than students taught with a conventional approach of lecture, discussion, 

and recitation. This is an exemplary study, done with careful controls, over an ex¬ 

tended time period. The example given below was inspired by the Thompson study. 

The design and controls in the example, however, are much simpler than Thomp¬ 

sons. Note, too, that Thompson had an enormous advantage: He did his experiment 

in a military establishment. This means, of course, that many control problems, usu¬ 
ally recalcitrant in educational research, were easily resolved. 

Controversy enters the picture because mastery learning adherents seem so 

strongly convinced of its virtues, while its doubters are almost equally skeptical. Will 

research decide the matter? Hardly. But let’s see how one might approach a relatively 
modest study capable of yielding at least a partial empirical answer. 
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An educational investigator decides to test the hypothesis that achievement in 

science is enhanced more by a mastery learning method (ML) than by a traditional 

method (T). We ignore the details of the methods and concentrate on the design of 

the research. Call the mastery learning method Ax and the traditional method A2. As 

investigators we know that other possible independent variables influence achieve¬ 

ment: intelligence, gender, social class background, previous experience with science, 

motivation, and so on. We would have reason to believe that the two methods work 

differently with different kinds of students. They may work differently, for example, 

with students of differing scholastic aptitudes. The traditional approach is effective, 

perhaps, with students of high aptitude, whereas mastery learning is more effective 

with students of low aptitude. Call aptitude B: high aptitude is Bx and low aptitude 

B2. In this example, the variable Aptitude was dichotomous into high and low groups. 

This is not the best way to handle the Aptitude variable. When a continuous measure 

is dichotomized or trichotomized, variance is lost. In a later chapter we will see that 

leaving a continuous measure and using multiple regression is a better method. 

What kind of design should be set up? To answer this question it is important 

to label the variables and to know clearly what questions are being asked. The 

variables are: 

Independent Variables Dependent Variable 

Methods Aptitude Science Achievement 

Mastery Learning, A x High Aptitude, Bx Test scores in science 

Traditional, A2 Low Aptitude, B2 

We may as investigators also have included other variables in the design, especially 

variables potentially influential on achievement: general intelligence, social class, 

gender, high school average, for example. We also would use random assignment 

to take care of intelligence and other possible influential independent variables. 

The dependent variable measure is provided by a standardized science know¬ 

ledge test. 
The problem seems to call for a factorial design. There are two reasons for this 

choice: (1) There are two independent variables. (2) We have quite clearly an interac¬ 

tion hypothesis in mind, though we may not have stated it in so many words. We do 

have the belief that the methods will work differently with different kinds of 

students. We set up the design structure shown in Figure 18.5. 

Note that all the marginal and cell means have been appropriately labeled. Note, 

too, that there is one active variable, Methods; and one attribute variable, Aptitude. 

You might remember from Chapter 3 that an active variable is an experimental or 

manipulated variable. An attribute variable is a measured variable or a variable that 

is a characteristic of people or groups; for example, intelligence, social class, and 

pccupation (people); and cohesiveness, productivity, and restrictive-permissive 

atmosphere (organizations, groups, and the like). All we can do is to categorize the 
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M\ Figure 18.5 

Bx (High Anxiety) 

Aptitude 

B2 (Low Anxiety) 

Methods 

Ax (Mastery Learning) A-, (Traditional) 

Ma2bx 

Science Knowledge 

Scores 

ML*i Maxb2 

mBi 

participants as high aptitude and low aptitude and assign them accordingly to Bx and 

B2. We can, however, assign the students randomly to Ax and A2, the Methods 

groups. This is done in two stages: (1) the Bx (high aptitude) students are randomly 

assigned to Ax andH2 and (2) the B2 (low aptitude) students are assigned randomly to 

Ax and A2. By so randomizing the participants we can assume that before the experi¬ 

ment begins, the students in Ax are approximately equal to the students in A2 in all 
possible characteristics. 

Our present concern is with the different roles of variance in research design and 

the variance principle. Before going further, we name the variance principle for 

easy reference the “maxmincon” principle. The origin of this name is obvious: 

maximize the systematic variance under study; control extraneous systematic 

variance; and minimize error variance—with two of the syllables reversed for euphony. 

Before tackling the application of the maxmincon principle in the present 

example, an important point should be discussed. Whenever we talk about variance, 

we must be sure to know which variance we are talking about. We speak of the 

variance of the methods, of intelligence, of gender, of type of home, and so on. This 

sounds as though we were talking about the independent variable variance. This is 

tiue and not true. We always mean the variance of the dependent variable, and the vari¬ 

ance of the dependent variable measures, after the experiment has been done. This is not 

true in so-called correlational studies where, when we say “the variance of the inde¬ 

pendent variable,” we mean just that. When correlating two variables, we study the 

variances of the independent and dependent variables “directly.” Our way of saying 

“independent variable variance” stems from the fact that, by manipulation and con¬ 

trol of independent variables, we influence, presumably, the variance of the depen¬ 

dent variable. Somewhat inaccurately put, we “make” the measures of the dependent 

variable behave or vary as a presumed result of our manipulation and control of the 

independent variables. In an experiment, it is the dependent variable measures that 

are analyzed. Then, from the analysis we infer that the variances present in the total 
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variance of the dependent variable measures are due to the manipulation and control 

of the independent variables, and to error. Now, back to our principle. 

Maximization of Experimental Variance 

The experimenter’s most obvious, but not necessarily most important, concern is to 

maximize what we will call the experimental variance. This term is introduced to 

facilitate subsequent discussions and, in general, simply refers to the variance of 

the dependent variable, influenced by the independent variable or variables of the 

substantive hypothesis. In this particular case, the experimental variance is 

the variance in the dependent variable, presumably due to methods, Ax and A2, and 

aptitude, Bx and B2. Although experimental variance can be taken to mean only the 

variance due to a manipulated or active variable, like methods, we shall also consider 

attribute variables, like intelligence, gender and, in this case, aptitude, experimental 

variables. One of the main tasks of an experimenter is to maximize this variance. The 

methods must be “pulled” apart as much as possible to make Ax and A2 (and A}, A4, 

and so on, if they are in the design) as unlike as possible. 

If the independent variable does not vary substantially, there is little chance of 

separating its effect from the total variance of the dependent variable. It is necessary 

to give the variance of a relation a chance to show itself, to separate itself, so to 

speak, from the total variance, which is a composite of variances due to numerous 

sources and chance. Remembering this subprinciple of the maxmincon principle, we 

can write a research precept: Design, plan, and conduct research so that the experimental 

conditions are as different as possible. There are, of course, exceptions to this subprinci¬ 

ple, but they are probably rare. An investigator might want to study the effects of 

small gradations of, say, motivational incentives on the learning of some subject 

matter. Here one would not make the experimental conditions as different as possi¬ 

ble. Still, they would have to be made to vary somewhat or there would be no 

discernible resulting variance in the dependent variable. 

In the present research example, this subprinciple means that the investigator 

must take pains to make Ax and A2, the mastery learning and traditional methods, as 

different as possible. Next, Bx and B2 must also be made as different as possible on 

the aptitude dimension. This latter problem is essentially one of measurement, as we 

will see in a later chapter. In an experiment, the investigator is like a puppeteer mak¬ 

ing the independent variable puppets do what he or she wants. The strings of the Ax 

and A2 puppets are held in the right hand and the strings of the Bx and B2 puppets in 

the left hand. (We assume there is no influence of one hand on the other, that is, the 

hands must be independent.) The Ax and A2 puppets are made to dance apart just as 

the Bx and B2 puppets are made to dance apart. The investigator then watches the 

audience (the dependent variable) to see and measure the effect of the manipulations. 

If one is successful in making Ax and A2 dance apart, and if there is a relation 

between yd and the dependent variable, the audience reaction — if separating Ax and 

A2 is funny, for instance — should be laughter. The investigator may even observe 

that he or she only gets laughter when Ax and A2 dance apart and, at the same time, 

Bx or B2 dance apart (interaction again). 
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Control of Extraneous Variables 

The control of extraneous variables means that the influences of those independent 

variables extraneous to the purposes of the study are minimized, nullified, or isolated. 

There are three ways to control extraneous variables. The first is the easiest, if it is 

possible: to eliminate the variable as a variable. If we are worried about intelligence as 

a possible contributing factor in studies of achievement, its effect on the dependent 

variable can be virtually eliminated by using participants of only one intelligence level, 

say intelligence scores within the range of 90 to 110. If we are studying achievement, 

and racial membership is a possible contributing factor to the variance of achieve¬ 

ment, it can be eliminated by using only members of one race. The principle is: To 

eliminate the effect of a possible influential independent variable on a dependent variable, 

choose participants so that they are as homogeneous as possible on that independent variable. 

This method of controlling unwanted or extraneous variance is very effective. If 

we select only one gender for an experiment, then we can be sure that gender cannot 

be a contributing independent variable. But then we lose generalization power; for 

instance, we can say nothing about the relation under study with girls if we use only 

boys in the experiment. If the range of intelligence is restricted, then we can discuss 

only this restricted range. Is it possible that the relation, if discovered, is nonexistent 

or quite different with children of high intelligence or children of low intelligence? 
We simply do not know; we can only surmise or guess. 

The second way to control extraneous variance is through randomization. This 

is the best way, in the sense that you can have your cake and eat some of it, too. The¬ 

oretically, randomization is the only method for controlling all possible extraneous 

variables. Another way to phrase it is: if proper randomization has been accom¬ 

plished, then the experimental groups can be considered statistically equal in all 

possible ways. This does not mean, of course, that the groups are equal in all the pos¬ 

sible variables. We already know that by chance the groups can be unequal, but the 

probability of their being equal is greater, with proper randomization, than the 

probability of their not being equal. For this reason, control of the extraneous 

variance by randomization is a powerful method of control. All other methods leave 

open many possibilities of inequality. If we match for intelligence, we may success¬ 

fully achieve statistical equality in intelligence (at least in those aspects of intelligence 

measured), but we may suffer from inequality in other significantly influential 

independent variables like aptitude, motivation, and social class. A precept that 

springs from this equalizing power of randomization, then, is: Whenever it is possible to 

do so, assign subjects to experimental groups and conditions randomly, and assign conditions 
and other factors to experimental groups randomly. 

The third method of controlling an extraneous variable is to build it right into 

the design as an independent variable. For example, assume that gender was to be 

controlled in the experiment discussed earlier and it was considered inexpedient or 

unwise to eliminate it. One could add a third independent variable, gender, to the 

design. Unless one were interested in the actual difference between’the genders on 

the dependent variable or wanted to study the interaction between one or two of the 

other variables and gender, however, it is unlikely that this form of control would be 

used. One might want information of the kind just mentioned and also want to 
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control gender, too. In such a case, adding it to the design as a variable might be 

desirable. The point is that building a variable into an experimental design “controls” 

the variable, since it then becomes possible to extract from the total variance of the 

dependent variable the variance due to the variable. (In the above case, this would be 

the “between-genders” variance.) 

These considerations lead to another principle: An extraneous variable can be 

controlled by building it into the research design as an attribute variable, thus achieving 

control and yielding additional research information about the effect of the variable on the 

dependent variable and about its possible interaction with other independent variables. 

The fourth way to control extraneous variance is to match participants. The 

control principle behind matching is the same as that for any other kind of control, 

the control of variance. Matching is similar—-in fact, it might be called a corollary— 

to the principle of controlling the variance of an extraneous variable by building it 

into the design. The basic principle is to split a variable into two or more parts in a 

factorial design, say into high and low intelligence, and then randomize within each 

level as described above. Matching is a special case of this principle. Instead of 

splitting the participants into two, three, or four parts, however, they are split into 

N/2 parts, N being the number of participants used; thus the control of variance is 

built into the design. 

In using the matching method several problems may be encountered. To begin 

with, the variable on which the participants are matched must be substantially 

related to the dependent variable or the matching is a waste of time. Even worse, it 

can be misleading. In addition, matching has severe limitations. If we try to match, 

say, on more than two variables, or even more than one, we lose participants. It is dif¬ 

ficult to find matched participants on more than two variables. For instance, if one 

decides to match intelligence, gender, and social class, one may be fairly successful in 

matching the first two variables but not in finding pairs that are fairly equal on 

all three variables. Add a fourth variable and the problem becomes difficult, often 

impossible to solve. 
Let us not throw out the baby with the bath water, however. When there is a 

substantial correlation between the matching variable or variables and the dependent 

variable (>.50 or .60), then matching reduces the error term and thus increases the 

precision of an experiment, a desirable outcome. If the same participants are used 

with different experimental treatments — called repeated measures or randomized 

block design—we have powerful control of variance. How can one match better on 

all possible variables than by matching a subject with oneself? Unfortunately, other 

negative considerations usually rule out this possibility. It should be forcefully em¬ 

phasized that matching of any kind is no substitute for randomization. If participants 

are matched, they should then be assigned to experimental groups at random. Through a 

random procedure, like tossing a coin or using odd and even random numbers, the 

members of the matched pairs are assigned to experimental and control groups. If 

the same participants undergo all treatments, then the order of the treatments should 

be assigned randomly. This adds randomization control to the matching, or repeated 

measures control. 
A principle suggested by this discussion is: When a matching variable is substan¬ 

tially correlated with the dependent variable, matching as a form of variance control can be 
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profitable and desirable. Before using matching, however, carefully weigh its advantages 

and disadvantages in the particular research situation. Complete randomization or 

the analysis of covariance may be better methods of variance control. 

Still another form of control, statistical control, was discussed at length in previ¬ 

ous chapters, but one or two further remarks are in order here. Statistical methods 

are, so to speak, forms of control in the sense that they isolate and quantify variances. 

But statistical control is inseparable from other forms of design control. If matching 

is used, for example, an appropriate statistical test must be used, or the matching 

effect, and thus the control, will be lost. 

M inimization of Error Variance 

Error variance is the variability of measures due to random fluctuations whose basic 

characteristic is that they are self-compensating, varying now this way, now that way, 

now positive, now negative, now up, now down. Random errors tend to balance each 
other so that their mean is zero. 

There are a number of determinants of error variance, for instance, factors 

associated with individual differences among participants. Ordinarily we call this 

variance due to individual differences “systematic variance.” But when such variance 

cannot be, or is not identified and controlled, we have to lump it with the error 

variance. Because many determinants interact and tend to cancel each other out (or 

at least we assume that they do), the error variance has this random characteristic. 

Another source of error variance is that associated with what are called errors of 

measurement: variation of responses from trial to trial, guessing, momentary inatten¬ 

tion, slight temporary fatigue, lapses of memory, transient emotional states of partici¬ 
pants, and so on. 

Minimizing error variance has two principal aspects: (1) the reduction of errors 

of measurement through controlled conditions, and (2) an increase in the reliability 

of measures. The more uncontrolled the conditions of an experiment, the more the 

many determinants of error variance can operate. This is one of the reasons for care¬ 

fully setting up controlled experimental conditions. In studies under field conditions, 

of course, such control is difficult; still, constant efforts must be made to lessen the 

effects of the many determinants of error variance. This can be done, in part, by spe¬ 

cific and clear instructions to participants and by excluding from the experimental 
situation factors that are extraneous to the research purpose. 

To increase the reliability of measures is to reduce the error variance. Pending 

fuller discussion later in the book, reliability can be taken to be the accuracy of a se&t 

of scores. To the extent that scores do not fluctuate randomly, they are reliable. 

Imagine a completely unreliable measurement instrument. This instrument does not 

allow us to predict the future performance of individuals. It gives a set of rank order¬ 

ing values for a sample of participants at one time and a completely different set of 

rank ordering at another time. With such an instrument, it would not be possible to 

identify and extract systematic variances, since the scores yielded by the instrument 

would be like the numbers in a table of random numbers. This is the extreme case 

Now, imagine differing amounts of reliability and unreliability in the measures of the 
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dependent variable. The more reliable the measures, the better we can identify and 

extract systematic variances and the smaller the error variance in relation to the 

total variance. 

Another reason for reducing error variance as much as possible is to give system¬ 

atic variance a chance to show itself. We cannot do this if the error variance, and thus 

the error term, is too large. If a relation exists, we seek to discover it. One way to 

discover the relation is to find significant differences between means. But if the error 

variance is relatively large due to uncontrolled errors of measurement, the systematic 

variance — earlier called “between” variance—will not have a chance to appear. 

Thus, the relation, although it exists, will probably not be detected. 

The problem of error variance can be put into a neat mathematical nutshell. 

Remember the equation: 

Vt=vb+ Ve 

where Vt is the total variance in a set of measures; Vb is the between-groups variance, 

the variance presumably due to the influence of the experimental variables; and Ve is 

the error variance (in analysis of variance, the within-groups variance and the 

residual variance). Obviously, the larger Ve is, the smaller Vh must be, with a given 

amount of Vt. 
Consider the following equation: F — Vh/Ve. For the numerator of the fraction 

on the right to be accurately evaluated for significant departure from chance expecta¬ 

tion, the denominator should be an accurate measure of random error. 

A familiar example may make this clear. Recall that in the discussions of factorial 

analysis of variance and the analysis of variance of correlated groups, we talked about 

variance due to individual differences being present in experimental measures. We 

said that, while adequate randomization can effectively equalize experimental groups, 

there will be variance in the scores due to individual differences, for instance, 

differences due to intelligence, aptitude, and so on. Now, in some situations, these 

individual differences can be quite large. If they are, then the error variance and, 

consequently, the denominator of the F equation above, will be “too large” relative to 

the numerator; that is, the individual differences will have been randomly scattered 

among, say, two, three, or four experimental groups. Still they are sources of variance 

and, as such, will inflate the within-groups or residual variance, the denominator of 

the above equation. 

Chapter Summary 

1. Research designs are plans and structures used to answer research questions. 

2. Research designs have two basic purposes: (i) provide answers to research 

questions, and (ii) control variance. 
3. Research designs work in conjunction with research hypotheses to yield a de¬ 

pendable and valid answer. 
4. Research designs can also tell us what statistical test to use to analyze the data 

collected from that design. 
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5. When speaking of controlling variance, we can mean one or more of three 

things: 

• maximize systematic variance 

• control extraneous variance 

• minimize error variance 

6. To maximize systematic variance, one should have an independent variable 

where the levels are very distinct from one another. 

7. To control extraneous variance the researcher need to eliminate the effects of 

a potential independent variable on the dependent variable. This can be done 
by: 

• holding the independent variable constant; for example, if one knows 

gender has a possible effect, gender can be held constant by doing the study 
with only one gender (i.e., females). 

• randomization; meaning to choose participants randomly and then assign¬ 

ing each group of participants to treatment conditions randomly (levels of 
the independent variable). 

• build the extraneous variable into the design by making it an independent 
variable. 

• matching participants — this method of control might be difficult in certain 

situations; a researcher will never be quite sure that a successful match was 
made on all of the important variables. 

8. Minimizing error variance involves measurement of the dependent variable. 

By reducing the measurement error one will have reduced error variance. The 

increase in the reliability of the measurement would also lead to a reduction 
of error variance. 

Study Suggestions 

1. We have noted that research design has the purpose of obtaining answers to 

research questions and controlling variance. Explain in detail what this state¬ 

ment means. How does a research design control variance? Why should a fac¬ 

torial design control more variance than a one-way design? How does a 

design that uses matched participants or repeated measures of the same par¬ 

ticipants control variance? What is the relation between the research ques¬ 

tions and hypotheses and a research design? Invent a research problem to 

illustrate your answers to these questions (or use an example from the text). 

2. Sir Ronald Fisher (1951), the inventor of analysis of variance, said in one of 

his books, it should be noted that the null hypothesis is never proved or estab¬ 

lished, but is possibly disproved, in the course of experimentation. Every ex¬ 

periment may be said to exist only in order to give the facts a chance of dis¬ 

proving the null hypothesis. Whether you agree or disagree with Fisher’s 

statement, what do you think he meant by it? In framing your answer, 

remember the maxmincon principle and F-tests and f-tests. 
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All disciplined creations of humans have form. Architecture, poetry, music, painting, 

mathematics, scientific research—all have form. People put great stress on the con¬ 

tent of their creations, often not realizing that without strong structure, no matter 

how rich and how significant the content, the creations may be weak and sterile. 

So it is with scientific research. The scientist needs viable and plastic form with 

which to express scientific aims. Without content—without good theory, good 

hypotheses, good problems—the design of research is empty. But without form, 

without structure adequately conceived and created for the research purpose, little of 

value can be accomplished. Indeed, it is no exaggeration to say that many of the 

failures of behavioral research have been failures of disciplined and imaginative form. 

The principal focus of this chapter is on inadequate research designs. Such 

designs have been so common that they must be discussed. More important, the 

student should be able to recognize them and understand why they are inadequate. 

465 
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This negative approach has a virtue: The study of deficiencies forces one to ask why 

something is deficient, which in turn centers attention on the criteria used to judge 

both adequacies and inadequacies. So the study of inadequate designs leads us to the 

study of the criteria of research design. We take the opportunity, too, to describe the 

symbolic system to be used, and to identify an important distinction between experi¬ 

mental and nonexperimental research. 

Experimental and Nonexperimental Approaches 

Discussion of design must be prefaced by an important distinction: that between 

experimental and nonexperimental approaches to research. Indeed, this distinction is 

so important that a separate chapter (Chapter 23) will be devoted to it later. An 

experiment is a scientific investigation in which an investigator manipulates and 

controls one or more independent variables and observes the dependent variable or 

variables for variation concomitant to the manipulation of the independent variables. 

An experimental design, then, is one in which the investigator manipulates at least one 

independent variable. In an earlier chapter we briefly discussed Hurlock’s classic 

study (1925). Hurlock manipulated incentives to produce different amounts of reten¬ 

tion. In the Walster, Cleary, and Clifford (1970) study (discussed in Chapter 18), sex, 

race, and ability levels were manipulated to study their effects on college acceptance: 

the application forms submitted to colleges differed in descriptions of applicants as 
male-female; white-black; and high, medium, or low ability levels. 

In nonexperimental research one cannot manipulate variables or assign partici¬ 

pants or treatments at random because the nature of the variables is such as to 

preclude manipulation. Participants come to us with their differing characteristics in¬ 

tact, so to speak. They come to us with their sex, intelligence, occupational status, 

creativity, or aptitude already there.” Wilson (1996) used a nonexperimental design 

to study the readability, ethnic content, and cultural sensitivity of patient education 

material used by nurses at local health department and community health centers. 

Here, the material preexisted. There was no random assignment or selection. 

Edmondson (1996) also used a nonexperimental design to compare the number of 

medication errors by nurses, physicians, and pharmacists in eight hospital units at 

two urban teaching hospitals. Edmondson did not choose these units or hospitals at 

random, neither were the medical professionals chosen at random. In many areas of 

research, likewise, random assignment is unfortunately not possible, as we will see 

later. Although experimental and nonexperimental research differ in these crucial 

respects, they share structural and design features that will be pointed out in this and 

subsequent chapters. In addition, their basic purpose is the same: to study relations 

among phenomena. Their scientific logic is also the same: to bring empirical 

evidence to bear on conditional statements of the form If p, then q. In some fields of 

behavioral and social sciences the nonexperimental framework is unavoidable. Keith 

(1988) states that a lot of studies conducted by school psychologists are of the.nonex- 

penmental nature. School psychology researchers as well as many in educational 

psychology must work within a practical framework. Many times, schools, classrooms, 
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or even students are given to the researcher “as-is.” Stone-Romero, Weaver, and 

Glenar (1995) have summarized nearly 20 years of articles from th t Journal of Applied 

Psychology, concerning the use of experimental and non experimental research designs. 

The ideal of science is the controlled experiment. Except, perhaps, in taxonomic 

research — research with the purpose of discovering, classifying, and measuring nat¬ 

ural phenomena and the factors behind such phenomena—where the controlled ex¬ 

periment is the desired model of science. It may be difficult for many students to ac¬ 

cept this rather categorical statement since its logic is not readily apparent. Earlier it 

was said that the main goal of science was to discover relations among phenomena. 

Why then assign a priority to the controlled experiment? Do not other methods of 

discovering relations exist? Yes, of course they do. The main reason for the preemi¬ 

nence of the controlled experiment, however, is that researchers can have more 

confidence that the relations they study are the relations they think they are. The 

reason is not hard to see: They study the relations under the most carefully con¬ 

trolled conditions of inquiry known. The unique and overwhelmingly important 

virtue of experimental inquiry, then, is control. In a perfectly controlled experimental 

study, the experimenter can be confident that the manipulation of the independent 

variable affected the dependent variable and nothing else. In short, a perfectly 

conducted experimental study is more trustworthy than a perfectly conducted nonex- 

perimental study. Why this is so should become more apparent as we advance in our 

study of research design. 

Symbolism and Definitions 

Before discussing inadequate designs, explanation of the symbolism to be used in 

these chapters is necessary. X is used to define an experimentally manipulated indepen¬ 

dent variable (or variables). Xh X2, X3, and so on represent independent variables 1, 

2,3, and so on, though we usually use Xalone, even when it can mean more than one 

independent variable. (We also use Xu X2, etc., to represent partitions of an indepen¬ 

dent variable, but the difference will always be clear.) The symbol (X) indicates that 

the independent variable is not manipulated—is not under the direct control of the 

investigator, but is measured or imagined. The dependent variable is Y: Yb is the 

dependent variable before the manipulation of X, and Ya the dependent variable after 

the manipulation of X. With ~X, we borrow the negation sign of set theory: ~X 

(“not-X”) to indicate that the experimental variable (the independent variable X) is 

not manipulated. [Note: (X) is a nonmanipulable variable and ~X is a manipulable 

variable that is not manipulated.] The symbol (R) will be used for the random 

assignment of participants to experimental groups and the random assignment of 

experimental treatments to experimental groups. 
The explanation of ~X just given is not quite accurate because in some cases ~X 

can represent a different aspect of the treatment X, rather than merely the absence of 

treatment. In an older language, the experimental group was the group that was 

given the so-called experimental treatment, X; while the control group did not 

receive it, ~X. For our purposes, however, ~X will do well enough, especially if we 
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understand the generalized meaning of control discussed below. An experimental group, 

then, is a group of participants receiving some aspect or treatment of X. In testing 

the frustration-aggression hypothesis, the experimental group is the group whose 

participants are systematically frustrated. In contrast, the control group is one that is 

given “no” treatment. 

In modern multivariate research, it is necessary to expand these notions. They 

are not changed basically; they are only expanded. It is quite possible to have more 

than one experimental group, as we have seen. Different degrees of manipulation of 

the independent variable are not only possible, they are often also desirable or even 

imperative. Further, it is possible to have more than one control group, a statement 

that at first seems like nonsense. How can one have different degrees of “no” experi¬ 

mental treatment? This occurs because the notion of control is generalized. When 

there are more than two groups, and when any two of them are treated differently, 

one or more groups serve as “controls” on the others. Recall that control is always 

control of variance. With two or more groups treated differently, variance is engen¬ 

dered by the experimental manipulation. So the traditional notion of X and ~X 

(treatment and no treatment) is generalized to Xu X2, X3, . . ., Xk, different forms or 
degrees of treatment. 

If X is encased inside parentheses (X), this means that the investigator “imag¬ 

ines” the manipulation of X, or assumes that X occurred and that it is the X of the 

hypothesis. It may also mean that X is measured and not manipulated. Actually, we 

are saying the same thing here in different ways. The context of the discussion 

should make the distinction clear. Suppose a sociologist is studying delinquency and 

the frustration-aggression hypothesis. The sociologist observes delinquency, Y, and 

imagines that the delinquent participants were frustrated in their earlier years, or 

(X). All nonexperimental designs will have (X). Generally, then, (X) represents an 

independent variable not under the experimental control of the investigator. 

One more point—each design in this chapter will ordinarily have an a and a b 

form. The a form will be the experimental form, or that in which X is manipulated. 

The b form will be the nonexperimental form, that in which X is not under the 

control of the investigator, or (X). Obviously, (~X) is also possible. 

Faulty Designs 

There are four (or more) inadequate designs of research that have often been used— 

and are occasionally still used in behavioral research. The inadequacies of the 

designs lead to poor control of independent variables. We number each such design, 
give it a name, sketch its structure, and then discuss it. 

Design 19.1: One Group 

(a)X Y (Experimental) 
(b) (X) Y (Nonexperimental) 
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Design 19.1(a) has been called the “One-Shot Case Study,” an apropos name 

given by Campbell and Stanley (1963). The (a) form is experimental, the (b) form 

nonexperimental. An example of the (a) form: a school faculty institutes a new 

curriculum and wishes to evaluate its effects. After one year, Y, student achievement, 

is measured. It is concluded, say, that achievement has improved under the new 

program. With such a design the conclusion is weak. Design 19.1(b) is the non¬ 

experimental form of the one-group design. Y, the outcome, is studied, and X is 

assumed or imagined. An example would be to study delinquency by searching the 

past of a group of juvenile delinquents for factors that may have led to their antisocial 

behavior. The method is problematic because the factors (variables) may be con¬ 

founded. When the effect of two or more factors (variables) cannot be separated, the 

results are difficult to interpret. Any number of possible explanations might be 

plausible. 

Scientifically, Design 19.1 is worthless. There is virtually no control of other 

possible influences on outcome. As Campbell (1957) pointed out, the minimum of 

useful scientific information requires at least one formal comparison. The curriculum 

example requires, at the least, comparison of the group that experienced the new 

curriculum with a group that did not experience it. The presumed effect of the new 

curriculum, say such-and-such achievement, might well have been about the same 

under any kind of curriculum. The point is not that the new curriculum did or did 

not have an effect. It was that without any formal, controlled comparison of the 

performance of the members of the “experimental” group with the performance of 

the members of some other group not experiencing the new curriculum, little can be 

said about its effect. 
An important distinction should be made. It is not that the method is entirely 

worthless, but that it is scientifically worthless. In everyday life, of course, we depend 

on such scientifically questionable evidence; we have to. We act, we say, on the basis 

of our experience. We hope that we use our experience rationally. The everyday- 

thinking paradigm implied by Design 19.1 is not being criticized. Only when such a 

paradigm is used and said or believed to be scientific do difficulties arise. Even in 

high intellectual pursuits, the thinking implied by this design is used. Freud’s careful 

observations and brilliant and creative analysis of neurotic behavior seem to fall into 

this category. The quarrel is not with Freud, then, but rather with assertions that his 

conclusions are “scientifically established.” 

Design 19.2: One Group, Before-After (Pretest, Posttest) 

(a) Yb X Ya (Experimental) 

(b) Yh {X) Ya (Nonexperimental) 

Design 19.2 is only a small improvement on Design 19.1. The essential charac¬ 

teristic of this mode of research is that a group is compared to itself. Theoretically, 

there is no better choice, since all possible independent variables associated with the 
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participants’ characteristics are controlled. The procedure dictated by such a design 
is as follows. A group is measured on the dependent variable, Y, before experimental 
manipulation. This is usually called a pretest. Assume that the attitudes toward 
women of a group of participants are measured. An experimental manipulation 
designed to change these attitudes is used. An experimenter might expose the group 
to expert opinion on women’s rights, for example. After the interposition of this X, 
the attitudes of the participants are again measured. The difference scores, or 
Ya — Yh are examined for change in attitudes. 

At face value, this would seem a good way to accomplish the experimental 
purpose. After all, if the difference scores are statistically significant, does this not 
indicate a change in attitudes? The situation is not so prosaic. There are a number of 
other factors that may have contributed to the change in scores. Hence, the factors 
are confounded. Campbell (1957) gives an excellent detailed discussion of these 
factors, only a brief outline of which can be given here. 

Measurement, History, Maturation 

First is the possible effect of the measurement procedure: measuring participants 
changes them. Can it be that the post-X measures were influenced not by the 
manipulation of X but by increased sensitization due to the pretest? Campbell (1957) 
calls such measures reactive measures, because they themselves cause the subject to 
react. Controversial attitudes, for example, seem to be especially susceptible to such 
sensitization. Achievement measures, though probably less reactive, are still affected. 
Measures involving memory are susceptible. If you take a test now, you are more 
likely to remember later things that were included in the test. In short, observed 
changes may be due to reactive effects. 

Two other important sources of extraneous variance are history and maturation. 
Between the Yy and Ya testings, many things can occur other than X. The longer the 
period of time, the greater the chance of extraneous variables affecting the partici¬ 
pants, and thus the Ya measures. This is what Campbell (1957) calls history. These 
variables or events are specific to the particular experimental situation. Maturation, on 
the other hand, covers events that are general—not specific to any particular situa¬ 
tion. They reflect change or growth in the organism studied. Mental age increases 
with time, an increase that can easily affect achievement, memory, and attitudes. 
People can learn in any given time interval, and the learning may affect dependent 
variable measures. This is one of the exasperating difficulties of research that extends 
over considerable time periods. The longer the time interval, the greater the 
possibility that extraneous, unwanted sources of systematic variance will influence 
dependent variable measures. 

The Regression Effect 

A statistical phenomenon that has misled researchers is the so-called regression effect. 
Test scores change as a statistical fact of life: on retest, on the average, they regress 
toward the mean. The regression effect operates because of the imperfect correlation 
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between the pretest and posttest scores. If rah = 1.00, then there is no regression 

effect; if ray - .00, the effect is at a maximum in the sense that the best prediction of 

any posttest score from pretest score is the mean. With the correlations found in 

practice, the net effect is that lower scores on the pretest tend to be higher, and 

higher scores lower on the posttest—when, in fact, no real change has taken place in 

the dependent variable. Thus, if low-scoring participants are used in a study, their 

scores on the posttest will probably be higher than on the pretest due to the regres¬ 

sion effect. This can deceive the researcher into believing that the experimental 

intervention has been effective when it really has not. Similarly, one may erroneously 

conclude that an experimental variable has had a depressing effect on high pretest 

scorers. Not necessarily so. The higher and lower scores of the two groups may be 

due to the regression effect. How does this work? There are many chance factors at 

work in any set of scores. Two excellent references on the discussion of the regres¬ 

sion effect are Anastasi (1958) and Thorndike (1963). For a more statistically sophis¬ 

ticated presentation, see Nesselroade, Stigler, and Bakes (1980). On the pretest some 

high scores are higher than “they should be” due to chance, and similarly with some 

low scores. On the posttest it is unlikely that the high scores will be maintained, 

because the factors that made them high were chance factors—which are uncorre¬ 

lated on the pretest and posttest. Thus the high scorer will tend to drop on the 

posttest. A similar argument applies to the low scorer—but in reverse. 
Research designs have to be constructed with the regression effect in mind. 

There is no way in Design 19.2 to control it. If there was a control group, then one 

could “control” the regression effect, since both experimental and control groups 

have pretest and posttest. If the experimental manipulation has had a “real” effect, 

then it should be apparent over and above the regression effect. That is, the scores of 

both groups, other things being equal, are affected the same by regression and other 

influences. So if the groups differ in the posttest, it should be due to the experimental 

manipulation. 
Design 19.2 is inadequate, not so much because extraneous variables and the re¬ 

gression effect can operate (the extraneous variables operate whenever there is a time 

interval between pretest and posttest), but because we do not know whether they have op¬ 

erated, whether they have affected the dependent variable measures. The design affords no 

opportunity to control or to test such possible influences. 

Design 19.3: Simulated Before-After 

££ 
n 

The peculiar title of Design 19.3 stems in part from its very nature. Like Design 

19.2 it is a before-after design. Instead of using the before and after (or 

pretest-posttest) measures of one group, we use as pretest measures the measures of 

another group, which are chosen to be as similar as possible to the experimental 
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group, and thus a control group of a sort. (The line between the two levels above in¬ 

dicates separate groups.) This design satisfies the condition of having a control 

group, and is thus a gesture toward the comparison that is necessary to scientific in¬ 

vestigation. Unfortunately, the controls are weak, a result of our inability to know 

that the two groups were equivalent before X, the experimental manipulation. 

Design 19A: Two Groups, No Control 

(a) X T (Experimental) 

~x -T 

(b) (X) T (N on experimental) 

(~X) Y 

Design 19.4 is common. In (a) the experimental group is administered treat¬ 

ment X. The “control” group, taken to be, or assumed to be, similar to the experi¬ 

mental group, is not given X. The Y measures are compared to ascertain the effect of 

X Groups or participants are taken “as they are,” or they may be matched. The non- 

experimental version of the same design is labeled (b). An effect, Y, is observed to oc¬ 

cur in one group (top line) but not in another group, or to occur in the other group 

to a lesser extent (indicated by the Tin the bottom line). The first group is found 
to have experienced X, the second group not to have experienced X. 

This design has a basic weakness: The two groups are assumed to be equal in 

independent variables other than X. It is sometimes possible to check the equality of 

the groups roughly by comparing them on different pertinent variables, for example, 

age, sex, income, intelligence, ability, and so on. This should be done if it is at all 

possible, but, as Stouffer (1950, p. 522) says, “there is all too often a wide-open gate 

through which other uncontrolled variables can march.” Because randomization is 

not used —that is, the participants are not assigned to the groups at random—it is 

not possible to assume that the groups are equal. Both versions of the design suffer 

seriously from lack of control of independent variables due to lack of randomization. 

Criteria of Research Design 

After examining some of the main weaknesses of inadequate research designs, we are 

in a good position to discuss what can be called criteria of research design. Along 

wnh the criteria, we will enunciate certain principles that should guide researchers, 

rinally, the criteria and principles will be related to Campbell’s (1957) notions of 

internal and external validity, which, in a sense, express the criteria another way. 

Answer Research Questions? 

The main criterion or desideratum of a research design can be expressed in a ques¬ 

tion: Does the design answer the research questions> or Does the design adequately test the 
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hypotheses? Perhaps the most serious weakness of designs often proposed by the 

neophyte is that they are not capable of answering the research questions adequately. 

A common example of this lack of congruence between the research questions and 

hypothesis, on the one hand, and the research design, on the other, is matching 

participants for reasons irrelevant to the research and then using an experimental 

group — control group type of design. For instance, students often assume that 

because they match pupils on intelligence and sex that their experimental groups are 

equal. They have heard that one should match participants for “control” and that 

one should have an experimental group and a control group. Frequently, however, 

the matching variables may be irrelevant to the research purposes. That is, if there is 

no relation between, say, sex and the dependent variable, then matching on sex is 

irrelevant. 
Another example of this weakness is the case where three or four experimental 

groups are needed. For example, three experimental groups and one control group, 

or four groups with different amounts or aspects of X, the experimental treatment is 

required. However, the investigator uses only two because he or she has heard that 

an experimental group and a control group are necessary and desirable. 
The example discussed in Chapter 18 of testing an interaction hypothesis by 

performing, in effect, two separate experiments is another example. The hypothesis 

to be tested was that discrimination in college admissions is a function of both sex 

and ability level, that it is women of low ability who are excluded (in contrast to men 

of low ability). This is an interaction hypothesis and probably calls for a factorial- 

type design. To set up two experiments, one for college applicants of high ability and 

another for applicants of low ability, is poor practice because such a design, as shown 

earlier, cannot decisively test the stated hypothesis. Similarly, to match participants 

on ability and then set up a two-group design would miss the research question 

entirely. These considerations lead to a general and seemingly obvious precept: 

Design research to answer research questions. 

Control of Extraneous Independent Variables 

The second criterion is control, which refers to control of independent variables: the 

independent variables of the research study and extraneous independent variables. 

Extraneous independent variables are, of course, variables that may influence the de¬ 

pendent variable but that are not part of the study. Such variables are confounded 

with the independent variable under study. In the admissions study of Chapter 18, 

for example, geographical location (of the colleges) may be a potentially influential 

extraneous variable that can cloud the results of the study. If colleges in the east, for 

example, exclude more women than colleges in the west, then geographical location 

is an extraneous source of variance in the admissions measures—which should some¬ 

how be controlled. The criterion also refers to control of the variables of the study. 

Since this problem has already been discussed and will continue to be discussed, no 

more need be said here. But the question must be asked: Does this design adequately 

control independent variables? 
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The best single way to answer this question satisfactorily is expressed in the 
following principle: 

Randomize whenever possible: select participants at random; assign participants to 

groups at random; assign experimental treatments to groups at random. 

While it may not be possible to select participants at random, it may be possible to 

assign them to groups at random; thus “equalizing” the groups in the statistical sense 

discussed in earlier chapters. If such random assignment of participants to groups is 

not possible, then every effort should be made to assign experimental treatments to 

experimental groups at random. And, if experimental treatments are administered at 

different times with different experimenters, times and experimenters should be as¬ 
signed at random. 

The principle that makes randomization pertinent is complex and difficult to 
implement: 

Control the independent variables so that extraneous and unwanted sources of systematic 

variance have minimal opportunity to operate. 

As we have seen earlier (Chapter 8), randomization theoretically satisfies this princi¬ 

ple. When we test the empirical validity of an If p, then q proposition, we manipulate 

P and observe that q covaries with the manipulation of p. But how confident can we 

be that our If p, then q statement is really “true”? Our confidence is directly related 

to the completeness and adequacy of the controls. If we use a design similar to 

designs 19.1 through 19.4, we cannot have too much confidence in the empirical 

validity of the If p, then q statement, since our control of extraneous independent 

variables is weak or nonexistent. Because such control is not always possible in 

much psychological, sociological, and educational research, should we then give 

up research entirely? By no means. But we must be aware of the weaknesses of 
intrinsically poor design. 

Generalizability 

The third criterion, generalizability, is independent of other criteria because it is dif¬ 

ferent in kind. This is an important point that will shortly become clear. It means 

simply: Can we generalize the results of a study to other participants, other groups, and 

other conditions? Perhaps the question is better put: How much can we generalize the 

results of the study? This is probably the most complex and difficult question that 

can be asked of research data because it touches not only on technical matters (like 

sampling and research design), but also on larger problems of basic and applied re¬ 

search. In basic research, for example, generalizability is not the first consideration, 

because the central interest is the relations among variables and why the variables are 

related as they are. This emphasizes the internal rather than the external aspects of 

t e study. These studies are often designed to examine theoretical issues such as mo¬ 

tivation or learning. The goal of basic research is to add information and knowledge 
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to a field of study, but usually without a specific practical purpose. Its results are 

generalizable, but not in the same realm as results found in applied research studies. 

In applied research, on the other hand, the central interest forces more concern for 

generalizability, because one certainly wishes to apply the results to other persons 

and to other situations. Applied research studies usually have their foundations in ba¬ 

sic research studies. Using information found in a basic research study, applied re¬ 

search studies apply those findings to determine if it can solve a practical problem. 

Take the work of B. F. Skinner for example. His early research is generally consid¬ 

ered as basic research. It was from his research that schedules of reinforcement were 

established. However, later, Skinner and others (Skinner, 1968; Garfinkle, Kline, & 

Stancer, 1973) applied the schedules of reinforcement to military problems, educa¬ 

tional problems, and behavioral problems. Those who do research on the modifica¬ 

tion of behavior are applying many of the theories and ideas tested and established by 

B. F. Skinner. If the reader will ponder the following two examples of basic and ap¬ 

plied research, he or she can get closer to this distinction. 
In Chapter 14 we examined a study by Johnson (1994) on rape type, information 

admissibility and perception of rape victims. This is clearly basic research: the central 

interest was in the relations among rape type, information admissibility, and percep¬ 

tion. While no one would be foolish enough to say that Johnson was not concerned 

with rape type, information admissibility, and perception in general, the emphasis 

was on the relations among the variables of the study. Contrast this study with the 

effort of Walster et al. (1970) to determine whether colleges discriminate against 

women. Naturally, Walster and her colleagues were particular about the internal 

aspects of their study. But they perforce had to have another interest: Is discrimina¬ 

tion practiced among colleges in general? Their study is clearly applied research, 

though one cannot say that basic research interest was absent. The considerations of 

the next section may help to clarify generalizability. 

nternal and External Validity 

Two general criteria of research design have been discussed at length by Campbell 

(1957) and by Campbell and Stanley (1963). These notions constitute one of the 

most significant, important, and enlightening contributions to research methodology 

in the past three or four decades. 
Internal validity asks the question: Did X, the experimental manipulation, really 

make a significant difference? The three criteria of Chapter 18 are actually aspects of 

internal validity. Indeed, anything affecting the controls of a design becomes a prob¬ 

lem of internal validity. If a design is such that one can have little or no confidence in 

the relations, as shown by significant differences between experimental groups, this is 

a problem of internal validity. 
Earlier in this chapter we presented four possible threats to internal 

validity. Some textbook authors have referred to these as “alternative explanations” 

(see Dane, 1990) or “rival hypotheses” (see Graziano & Raulin, 1993). These 

were listed as measurement, history, maturation, and statistical regression. Campbell 

and Stanley (1963) also list four other threats. They are instrumentation, selection, 
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attrition, and the interaction between one of more of those previously listed (total 

of eight). 

Instrumentation is a problem if the device used to measure the dependent 

variable changes over time. This is particularly true in studies using a human 

observer. Human observers or judges can be affected by previous events or fatigue. 

Observers may become more efficient over time, and thus the later measurements 

are more accurate than earlier ones. On the other hand, with fatigue, the human 

observer would become less accurate in the later trials than the earlier ones. When 

this happens, the values of the dependent variable will change and that change will 

not be due solely to the manipulation of the independent variable. 

With selection, Campbell and Stanley (1963) are talking about the type of 

participants the experimenter selects for the study. This is especially likely if the 

researcher is not careful in studies that do not use random selection or assignment. 

The researcher could have selected participants in each group that are very different 

on some characteristic, and as such could account for a difference in the dependent 

variable. It is important for the researcher to have the groups equal prior to the 

administration of treatment. If the groups are the same before treatment, then logic 

follows that if they are different following treatment then it was the treatment 

(independent variable) that caused the difference and not something else. However, if 

the groups are different to begin with and different after treatment it is very difficult 

to make a statement that the difference was due to treatment. Later when discussing 

quasi-experimental designs, we will see how we can strengthen the situation. 

Attrition or experimental mortality deals with the drop out of participants. If too 

many participants in one treatment condition leave the study, the unbalance is a pos¬ 

sible reason for the change in the dependent variable. Attrition also includes the de¬ 
parture of participants with certain characteristics. 

Any of the previous seven threats to internal validity could also interact with one 

another. Selection could interact with maturation. This threat is especially possible 

when using participants who are volunteers. If the researcher is comparing two 

groups one group consists are volunteers (self-selected), the other group consists 

of nonvolunteers—the performance between these two on the dependent variable 

may be due to the fact that volunteers are more motivated. Student researchers 

sometimes use the volunteer subject pool and members of their own family or social 

circle as participants. There may be a problem of internal validity if volunteers are 
placed in one treatment group and their friends are put into another. 

A difficult criterion to satisfy—external validity—defines representativeness or 

generalizability. When an experiment has been completed and a relation found to 

what populations could it be generalized? Can we say that A is related to B for all 

schoolchildren? All eighth-grade children? All eighth-grade children in this school 

system? or All eighth-grade children of only this school? Or must the findings be 

imite(V° ^ghth-grade children with whom we worked? These very important 
scientific questions should always be usked cuid UTisweved. 

Not only must sample generalizability be questioned, it is also necessaiy to ask 

questions about the ecological and variable representativeness of studies If the social 

setting in which the experiment was conducted is changed, will the relation of A and 
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B still hold? Will A be related to B if the study is replicated in a lower-class school? 

In a western school? In a southern school? These are questions of ecological 

representativeness. 

Variable representativeness is more subtle. A question not often asked, but that 

should be asked, is: Are the variables of this research representative? When an inves¬ 

tigator works with psychological and sociological variables, one assumes that the 

variables are “constant.” If the investigator finds a difference in achievement between 

boys and girls, one can assume that sex as a variable is “constant.” 

In the case of variables like achievement, aggression, aptitude, and anxiety, can 

the investigator assume that the “aggression” of the suburban participants is the same 

“aggression” to be found in city slums? Is the variable the same in a European 

suburb? The representativeness of “anxiety” is more difficult to ascertain. When we 

talk of “anxiety,” what kind of anxiety do we mean? Are all kinds of anxiety the same? 

If anxiety is manipulated in one situation by verbal instructions and in another 

situation by electric shock, are the two induced anxieties the same? If anxiety is 

manipulated by, say, experimental instruction, is this the same anxiety as that 

measured by an anxiety scale? Variable representativeness, then, is another aspect of 

the larger problem of external validity, and thus of generalizability. 

Unless special precautions are taken and special efforts made, the results of 

research are frequently not representative, and hence not generalizable. Campbell 

and Stanley (1963) say that internal validity is the sine qua non of research design, 

but that the ideal design should be strong in both internal validity and external 

validity, even though they are frequently contradictory. This point is well taken. In 

these chapters, the main emphasis is on internal validity, with a vigilant eye on exter¬ 

nal validity. 
Campbell and Stanley (1963) present four threats to external validity. They are 

reactive or interaction effects of testing, the interaction effects of selection biases 

and the independent variable, reactive effects of experimental arrangements and 

multiple-treatment interference. 
In the reactive or interaction effect of testing, the reference is to the use of a 

pretest prior to administering treatment. Pretesting may decrease or increase the 

sensitivity of the participant to the independent variable. This would make the 

results for the pretested population unrepresentative of the treatment effect for the 

nonpretested population. The likelihood of an interaction between treatment and 

pretesting seems first to have been pointed out by Solomon (1949). 
The interaction effects of selection bias and the independent variable indicates 

that selection of participants can very well affect generalization of the results. 

A researcher using only participants from the subject pool at a particular university, 

which usually consists of freshmen and sophomores, will find it difficult to 

generalize the findings of the study to other students in the university or at other 

universities. 
The mere participation in a research study can be a problem in terms of external 

validity. The presence of observers, instrumentation, or laboratory environment 

could have an effect on the participant that would not occur if the participant was in 

a natural setting. The fact that one is participating in an experimental study may alter 
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one’s normal behavior. Whether the experimenter is male or female, African Ameri¬ 

can or white American could also have an effect. 

If participants are exposed to more than one treatment condition, performance 

on later trials is affected by performance on earlier trials. Hence, the results 

can only be generalized to people who have had multiple exposures given in the 
same order. 

The negative approach of this chapter was taken in the belief that an exposure to 

poor but commonly used and accepted procedures, together with a discussion of their 

major weaknesses, would provide a good starting point for the study of research de¬ 

sign. Other inadequate designs are possible, but all such designs are inadequate on 

structural principles alone. This point should be emphasized because in Chapter 20 

we will find that a perfectly good design structure can be poorly used. Thus it is nec¬ 

essary to learn and understand the two sources of research weakness: intrinsically 
poor designs and intrinsically good designs poorly used. 

Chapter Summary 

1. Studying faulty designs helps researchers design better studies by knowing 
what pitfalls to avoid. 

2. Nonexperimental designs are those with nonmanipulated independent 
variables, absence of random assignment or selection. 

3. Faulty designs include the “one-shot case study,” the one group before- 

after design, simulated before-after design, and the two group no-control 
design. 

4. Faulty designs are discussed in terms of internal validity. 

5. Internal validity is concerned with how strongly the experimenter can state 

the effect of the independent variable on the dependent variable. The more 

confidence the experimenter has about the manipulated independent 
variable, the stronger the internal validity. 

6. Nonexperimental studies are weaker in internal validity than experimental 
studies. 

7. There are eight basic classes of extraneous variables which, if not controlled, 

may be confounded with the independent variable. These eight basic classes 
are called threats to internal validity. 

8. Campbell’s threats to internal validity can be outlined as follows: 

• History 

• Maturation 

• Testing or Measurement 

• Instrumentation 

• Statistical Regression 
• Selection 

• Experimental Mortality or Attrition 

• Selection-Maturation Interaction 
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9. External validity is concerned with how strong a statement the experimenter 

can make about the generalizability of the results of the study. 

10. Campbell and Stanley give four possible sources of threats to external valid¬ 
ity: 

• Reactive or interaction effect of testing 

• Interaction effects of selection biases and the independent variable 

• Reactive effects of experimental arrangements 

• Multiple-treatment interference 

Study Suggestions 

1. Suppose a liberal arts college decides to begin a new curriculum for all 

undergraduates. It asks the faculty to form a research group to study the pro¬ 

gram’s effectiveness for two years. The research group, wanting to have a 

group with which to compare the new curriculum group, requests that the 

present program be continued for two years and that students be allowed to 

volunteer for the present or the new program. The research group believes 

that it will then have an experimental group and a control group. 

Discuss the research group’s proposal critically. How much faith would you 

have in the findings at the end of two years? Give reasons for your positive or 

negative reactions to the proposal. 

2. Imagine that you are a graduate school professor and have been asked to 

judge the worth of a proposed doctoral thesis. The doctoral student is a 

school superintendent who is instituting a new type of administration into her 

school system. She plans to study the effects of the new administration for a 

three-year period and then write her thesis. She says that she will not study 

any other school situation during the period so as not to bias the results. 

Discuss the proposal. When doing so, ask yourself: Is the proposal suitable for 

doctoral work? 

3. In your opinion should all research be held rather strictly to the criterion of 

generalizability? Explain why or why not. Winch field is likely to have more 

basic research: psychology or education? Why? WRat implications do your 

conclusions have for generalizability? 

4. What does replication of research have to do with generalizability? Explain. If 

it were possible, should all research be replicated? Explain why or why not. 

What does replication have to, do with external and internal validity? 
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Chapter 20 

General Designs of Research 

m Conceptual Foundations of Research Design 

■ A Preliminary Note: Experimental Designs and Analysis of Variance 

■ The Designs 

The Notion of the Control Group and Extensions of Design 20.1 

■ Matching versus Randomization 

Matching by Equating Participants 

The Frequency Distribution Matching Method 

Matching by Holding Variables Constant 

Matching by Incorporating the Nuisance Variable into the Research Design 

Participant as Own Control 

■ Additional Design Extensions: Design 20.3 Using a Pretest 

■ Difference Scores 

Design is data discipline. The implicit purpose of all research design is to impose 

controlled restrictions on observations of natural phenomena. The research design 

tells the investigator, in effect: Do this and this; don’t do that or that; be careful with 

this; ignore that; and so on. It is the blueprint of the research architect and engineer. 

If the design is poorly conceived structurally, the final product will be faulty. If it is at 

least well conceived structurally, the final product has a greater chance of being wor¬ 

thy of serious scientific attention. In this chapter, our main preoccupation is with sev¬ 

eral “good” basic designs of research. We also discuss certain conceptual foundations 

of research and some problems related to design — for instance, the rationale of 

control groups and the pros and cons of matching. 

481 
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Conceptual Foundations of Research Design 

The conceptual foundation for understanding research design was laid in Chapter 4 

and Chapter 5, where sets and relations were defined and discussed. Recall that a rela¬ 

tion is a set of ordered pairs. Recall, too, that a Cartesian product is all the possible or¬ 

dered pairs of two sets. A partition breaks down a universal set U into subsets that are 

disjoint and exhaustive. A cross partition is a new partitioning that arises from successively 

partitioning U by forming all subsets of the form A Pi B. These definitions were elabo¬ 

rated in Chapter 5 and Chapter 6. We now apply them to design and analysis ideas. 

Take two sets, A and B, partitioned into Ax and A2, Bx and B2. The Cartesian 

product of the two sets is: 

The ordered pairs, then, are: AXBU AXB2, A2Bh A2B2. Since we have a set of or¬ 

dered pairs, this is a relation. It is also a cross partition. The reader should look back 

at Figure 4.7 and Figure 4.8 of Chapter 4 to help clarify these ideas and to see 

the application of the Cartesian product and relation ideas to research design. For 

instance, Ax and A2 can be two aspects of any independent variable: experimental- 
control, two methods, male and female, and so on. 

A design is some subset of the Cartesian product of the independent variables and 

the dependent variable. It is possible to pair each dependent variable measure, which 

we call Y in this discussion, with some aspect or partition of an independent variable. 

The simplest possible cases occur with one independent variable and one dependent 

variable. In Chapter 10, an independent variable, A, and a dependent variable, B, 

were partitioned into [AUA2] and [Bh B2] and then cross partitioned to form the by¬ 

now familiar 2X2 crosstab, with frequencies or percentages in the cells. We 

concentrate, however, on similar cross partitions of A and B, but with continuous 
measures in the cells. 

Take A alone, using a one-way analysis of variance design. Suppose we have 

three experimental treatments, Ax, A2 and A3, and, for simplicity, two Y scores in 

each cell. This is shown on the left of Figure 20.1, labeled (a). Say that six partici¬ 

pants have been assigned at random to the three treatments, and that the scores of 

the six individuals after the experimental treatments are those given in the figure. 

The right side of Figure 20.1, labeled (b), shows the same idea in ordered-pair or 

relation form. The ordered pairs are AXYU AXY2, A2Y3, . . . , A3Y6. This is not, of 

course, a Cartesian product, which would pair Ax with all the Ys, A, with all the Ys, 

and A3 with all the Ys, a total of 3 X 6 = 18 pairs. Rather, Figure 20.1(b) is a subset 

of the Cartesian product, A X B. Research designs are subsets of A X B, and the 

design and the research problem define or specify how the subsets are set up. The 
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M Figure 20.1 

subsets of the design of Figure 20.1 are presumably dictated by the research problem. 

When there is more than one independent variable, the situation is more com¬ 

plex. Take two independent variables, A and B, partitioned into [Au A2] and [Bl, B2]. 

The reader should not confuse this with the earlier AB frequency paradigm, in which 

A was the independent variable and B the dependent variable. 

We must now have ordered triples (or two sets of ordered pairs): ABY. Study 

Figure 20.2. On the left side of the figure, labeled (a), the 2X2 factorial analysis of 

variance design and example used in Chapter 14 (see Figure 14.2 and Table 14.3 and 

Table 14.4) is given, with the measures of the dependent variable, Y, inserted in the 

cells. That is, eight participants were assigned at random to the four cells. Their 

scores, after the experiment, are Yu Y2, , T8. The right side of the figure, labeled 

(b), shows the ordered triples, ABY, as a tree. Obviously these are subsets of A X B X 

Y and are relations. The same reasoning can be extended to larger and more complex 

HI Figure 20.2 

Yo = 6 
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designs, like a 2 X 2 X 3 factorial (ABCY) or a 4 X 3 X 2 X 2 (ABCDY). (In these 

designations, Y is usually omitted because it is implied.) Other kinds of designs can 

be similarly conceptualized, though their depiction in trees can be laborious. 

In sum, a research design is some subset of the Cartesian product of the inde¬ 

pendent and the dependent variables. With only one independent variable, the single 

variable is partitioned; with more than one independent variable, the independent 

variables are cross partitioned. With three or more independent variables, the 

conceptualization is the same; only the dimensions differ, for example, A X B X C 

and A X B X C X D and the cross partitions thereof. Whenever possible, it is desir¬ 

able to have “complete” designs — a complete design is a cross partition of the inde¬ 

pendent variables —and to observe the two basic conditions of disjointedness and 

exhaustiveness. That is, the design must not have a case (a participant’s score) in 

more than one cell of a partition or cross partition, and all the cases must be used up. 

Moreover, the basic minimum of any design is at least a partition of the independent 

variable into two subsets, for example, A into Ax and A2. There are also “incomplete” 

designs, but “complete” designs are emphasized more in this book. See Kirk (1995) 

for a more complete treatment of incomplete designs. 

The term “general designs” states that the designs given in the chapter are 

symbolized or expressed in their most general and abstract form. Where a simple X 

(representing an independent variable) is given, it must be taken to indicate more 

than one X—that is, X is partitioned into two or more experimental groups. For in¬ 

stance, Design 20.1, to be studied shortly, has X and ~X, meaning experimental and 

control groups, and thus is a partition of X. But X can be partitioned into a number 

of Xs, perhaps changing the design from a simple one-variable design to, say, a facto¬ 

rial design. The basic symbolism associated with Design 20.1, however, remains the 

same. These complexities will, we hope, be clarified in this and succeeding chapters. 

A Preliminary Note: Experimental Designs 

and Analysis of Variance 

Before taking up the designs of this chapter, we need to clarify one or two confusing 

and potentially controversial points not usually considered in the literature. Most of 

the designs we consider are experimental. As usually conceived, the rationale of 

research design is based on experimental ideas and conditions. They are also 

intimately linked to analysis of variance paradigms. This is, of course, no accident. 

Modern conceptions of design, especially factorial designs, were born when analysis 

of variance was invented. Although there is no hard law that says that analysis of vari¬ 

ance is applicable only in experimental situations — indeed, it has been used many 

times in nonexperimental research—it is generally true that it is most appropriate 

foi the data of experiments. This is especially so for factorial designs where there are 

equal numbers of cases in the design paradigm cells, and where the participants are 
assigned to the experimental conditions (or cells) at random. 

When it is not possible to assign participants at random, and when, for one 

reason or another, there are unequal numbers of cases in the cells of a factorial 
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design, the use of analysis of variance is questionable, even inappropriate. It can also 

be clumsy and inelegant. This is because the use of analysis of variance assumes that 

the correlations between or among the independent variables of a factorial design are 

zero. Random assignment makes this assumption tenable since such assignment 

presumably apportions sources of variance equally among the cells. But random 

assignment can only be accomplished in experiments. In nonexperimental research, 

the independent variables are more or less fixed characteristics of the participants 

(e.g., intelligence, sex, social class, and the like). They are usually systematically cor¬ 

related. Take two independent manipulated variables, say, reinforcement and anxiety. 

Because participants with varying amounts of characteristics correlated with these 

variables are distributed randomly in the cells, the correlations between aspects of 

reinforcement and anxiety are assumed to be zero. If, on the other hand, the two 

independent variables are intelligence and social class, both ordinarily nonmanipula- 

ble and correlated, the assumption of zero correlation between them necessary for 

analysis of variance cannot be made. Some method of analysis that takes account of 

the correlation between them should be used. We will see later in the book that such 

a method is readily available: multiple regression. 

We have not yet reached a state of research maturity to appreciate the profound 

difference between the two situations. For now, however, let us accept the difference 

and the statement that analysis of variance is basically an experimental conception 

and form of analysis. Strictly speaking, if our independent variables are nonexperi¬ 

mental, then analysis of variance is not the appropriate mode of analysis. However, 

there are exceptions to this statement. For instance, if one independent variable is ex¬ 

perimental and one nonexperimental, analysis of variance is appropriate. In one-way 

analysis of variance, moreover, since there is only one independent variable, analysis 

of variance can be used with a nonexperimental independent variable, though regres¬ 

sion analysis would probably be more appropriate. In Study Suggestion 3, an inter¬ 

esting use of analysis of variance with nonexperimental data is cited. 

Similarly, if for some reason the numbers of cases in the cells are unequal (and 

disproportionate), then there will be correlation between the independent variables, 

and the assumption of zero correlation is not tenable. This rather abstract and 

abstruse digression from our main design theme may seem a bit confusing at this 

stage of our study. The problems involved should become clear after we have studied 

experimental and nonexperimental research and, later in the book, that fascinating 

and powerful approach known as multiple regression. 

The Designs 

In the remainder of this chapter we discuss several basic designs of research. Remem¬ 

ber that a design is a plan, an outline for conceptualizing the structure of the rela¬ 

tions among the variables of a research study. A design not only lays out the relations 

of the study, it also implies how the research situation is controlled and how the data 

are to be analyzed. A design, in the sense of this chapter, is the skeleton on which we 

put the variable-and-relation flesh of our research. The sketches given in Designs 
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20.1-20.8, are the bare and abstract structure of the research. Sometimes analytic 

tables, such as Figure 20.2 (on the left) and the figures of Chapter 18 (e.g., figures 

18.2, 18.3, and 18.5), are called designs. While calling them designs does no great 

harm, they are, strictly speaking, analytic paradigms. We will not be fussy, however. 

We will call both kinds of representations “designs.” 

Design 20.1: Experimental Group-Control Group: Randomized Participants 

X Y (Experimental) 
[R] - 

~X Y (Control) 

Design 20.1, with two groups as above, and its variants with more than two groups, 

are probably the “best” designs for many experimental purposes in behavioral re¬ 

search. Campbell and Stanley (1963) call this design the posttest only control group de¬ 

sign, whereas Isaac and Michael (1987) refer to it as the randomized control group 

posttest only design. The [R] before the paradigm indicates that participants are as¬ 

signed randomly to the Experimental Group (top line) and the Control Group (bot¬ 

tom line). This randomization removes the objections to Design 19.4 mentioned in 

Chapter 19. Theoretically, all possible independent variables are controlled. Practi¬ 

cally, of course, this may not be so. If enough participants are included in the experi¬ 

ment to give the randomization a chance to “operate,” then we have strong control, 

and the claims of internal validity are rather well satisfied. This design controls for 

the effects of history, maturation and pretesting but does not measure these effects. 

If extended to more than two groups and if it is capable of answering the 

research questions asked, Design 20.1 has a number of advantages: (1) it has the best 

built-in theoretical control system of any design, with one or two possible exceptions 

in special cases; (2) it is flexible, being theoretically capable of extension to any 

number of groups with any number of variables; (3) if extended to more than one 

variable, it can test several hypotheses at one time; and (4) it is statistically and 

structurally elegant. 

Before taking up other designs, we need to examine the notion of the control 

group, one of the creative inventions of the past hundred years, and certain 

extensions of Design 20.1. The two topics go nicely together. 

The N otion of the Control Group and 

Extensions of Design 20.1 

Evidently the word control and the expression “control group” did not appear in the 

scientific literature before the late nineteenth century. This is documented by Boring 

(1954). The notion of controlled experimentation, however, is much older. Boring 

says that Pascal used it as early as 1648. Solomon (1949) searched the psychological 

literature and could not find a single case of the use of a control group before 1901. 

Perhaps the notion of the control group was used in other fields, though it is doubt¬ 

ful that the idea was well developed. Solomon (p. 175) also says that the Peterson and 
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Thurstone study of attitudes in 1933 was the first serious attempt to use control 

groups in the evaluation of the effects of educational procedures. One cannot find 

the expression “control group” in the famous eleventh edition (1911) of the Encyclo¬ 

pedia Britannica, even though experimental method is discussed. Solomon also says 

that control group design apparently had to await statistical developments and the 

development of statistical sophistication among psychologists. 

Perhaps the first use of control groups in psychology and education occurred in 

1901 with the publication of Thorndike and Woodworth (1901). One of the two men 

who did this research, Thorndike, extended the basic and revolutionary ideas of this 

first research series to education (Thorndike, 1924). Thorndike’s controls, in this gi¬ 

gantic study of 8,564 pupils in many schools in a number of cities, were independent 

educational groups. Among other comparisons, he contrasted the gains in intelli¬ 

gence test scores presumably engendered by the study of English, history, geometry, 

and Latin, with the gains presumably engendered by the study of English, history, 

geometry, and shopwork. He tried, in effect, to compare the influence of Latin and 

shopwork. He also made other comparisons of a similar nature. Despite the weak¬ 

nesses of design and control, Thorndike’s experiments and those he stimulated others 

to perform were remarkable for their insight. Thorndike even berated colleagues for 

not admitting students of stenography and typing who had not studied Latin, be¬ 

cause he claimed to have shown that the influence of various participants on intelli¬ 

gence was similar. It is interesting that he thought huge numbers of participants were 

necessary—he called for 18,000 more cases. He was also quite aware, in 1924, of the 

need for random samples. 

The notion of the control group needs generalization. Assume that in an educa¬ 

tional experiment we have four experimental groups as follows. Ax is reinforcement 

of every response, A2 reinforcement at regular time intervals, A} reinforcement at 

random intervals, and A4 no reinforcement. Technically, there are three experimental 

groups and one control group, in the traditional sense of the control group. How¬ 

ever, A+ might be another “experimental treatment”; it might be some kind of mini¬ 

mal reinforcement. Then, in the traditional sense, there would be no control group. 

The traditional sense of the term “control group” lacks generality. If the notion of 

control is generalized, the difficulty disappears. Whenever there is more than one ex¬ 

perimental group and any two groups are given different treatments, control is pre¬ 

sent in the sense of comparison previously mentioned. As long as there is an attempt 

to make two groups systematically different on a dependent variable, a comparison is 

possible. Thus the traditional notion that an experimental group should receive the 

treatment not given to a control group is a special case of the more general rule that 

comparison groups are necessary for the internal validity of scientific research. 

If this reasoning is correct, we can set up designs such as the following: 

Xi_Y_ 

[*] _^2 Y 

X3 Y 



488 Part Six m Designs of Research 

or 

Xu Y 

Xlb Y 

x2a Y 

X2b Y 

These designs will be more easily recognizable if they are set up in the manner of 

analysis of variance, as in Figure 20.3. The design on the left is a simple one-way 

analysis of variance design and the one on the right a 2 X 3 X 2 factorial design. In 

the right-hand design, Xla might be experimental and Xu control, with X2a and Xu 

either a manipulated variable or a dichotomous attribute variable. It is, of Course, the 

same design as that shown in Figure 20.2(a). 

The structure of Design 20.2 is the same as that of Design 20.1. The only differ¬ 

ence is that participants are matched on one or more attributes. For the design to 

take its place as an “adequate” design, however, randomization must enter the pic¬ 

ture, as noted by the small r attached to the M (for “matched”). It is not enough that 

matched participants are used. The members of each pair must be assigned to the 

two groups at random. Ideally, too, whether a group is to be an experimental or a 

control group is also decided at random. In either case, each decision can be made by 

flipping a coin or by using a table of random numbers. Odd numbers are used for 

one group and even numbers for the other group. If there are more than two groups, 
naturally, a random number system must be used. 

Design 20.2: Experimental Group-Group: Matched Participants 

X Y (Experimental) 
D ^ r\ “ 

~X Y (Control) 

As in Design 20.1, it is possible, though often not easy, to use more than two groups. 

(The difficulty of matching more than two groups was discussed earlier.) There are 

times, however, when a matching design is an inherent element of the research 

H Figure 20.3 

X! x2 x3 

X 
X, 

2 a 

X- 2b 

Y Measures 
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ID Figure 20.4 

Schools 
X.i 

Experimental 1 Experimental 2 

1 

2 

3 Y Measures 

4 

5 

Control 

situation. When the same participants are used for two or more experimental treat¬ 

ments, or when participants are given more than one trial, matching is inherent in 

the situation. In educational research, when schools or classes are in effect variables 

when, say, two or more schools or classes are used and the experimental treatments 

are administered in each school or class then Design 20.2 is the basis of the design 

logic. Study the paradigm of a schools design in Figure 20.4. It is seen that variance 

due to the differences between schools, and such variance can be substantial, can be 

readily estimated. 

atching versus Randomization 

Although randomization, which includes random selection and random assignment, 

is the preferred method for controlling extraneous variance, there is merit to the use 

of matching. In a number of situations outside academic circles, the behavioral scien¬ 

tist will not be able to use randomization in achieving constancy between groups 

prior to the administration of treatment. Usually in a university a participant pool is 

available from which to draw. Researchers in this situation can afford to use random¬ 

ization procedures. In business research, however, this may not be the case. Popular 

among market researchers is the controlled store test. The controlled store test is an 

experiment that is done in the field. The second author has conducted such studies 

for a number of market research firms and a grocery chain in Southern California. 

One of the goals of the controlled store test is to be very discreet. If a manufacturer 

of soap products wants to determine the effects of a cents-off coupon on consumer 

purchasing behavior, that manufacturer does not want the competing manufacturer 

of a similar product to know about it. Why? Because if a competitor knew that a re¬ 

search study was going on in a store, they could go in and buy up their own product 

and hence contaminate the study. 
To return to our discussion of randomization versus matching, often times a gro¬ 

cery chain or a chain of department stores has a finite number of stores to use in a 

study. Location and clientele exert a lot of influence on sales. Sales are usually the de¬ 

pendent variable in such studies. With a limited number of stores to choose from in 

order to perform the research, random assignment does not often work in equating 



490 Part Six a Designs of Research 

groups of stores. One store in the chain might do three to four times the volume of 

business as another. If it is chosen at random, it will create a great deal of unbalance 

toward the group it falls into, especially if the other group does not have a similar 

store to balance it. In short, the groups will no longer be equal. Hence, the solution 

here is to match the stores on an individual basis. One-half of the matched pair is as¬ 

signed randomly to one experimental condition and the other half receives the other 

condition. With more than two conditions, more stores would have to be matched 

and then assigned to treatment conditions. 

In some human factors engineering studies using simulators, the use of random¬ 

ization is sometimes not economically or practically feasible. Consider the testing of 

two configurations for a simulator. A researcher may want to know which one leads 

to fewer perceptual errors. Processes of randomization would say that the researcher 

should assign participants randomly to conditions as they enter the study. However, 

when it requires three to six months to change the configuration of the simulator, it 
is no longer feasible to proceed the “usual” way. 

An important point to remember is that randomization—when it can be done 

correctly and appropriately—is generally considered better than matching. It is per¬ 

haps the only method for controlling unknown sources of variances. One of the ma¬ 

jor shortcomings of matching is that one can never be sure that an exact match has 

been made. Without that exactness, the inexactness can be an alternative explanation 

of why the dependent variable is different between the treatment conditions 
following experimental manipulation. 

Matching by Equating Participants 

The most common method of matching is to equate participants on one or more 

variables to be controlled. Christensen (1996) refers to this method as the precision 

control method; and Matheson, Bruce, and Beauchamp (1978) call it the matched-hy- 

correlated criterion design. To control for the influence of intelligence on the depen¬ 

dent variable, for example, the researcher must be sure that the participants in each 

of the treatment groups are of the same intelligence level. The goal here is to create 

equivalent groups of participants. Using our example of intelligence, if we had only 

two treatment conditions, we would select pairs of participants with identical or near 

identical intelligence test scores. Half of each pair would be assigned at random to 

one treatment condition and the other half assigned to the other treatment condi¬ 

tion. In a controlled store test, where location is an important variable to be con¬ 

trolled, we would find two stores of similar locale and call them a match. After we 

have built up, let’s say 10 of such pairs, we can then take one-half of each pair and as¬ 

sign them to one test environment and one-half to the other. If we had required 

matching for three conditions, we would then have to find three people with the 
same intelligence score. 

The major advantage in using this method is that it is able to detect small differ¬ 

ences (increase in sensitivity) by ensuring that the participants in the various groups 

are equal on at least the paired variables. However, an important requirement is that 

the variables on which participants are matched must be correlated significantly with 
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the dependent variable. We had shown in an earlier chapter that matching is most 

useful when the variables on which participants are matched correlate greater than 

0.5 or 0.6 with the dependent variable. 

This method of matching has two major flaws or disadvantages. First, it is diffi¬ 

cult to know which are the most important variables to match. In most instances, 

there are many potentially relevant variables. In a study the researcher might match 

on age, sex, race, marital status, and intelligence. However, the researcher could have 

selected many other variables. The researcher should select those variables that show 

the lowest correlation with each other, but the highest correlation with the depen¬ 

dent variable. 

A second problem is the decrease in finding eligible matched participants as the 

number of variables used for matching increases. To choose three or four variables to 

match on and then find enough participants that meet the matching criteria requires 

a lot of participants to choose from. The researcher would need a large pool of avail¬ 

able participants in order to obtain just a few that are matched on all of the relevant 

variables. Matching affects the generalizability of the study. The researcher can only 

generalize the results to other individuals having the same characteristics as the 

matched sample. 

The Frequency Distribution Matching Method 

The individual-by-individual matching technique presented above is very good for 

developing equal groups, but many participants must be eliminated because they can¬ 

not be matched. The frequency distribution method attempts to overcome this dis¬ 

advantage while retaining some of the advantages of matching. This technique, as its 

name implies, matches groups of participants in terms of overall distribution of the 

selected variable or variables, rather than on an individual-by-individual basis. Let’s 

say that we want to have two or more groups matched on intelligence. Let’s further 

say we want to use the frequency distribution method of matching. First we will need 

an intelligence test score on each child. We then need to create the two or more 

groups in a way such that the groups will have to have the same average intelligence 

test score, as well as the same standard deviation and skewness of the scores. Each 

group would be statistically equal —the mean, standard deviation, and skewness be¬ 

tween each group would be statistically equivalent. A statistical test of hypotheses 

could be utilized, but the researcher needs to be aware that both types of errors 

should be considered. If more than one variable was considered to be relevant 

on which to match participants, each group of participants would be required to 

have the same statistical measures on all of these variables. The number of partici¬ 

pants lost using this technique would not be as great as the number lost using the 

individual-by-individual method, because each additional participant would merely 

have to contribute to producing the appropriate statistical measures, rather than be 

identical to another participant on the relevant variables. Hence, this technique is 

more flexible in terms of being able to use a particular participant. 

The major disadvantage of matching using the frequency distribution method 

occurs only when there is matching on more than one variable. Here the 
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combinations of variables may be mismatched in the various groups. If age and reac¬ 

tion time were to be matched, one group might include older participants with 

slower reaction times and younger participants with quicker reaction times, whereas 

the other group would have the opposite combination. The mean and distribution of 

the two variables would be equivalent but the participants in each group would be 

completely different. This difference may affect the dependent variable. 

Matching by Holding Variables Constant 

Holding the adventitious variable constant for all experimental groups is another 

technique that can be used to create equal groups of participants. All participants in 

each experimental group will have the same degree or type of extraneous variable. If 

we need to control the variation caused by gender differences, we can hold sex con¬ 

stant by using only males or only females in the study. This has the effect of match¬ 

ing all participants in terms of the sex variable. This matching procedure creates a 

more homogeneous participant sample, because only participants with a certain type 

or amount of the fortuitous variable are used. A number of student research projects 

at universities use this method, especially when the participant pool has a majority of 

male or female participants. This technique of holding variables constant has at least 

two problems that could affect the validity of the study. The severity of the problem 

increases if too many variables are held constant. The first disadvantage is that the 

technique restricts the size of the participant population. Consequently, in some 

cases, it may be difficult to find enough participants to participate in the study. The 

early split-brain research of Roger Sperry has often been criticized by the restriction 

of the participants used in the study. His early studies used only epileptic patients. So 

a study using this method could be criticized on the basis of a selection bias. 

The second drawback is more critical in that the results of the study are only 

generalizable to the type of participant used in the study. The results obtained from 

the epileptic patients study could only be generalized to other epileptic patients. If 

someone wanted to know whether non-epileptic patients would experience the same 

perceptual changes, the researcher would have to conduct a similar study using non¬ 

epileptic patients. Conclusions from such a study might indeed be the same as those 

obtained from the epileptic patient study, but separate studies must be conducted. 

The only way we can find out if the results of one study can be generalized to the 

population is to replicate the study using participants with different characteristics. 

Matching by Incorporating the 

Nuisance Variable Into the Research Design 

Another way of attempting to develop equal groups is to use the nuisance or extrane¬ 

ous variable as an independent variable in the research design. Assume that we were 

conducting a learning experiment on rats and wanted to control for the effects of 

weight. The thought here is that the animal with the greater weight will need to 

consume more food after a period of deprivation, and hence is more motivated. If we 
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had used the method of holding weight constant, we would have far fewer partici¬ 

pants. By using weight as an independent variable, we can use a lot more participants 

in the study. In statistical terms, the increase in the number of participants means an 

increase in power and sensitivity. By using an extraneous variable as an independent 

variable in the design, we can isolate a source of systematic variance and also 

determine if the extraneous variable has an effect on the dependent variable. 

Building an extraneous variable into the design should not, however, be done in- 

discriminantly. Making the extraneous variable a part of the research design seems 

like an excellent control method, but this method is best used when there is an inter¬ 

est in the differences produced by the extraneous variable, or in the interaction 

between the extraneous variable and other independent variables. For a variable mea¬ 

sured on a continuous scale, a researcher can still incorporate it into the design. The 

difference between a discrete and continuous extraneous variable would lie in the 

data analysis part of the research process. Using multiple regression or analysis of 

covariance would be preferable over analysis of variance. 

Participant as Own Control 

Since each individual is unique, it is difficult if not impossible to find another indi¬ 

vidual who would be a perfect match. However, a single person is always a perfect 

match to himself or herself. One of the more powerful techniques for achieving 

equality or constancy of experimental groups prior to the administration of treat¬ 

ment is to use that person in every condition of the experiment. Some refer to this as 

using the participants as their own control. Other than the reactivity of the experi¬ 

ment itself, the possibility of extraneous variation due to individual-to-individual dif¬ 

ferences is drastically minimized. This method of achieving constancy is common in 

some areas of the behavioral sciences. In psychology, the study of the interface of hu¬ 

mans and machines (human factors or human engineering) utilizes this method. Si¬ 

mon (1976) presents a number of interesting experimental designs that use the same 

participant over many treatment conditions. However, this method does not fit all 

applications. Some studies involved with learning are not suitable, because a person 

cannot unlearn a problem so that he or she can now apply a different method. The 

use of this method also requires far more planning and more precise execution than 

others. 

Additional Design Extensions: 

Design 20.3 Using a Pretest 

Design 20.3 has many advantages and is used frequently. Its structure is similar to 

that of Design 19.2, with two important differences: Design 19.2 lacks a control 

group and randomization. Design 20.3 is similar to designs 20.1 and 20.2, except that 

the “before” or pretest feature has been added. It is used frequently to study change. 

Like designs 20.1 and 20.2, Design 20.3 can be expanded to more than two groups. 
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Design 20.3: Before and After Control Group (Pretest-Posttest) 

(a) m 
Yb X K (Experimental) 

Yh ~X K (Control) 

(b) 
m 

Yb X K (Experimental) 

Yh ~x r« (Control) 

In Design 20.3(a), participants are assigned to the experimental group (top line) and 

the control group (bottom line) at random, and are pretested on a measure of Y, the 

dependent variable. The investigator can then check the equality of the two groups 

on Y The experimental manipulation X is performed, after which the groups are 

again measured on Y The difference between the two groups is tested statistically. 

An interesting and difficult characteristic of this design is the nature of the scores 

usually analyzed: difference, or change scores, Ya - Yb = D. Unless the effect of the 

experimental manipulation is strong, the analysis of difference scores is not advisable. 

Difference scores are considerably less reliable than the scores from which they are 

calculated. A clear explanation of why this is so is given by Friedenberg (1995) and 

Sax (1997). Although there are other problems, we discuss only the main strengths 

and weaknesses (see Campbell & Stanley, 1963, for a more complete discussion of 

this). At the end of the discussion, the analytic difficulties of difference or change 
scores will be examined. 

Probably most important, Design 20.3 overcomes the great weakness of Design 

19.2, because it supplies a comparison control group against which the difference, 

Ya ~ Ch can be checked. With only one group, we can never know whether history, 

maturation (or both), or the experimental manipulation X produced the change in Y. 

When a control group is added, the situation is radically altered. After all, if the 

groups are equated (through randomization), the effects of history and maturation, if 

present, should be present in both groups. If the mental ages of the children of the 

experimental group increase, so should the mental ages of the children of the control 

group. Then, if there is still a difference between the Y measures of the two groups, 

it should not be due to history or maturation. That is, if something happens to affect 

the experimental participants between the pretest and the posttest, this something 

should also affect the participants of the control group. Similarly, the effect of test¬ 

ing—Campbell’s reactive measures—should be controlled because, if the testing 

affects the members of the experimental group, it should similarly affect the mem¬ 

bers of the control group. (There is, however, a concealed weakness here, which will 

be discussed later.) This is the main strength of the well-planned, well-executed, 
before-after, experimental control group design. 

On the other hand, before-after designs have a troublesome aspect, which 

decreases both internal and external validity of the experiment. This source of diffi- 

culty is the pretest. A pretest can have a sensitizing effect on participants. On internal 

validity, for example, the participants may possibly be alerted to certain events in 

their environment that they might not have ordinarily noticed. If the pretest is an 
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attitude scale, it can sensitize participants to the issues or problems mentioned in the 
scale. Then, when the X treatment is administered to the experimental group, the 
participants of this group may be responding not so much to the attempted influence 
(the communication, or whatever method is used to change attitudes), as to a 
combination of their increased sensitivity to the issues and the experimental 
manipulation. 

Since such interaction effects are not immediately obvious, and since they con¬ 
tain a threat to the external validity of experiments, it is worthwhile to consider them 
a bit further. One would think that, since both the experimental and the control 
groups are pretested, the effect of pretesting, if any, would ensure the validity of the 
experiment. Let us assume that no pretesting was done; that is, that Design 20.2 was 
used. Other things being equal, a difference between the experimental and the con¬ 
trol groups after experimental manipulation of X can be assumed to be due to X. 
There is no reason to suppose that one group is more sensitive or more alert than the 
other, since they both face the testing situation after X. But when a pretest is 
used, the situation changes. While the pretest sensitizes both groups, it can make 
the experimental participants respond to X, wholly or partially, because of the 
sensitivity. 

What we also have is a lack of generalizability or external validity, in that it may 
be possible to generalize to pretested groups but not to unpretested groups. Clearly, 
such a situation is disturbing to the researcher, since who wants to generalize to 

pretested groups? 
If this weakness is important, why is this a good design? While the possible in¬ 

teraction effect described above may be serious in some research, it is doubtful that it 
strongly affects much behavioral research, provided researchers are aware of its po¬ 
tential and take adequate precautions. Testing is an accepted and normal part of 
many situations, especially in education. It is doubtful, therefore, that research par¬ 
ticipants will be unduly sensitized in such situations. Still, there may be times when 
they can be affected. The rule given by Campbell and Stanley (1963) is a good one: 
When unusual testing procedures are to be used, use designs with no pretests. 

ifference Scores 

Look at Design 20.3 again, particularly at changes between Yh and Ya. One of the 
most difficult problems that has plagued—and intrigued — researchers, measure¬ 
ment specialists, and statisticians is how to study and analyze such difference, or 
change, scores. In a book of the scope of this one, it is impossible to go into the 
problems in detail. The interested reader can read two excellently edited books: 
Harris (1963), and Collins and Horn (1991). General precepts and cautions, how¬ 
ever, can be outlined. One would think that the application of analysis of variance to 
difference scores yielded by Design 20.3 and similar designs would be effective. Such 
analysis can be done if the experimental effects are substantial. But difference scores, 
as mentioned earlier, are usually less reliable than the scores from which they are 
calculated. Real differences between experimental and control groups may be 



496 Part Six ■ Designs of Research 

undetectable simply because of the unreliability of the difference scores. 'Io detect 

differences between experimental and control groups, the scores analyzed must be 

reliable enough to reflect the differences and thus to be detectable by statistical tests. 

Because of this difficulty, some researchers such as Cronbach and Furby (1970) say 

that difference or change scores should not be used. So what can be done? 

The generally recommended procedure is to use so-called residualized or 

regressed gain scores. These scores are calculated by predicting the posttest scores 

from the pretest scores on the basis of the correlation between pretest and posttest, 

and then subtracting these predicted scores from the posttest scores to obtain the 

residual gain scores. (The reader should not be concerned if this procedure is not too 

clear at this stage. Later, after we study regression and analysis of covariance, it 

should become clearer.) The effect of the pretest scores is removed from the posttest 

scores; that is, the residual scores are posttest scores purged of the pretest influence. 

Then the significance of the difference between the means of these scores is tested. 

All this can be accomplished by using both the procedure just described and a 
regression equation, or by analysis of covariance. 

Even the use of residual gain scores and analysis of covariance is not perfect, 

however. If participants have not been assigned at random to the experimental and 

control groups, the procedure will not save the situation. Cronbach and Furby (1970) 

point out that when groups differ systematically before experimental treatment in 

other characteristics pertinent to the dependent variable, statistical manipulation 

does not correct such differences. If, however, a pretest is used, use random assign¬ 

ment and analysis of covariance, remembering that the results must always be treated 

with special care. Finally, multiple regression analysis may provide the best solution 

of the problem, as we shall see later. It is unfortunate that the complexities of design 

and statistical analysis may discourage the student of research, sometimes even to the 

point of feeling helpless. But that is the nature of behavioral research: it merely 

reflects the exceedingly complex character of psychological, sociological, and educa¬ 

tional reality. This is at one and the same time frustrating and exciting. Like mar¬ 

riage, behavioral research is difficult and often unsuccessful—but not impossible. 

Moreover, it is one of the best ways to acquire reliable understanding of our behav¬ 

ioral world. The point of view of this book is that we should learn and understand as 

much as we can about what we are doing, use reasonable care with design and analy¬ 

sis, and then do the research without fussing too much about analytic matters. The 

mam thing is always the research problem and our interest in it. This does not mean 

a cavalier disregard of analysis. It simply means reasonable understanding and care, 
and healthy measures of both optimism and skepticism. 

Design 20.4: Simulated Before—After, Randomized 

Yh 

The value of Design 20.4 is doubtful, even though it is considered to among the 

adequate designs. The scientific demand for a comparison is satisfied: there is a 
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comparison group (lower line). A major weakness of Design 19.3 (a pallid version of 

Design 20.4) is remedied by the randomization. Recall that with Design 19.3 we 

were unable to assume beforehand that the experimental and control groups were 

equivalent. Design 20.4 calls for participants to be assigned to the two groups at ran¬ 

dom. It can thus be assumed that they are statistically equal. Such a design might be 

used when one is worried about the reactive effect of pretesting, or when, due to the 

exigencies of practical situations, one has no other choice. Such a situation occurs 

when one has the opportunity to try a method or some innovation only once. To test 

the method’s efficacy, one provides a baseline for judging the effect of X on Y by 

pretesting a group similar to the experimental group. Then Ya is tested against Yb. 
This design’s validity breaks down if the two groups are not selected randomly 

from the same population, or if the participants are not assigned to the two groups at 

random. Further, even if randomization is used, there is no real guarantee that it 

worked in equating the two groups prior to treatment. It has the weaknesses men¬ 

tioned in connection with other similar designs; namely, other possible variables may 

be influential in the interval between Yb and Ya. In other words, Design 20.4 is 

superior to Design 19.3, but should not be used if a better design is available. 

Design 20.5: Three Group, Before-After 

Yb X Ya (Experimental) 

[A] n ~X Ya (Control 1) 

X K (Control 2) 

Design 20.5 is better than Design 20.4. In addition to the assets of Design 20.3 it 

provides a way to possibly avoid confounding due to the interactive effects of the 

pretest. This is achieved by the second control group (third line). (It seems a bit 

strange to have a control group with an X, but the group of the third line is really a 

control group.) With the Ya measures of this group available, it is possible to check 

the interaction effect. Suppose the mean of the Experimental group is significantly 

greater than the mean of Control Group 1. We may doubt whether this difference 

was really due to X. It might have been produced by increased sensitization of the 

participants after the pretest and the interaction of their sensitization and X. We now 

look at the mean of Ya of Control Group 2. It, too, should be significantly greater 

than the mean of Control Group 1. If it is, we can assume that the pretest has not 

unduly sensitized the participants, or that X is sufficiently strong to override a sensi¬ 

tization—X interaction effect. 

Design 20.6: Four Group, Before-After (Solomon) 

Yb X Ya (Experimental) 

Yh ~x Ya (Control 1) 

[R] 
X Ya (Control 2) 

~x Ya (Control 3) 
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This design, proposed by Solomon (1949) is strong and aesthetically satisfying. It has 

potent controls. Actually, if we change the designation of Control 2 to Experimental 

2, we have a combination of designs 20.3 and 20.1, our two best designs, where the 

former design forms the first two lines and the latter the second two lines. The 

virtues of both are combined in one design. Although this design can have a match¬ 

ing form, it is neither discussed here nor is it recommended. Campbell (1957) states 

that this design has become the new ideal for social scientists. While this is a strong- 

statement, probably a bit too strong, it indicates the high esteem in which the design 
is held. 

Among the reasons why it is a strong design is that the demand for comparison is 

well satisfied with the first two lines and the second two lines. The randomization 

enhances the probability of statistical equivalence of the groups, and history and mat¬ 

uration are controlled by the first two lines of the design. The interaction effect due 

to possible pretest participant sensitization is controlled by the first three lines. By 

adding the fourth line, temporary contemporaneous effects that may have occurred 

between Ya and Yb can be controlled. Because Design 20.1 and Design 20.3 are com¬ 

bined, we have the power of each test separately, and the power of replication 

because, in effect, there are two experiments. If Ya of Experimental is significantly 

greater than Control 1, and Control 2 is significantly greater than Control 3, to¬ 

gether with a consistency of results between the two experiments, this is strong 
evidence, indeed, of the validity of our research hypothesis. 

What is wrong with this paragon of designs? It certainly looks fine on paper. 

There appear to be only two sources of weakness. One is practicability—it is harder 

to run two simultaneous experiments than one, and the researcher encounters the 
difficulty of locating more participants of the same kind. 

The other difficulty is statistical. Note that there is a lack of balance of groups. 

There are four actual groups, but not four complete sets of measures. Using the first 

two lines, that is, with Design 20.3, one can subtract Yb from Ya or do an analysis of 

covariance. With the two lines, one can test the Tfls against each other with a t-test or 

F-test, but the problem is how to obtain one overall statistical approach. One solu¬ 

tion is to test the Yas of Control 2 and Control 3 against the average of the two Ybs 
(the first two lines), as well as to test the significance of the difference of the Yas of 

the first two lines. In addition, Solomon originally suggested a 2 X 2 factorial 

analysis of variance, using the four Ya sets of measures. Solomon’s suggestion is 

outlined in Figure 20.5. A careful study will reveal that this is a fine example of 

ID Figure 20.5 

Pretested 

Not Pretested 

Xa, Experimental 1 

Ya, Control 2 

Ya, Control 1 

Ya, Control 3 
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research thinking, a nice blending of design and analysis. With this analysis we can 

study the main effects, X and ~X, and Pretested and Not Pretested. What is more 

interesting, we can test the interaction of pretesting and X and get a clear answer to 

the previous problem. 

While this and other complex designs have decided strengths, it is doubtful that 

they can be used routinely. In fact, they should probably be saved for very important 

experiments in which, perhaps, hypotheses already tested with simpler designs are 

again tested with greater rigor and control. Indeed, it is recommended that designs 

like 20.5 and 20.6 and certain variants of Design 20.6 (to be discussed later) be 

reserved for definitive tests of research hypotheses, after a certain amount of 

preliminary experimentation has been done. 

Chapter Summary 

1. The design of a study is its blueprint or plan for the investigation. 

2. A design is a subset of a Cartesian cross-product of levels of the independent 

variable. 
3. The experimental design is where at least one of the independent variables 

used in the study is manipulated. 
4. Nonexperimental designs are those designs where there is no randomization 

to equate the groups prior to administering treatment. 

5. For experimental designs, usually the most appropriate statistical method to 

use is analysis of variance. 
6. The assumptions of the analysis of variance are usually violated for nonex¬ 

perimental designs. Multiple regression may be a more appropriate method 

of analyzing data from nonexperimental designs. 

7. The experimental group-control group design with randomized partici¬ 

pants (Design 20.1) is the best design for many experimental behavioral 

research studies. 
8. The Solomon four group design (Design 20.6) handles many of the con¬ 

cerns of behavioral research. However, it uses the resources of two studies 

and may not be economically efficient. 
9. Design 20.2 is like Design 20.1 except it uses matched participants. 

10. The use of matched participants is useful in situations where randomization 

will not work properly. 
11. There are several ways of matching participants. The most popular is the 

individual-by-individual method. 

12. Matching has problems in that the researcher is never sure that all the 

important variables have been used in the match. Additionally, if too many 

variables are used to match, it becomes more difficult to find participants 

that match. 
13. Design 20.3 uses a pretest. Pretesting is one way of determining if groups 

are equal or whether randomization has worked. However, pretesting also 

sensitizes participants to the experiment. 
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14. Difference scores are often used in designs that include a pretest. However, 

there are some problems with difference scores — they can be unreliable. 

15. Design 20.4 is a simulated before-after design using randomized partici¬ 

pants. The second (control) group is only measured on a pretest. The 

experimental group receives treatment and the posttest. 

16. Design 20.5 is a three group before-after design. It is like Design 20.3 

except for the introduction of a third group receiving treatment and no 
pretest is used. 

Study Suggestions 

1. The first sentence of this chapter is “Design is data discipline.” What does 
this sentence mean? Justify it. 

2. Suppose you are an educational psychologist and plan to test the hypothesis 

that feeding back psychological information to teachers effectively enhances 

the children’s learning by increasing the teachers’ understanding of the chil¬ 

dren. Outline an ideal research design to test this hypothesis, assuming that 

you have complete command of the situation and plenty of money and help. 

(These are important conditions, which are included to free the reader from 

the practical constraints that so often compromise good research designs.) Set 

up two designs, each with complete randomization, both following the para¬ 

digm of Design 20.1. In one of these use only one independent variable and 

one-way analysis of variance. In the second, use two independent variables 

and a simple factorial design. How do these two designs compare in their 

control powers and in the information they yield? Which one tests the hy¬ 
pothesis better? Explain why. 

3. The advice in the text not to use analysis of variance in nonexperimental re¬ 

search does not apply so much to one-way analysis of variance as it does to 

factorial analysis. Neither does the problem of equal numbers of cases in the 

cells apply (within reason). In a number of nonexperimental studies, in fact, 

one-way analysis of variance has been profitably used. One such study is: 

Jones and Cook (1975). The independent variable was attitude toward African 

Americans, obviously not manipulated. The dependent variable was prefer¬ 
ence for social policy affecting African Americans. 

It is suggested that students read and digest this study. You may also want 

to do an analysis of variance of the data of the authors’ Table 1, using the 

method outlined earlier of analysis of variance using ns, means, and standard 
deviations (see Addendum, Chapter 13). 
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It is difficult to tell anyone how to do research. Perhaps the best thing to do is to 

make sure that the beginner has a grasp of principles and possibilities. In addition, 

approaches and tactics can be suggested. In tackling a research problem, the investi¬ 

gator should let the mind roam, speculate about possibilities, even guess the pattern 

of results. Once the possibilities are known, intuitions can be followed and explored. 

Intuition and imagination, however, are not much help if we know little or nothing 

of technical resources. On the other hand, good research is not just methodology and 

technique. Intuitive thinking is essential because it helps researchers arrive at solu¬ 

tions that are not merely conventional and routine. It should never be forgotten, 

however, that analytic thinking and creative intuitive thinking both depend on 
knowledge, understanding, and experience. 

The main purposes of this chapter are to enrich and illustrate our design and sta¬ 

tistical discussion with actual research examples, and to suggest basic possibilities for 

designing research so that the student can ultimately solve research problems. Our 

summary purpose, then, is to supplement and enrich earlier, more abstract design 
and statistical discussions. 

Simple Randomized Subjects Design 

In chapters 13 and 14 the statistics of simple one-way and factorial analysis of vari¬ 

ance were discussed and illustrated. The design behind the earlier discussions is 

called ? andomized subjects design. The general design paradigm (designated as Design 
20.1) is shown below. 

[*] 
X Y (Experimental) 

X Y (Control) 

Research Example 

The simplest form of Design 20.1 is a one-way analysis of variance paradigm, in 

which k groups are given k experimental treatments, and the k means are compared 

to analysis of variance or separate tests of significance. A glance at the left side of 

figure 20.3 shows this simple form of Design 20.1 with k = 3. Strange to say, it is not 

used too often. Researchers more often prefer the factorial form of Design 20.1. An 

one-way example is given below. Random assignment is used. Unfortunately, some 

researchers do not report how participants were assigned to groups or treatments. 

ae need to report the method of participant selection and assignment to experi¬ 
mental groups should by now be obvious. 

Dolinski and Nawrat: Fear-then-Relief and Compliance 

Studies on compliance have been of great interest to social psychologists. In Chapter 

w ere we discussed the ethics of doing behavioral science research we mentioned 
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the influence of the Milgrim study on how we now do behavioral research. Milgrim, 

if you recall was interested in why the Nazis during World War II complied to com¬ 

mit unspeakable acts of brutality to other humans. In a study by Dolinski and Nawrat 

(1998), another method that was used to induce compliance was explored. This was a 

method used by Nazis and Stalinists to get Polish prisoners to testify against them¬ 

selves, their friends, and/or their families. Dolinski and Nawrat call this method 

“fear-then-relief.” It involves putting a prisoner in a high state of anxiety, by jailers 

yelling, screaming, and threatening the prisoner. After achieving the desired level of 

fear, the anxiety-producing stimuli are abruptly removed. The prisoner is then 

treated kindly. The usual result of this procedure is the intensification of compliance 

behavior. Dolinski and Nawrat claim that compliance is due to the reduction of fear 

and not the fear itself. Although Dolinski and Nawrat use a very extreme example to 

illustrate their point, they also explain that the method is often used in some shape 

and form by dyads in everyday life. It can occur between parent and child, teacher 

and student, and employer and employee. Police use similar tactics with their “good 

cop-bad cop” routine, which usually involves one police officer (“bad cop”) berating, 

screaming, and threatening a suspect. When the suspect reaches a level of high anxi¬ 

ety, another police officer (“good cop”) removes the “bad cop” and talks kindly and 

sweetly to the prisoner. Terrorists also use this method on hostages. 
Dolinski and Nawrat designed and conducted four experiments to test the “fear- 

then-relief” method’s ability to induce compliance. We will describe one of those ex¬ 

periments here. In this experiment, 120 volunteer high school students from Opole, 

Poland, were assigned randomly to one of three experimental conditions. All partici¬ 

pants were told that they were to partake in a study on the effects of punishment on 

learning. Group 1 experienced anxiety; they were told they would be given mild, not 

painful, electrical shock for each error they made. Group 2 participants experienced 

anxiety that was then reduced. They were initially given the same description as Group 

1, but were later told that they would participate in a different study instead. This 

other study involved visual-motor coordination and no shock given. Group 3 was the 

control condition. These participants were told that they would be participating in a 

visual-motor coordination study. During the waiting period before the start of the ex¬ 

periment, each participant was asked to complete an anxiety questionnaire. After com¬ 

pleting the questionnaire, a female student who was a confederate of the experimenter, 

but who appeared to be totally unattached from the experiment, introduced herself and 

asked each participant to join a charity action for an orphanage. Those who complied 

were asked how many hours they were willing to work for this action. 

The manipulated independent variable in this study was the level of induced anx¬ 

iety and relief. The dependent variables were compliance, amount of anxiety, and the 

number of hours of time donated for a good cause. Using a one-way analysis of vari¬ 

ance, Dolinski and Nawrat obtained a significant F-value. Group 2, the group that 

felt anxiety and then had it reduced, had the highest rate of compliance and were 

willing to donate the greatest number of days. The level of anxiety for each group 

was in the expected direction. Group 1 experienced the highest degree of anxiety, 

followed by Group 2, and then Group 3. Table 21.1 presents the summary data for 

the study. 
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H Table 21.1 Anxiety Levels, Compliance, Number of Days Willing to Volunteer by Induced 

Anxiety and F-values (Dolinski & Nawrat study) 

Condition Group 
Mean Anxiety 

Reported 

Percentage 

Complying 
Mean Number of 

Volunteered Days 

Electrical Shock study 53.25 37.5 0.625 

Electrical shock study changed to 

visual-motor coordination study 
43.05 75.0 1.150 

Visual-motor coordination study 34.45 52.5 1.025 

F-value 108.9 6.13 2.11 

(p < .00001) (p < .003) (P > -05) 

1 he results of the study upheld the Dolinski and Nawrat hypothesis that it was 

the “fear-then-relief,” and not the emotion of anxiety itself, that led to a higher de¬ 

gree of compliance. Simply creating a state of anxiety in people is not enough to cre¬ 

ate compliance. In fact, this study found that the participants in Group 1 (induced 

anxiety), who felt the greatest amount of anxiety, complied less than the participants 
in Group 3 (control-low or no anxiety). 

Factorial Designs 

The basic general design is still Design 20.1, though the variation of the basic 

experimental group-control group pattern is drastically altered by the addition of 

other experimental factors or independent variables. Following an earlier definition 

of factorial analysis of variance, factorial design is the structure of research in which two or 

more independent variables are juxtaposed in order to study their independent and interactive 
effects on a dependent variable. 

The reader may at first find it a bit difficult to fit the factorial framework into 

the general experimental group-control group paradigm of Design 20.1. The dis- 

C.USS1[)!1.of th(; generation of the control group idea in Chapter 20, however, 
should have clarified the relations between Design 20.1 and factorial designs. The 

discussion is now continued. We have the independent variables A and B and the 

dependent variable Y. The simplest factorial design, the 2 X 2, has three possibilities: 

both A and B active; A active, B attribute (or vice versa); and both A and B attribute. 

( he last possibility, both independent variables attributes, is the nonexperimental 

case. As indicated earlier, however, it is probably not appropriate to use analysis of 

variance with nonexperimental independent variables.) Returning to the experimen- 

a gioup control group notion, A, as usual, can be divided into Ax and A2t experi¬ 

mental and control with the additional independent variable B partitioned into 5, 
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and B2. Since this structure is familiar to us by now, we need only discuss one or two 

procedural details. 

The ideal participant assignment procedure is to assign participants to the four 

cells at random. If both A and B are active variables, this is possible and easy. Simply 

give the participants numbers arbitrarily from 1 through N (N being the total num¬ 

ber of participants). Then, using a table of random numbers, write down numbers 1 

through N as they turn up in the table. Place the numbers into four groups as they 

turn up, and then assign the four groups of participants to the four cells. To be safe, 

also assign the groups of participants randomly to the experimental treatments (the 

four cells). Label the groups 1, 2, 3, and 4, and then draw these numbers from a table 

of random numbers. Assume that the table yielded the numbers in this order: 3,4, 1, 

and 2. Assign Group 3 participants to the upper-left cell, Group 4 participants to the 

upper-right cell, and so on. 
Often, B will be an attribute variable, like gender, intelligence, achievement, 

anxiety, self-perception, race, and so on. The participant assignment must be altered. 

First, since B is an attribute variable, there is no possibility of assigning participants 

to Bx and B2 at random. If B is the variable gender, the best we can do is to assign 

males first at random to the cells A\BX and A2B\, and then females to the cells A\B2 

and A2B2. 

Factorial Designs with More than Two Variables 

We can often improve the design and increase the information obtained from a study 

by adding groups. Rather than Ax and A2, and Bx and S2, an experiment may profit 

from using Ah A2, A}, and /14; and Bh B2, and By Practical and statistical problems 

increase and sometimes become quite difficult as variables are added. Suppose we 

have a 3 X 2 X 2 design that has 3 X 2 X 2 = 12 cells, each of which must have at 

least two participants, and preferably many more. (It is possible, but not very sensi¬ 

ble, to have only one participant per cell if one can have more. Of course, there are 

designs that have only one participant per cell. This is covered in Chapter 22.) If we 

decide that 10 participants per cell are necessary, 12 X 10 = 120 participants will 

have to be obtained and assigned at random. The problem is more acute with one 

more variable, and the practical manipulation of the research situation is also more 

difficult. But the successful handling of such an experiment allows us to test a num¬ 

ber of hypotheses and yields a great deal of information. The combinations of three-, 

four-, and five-variable designs give a wide variety of possible designs: 2X5X3, 

4X4X2,3X2X4X2,4X3X2X2, and so on. 

Research Examples of Factorial Designs 

Examples of two- and three-dimensional factorial designs were described in Chapter 

14. (A review of these examples is recommended because the reasoning behind the 

essential design can now be more easily grasped.) Since a number of examples of fac¬ 

torial designs were given in Chapter 14, we confine the examples given here to stud¬ 

ies with unusual features or interesting results. 
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Sigall and Ostrove: Attractiveness and Crime 

It has often been said that attractive women are treated differently than men and less 

attractive women. In most cases, perhaps, the reactions are “favorable”: attractive 

women are perhaps more likely than less attractive women to receive the attention 

and favors of the world. Is it possible, however, that their attractiveness may in some 

situations be disadvantageous? Sigall and Ostrove (1975) asked the question: How is 

the physical attractiveness of a criminal defendant related to juridic sentences, and 

does the nature of the crime interact with attractiveness? They had their participants 

assign sentences, in years, to swindle and burglary offenses of attractive, unattractive, 

and control defendants. The factorial paradigm of the experiment, together with the 

results, is given in Table 21.2. (We forego describing many of the experimental de¬ 

tails; they were well handled.) 

In the burglary case, the defendant stole $2,200 in a high-rise building. In the 

swindle case, the defendant ingratiated herself with, and swindled, a middle-aged 

bachelor of $2,200. Note that the Unattractive and Control conditions did not differ 

much from each other. Both Attractive —Swindle (5.45) and Attractive—Burglary 

(2.80) differed from the other two conditions — but in opposite directions! 

Attractive-Swindle received the heaviest mean sentence: 5.45 years, whereas 

Attractive-Burglary received the lowest mean sentence: 2.80 years. The statistics 

support the preceding verbal summary—the interaction was statistically significant: 

The Attractiveness-Offense F, at 2 and 106 degrees of freedom, was 4.55, p < .025. 

In words, attractive defendants have an advantage over unattractive defendants, 

except when their crimes are attractiveness-related (Swindle). 

Quilici and Mayer: Examples, Schema, and Learning 

Do examples help students learn statistics? This was the basic question posed 

by cognitive scientists Quilici and Mayer (1996). In their study on analytic 

problem-solving, Quilici and Mayer examined only one of three processes that de¬ 

fine analogical thinking. These researchers were concerned only with the recogni- 

m Table 21.2 Mean Sentences in Years of Attractive, Unattractive, and Control 

.. defendants for Swindle and Burglary (Sigall & Ostrove studyf 

Defendant Condition 

Attractive Unattractive Control 

Swindle 5.45 
4.35 4.35 

Burglary 2.80 5.20 5.10 

W- 120, 20 per cell; F (interaction) = 4.55; (p<.025). 
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tion process that involves two techniques: (1) focus on the surface similarities be¬ 

tween the example and actual problem to be solved, or (2) focus on the structural 

similarities. 

Surface similarities deal with the shared attributes of objects in the problem 

cover story. With structural similarity, the concern is with the shared relations 

between objects in both example and problem. To study this phenomena, Quilici and 

Mayer used learning how to solve word problems in statistics. Quilici and Mayer felt 

that students who learn the structure of statistical word problems will be better able 

to solve other problems they encounter in the future by properly classifying them 

into the correct statistical method of analysis (e.g., t-test, correlation, etc). Four 

examples are given below to illustrate the difference between surface and structural 

similarities. 

Example i 

A personnel expert wishes to determine whether experienced typists are able to 

type faster than inexperienced typists. Twenty experienced typists and 20 inexpe¬ 

rienced typists are given a typing test. Each typist’s average number of words 

typed per minute is recorded. 

Example 2 

A personnel expert wishes to determine whether typing experience goes with 

faster typing speeds. Forty typists are asked to report how many years they have 

worked as typists and are given a typing test to determine their average number 

of words typed per minute. 

Example 3 

After examining weather data for the past 50 years, a meteorologist claims that 

the annual precipitation varies with average temperature. For each of 50 years, 

she notes the annual rainfall and average temperature. 

Example 4 

A college dean claims that good readers earn better grades than poor readers. 

The grade point average is recorded for 50 first-year students who scored high 

on the reading comprehension test and for 50 first-year students who scored low 

on a reading comprehension test. 

In examining these four problems taken from Quilici and Mayer (1996, p. 146), 

Example 1 and Example 2 would have the same surface features. Both deal with typ¬ 

ists and typing. To solve Example 1 a t-test would be used to compare experienced 



508 Part Six m Designs of Research 

with inexperienced typists. However, to solve Example 2, one would use a correlation 

since the question asks for a relation between typing experience and average number 

of words typed per minute. Hence Example 1 and Example 2 would be different 

structurally. Example 3 also looks at the relation between two variables: amount of 

rainfall and temperature. It would have the same structure as Example 2, but a 

different surface. They have the same structure because both require the use of 

correlation to solve the problem. Example 4 and Example 1 have the same structure, 

but a different surface. 

Quilici and Mayer designed a study to determine if experience with examples 

foster structural schema construction. They hypothesize that statistical word prob¬ 

lem exposure will cause students to be more sensitive to structural features of future 

word problems than to surface features. Students who are not exposed to statistical 

word problem examples will not exhibit such behavior. They also hypothesized that 

those exposed to three examples will be able to exhibit the behavior to a higher 

degree than those exposed to only one example. These researchers used a 3 X 4 

factorial design. The first independent variable was structural characteristics (t-test, 

chi-square, and correlation). The second independent variable was surface character¬ 

istics (typing, weather, mental fatigue, and reading). There were two dependent vari¬ 

ables: a structure usage score and a surface usage score. Participants were assigned 

randomly to treatment conditions. A two-way analysis of variance confirmed their 

hypothesis that those exposed to example would use a structure-based schema, 

whereas those not exposed to examples would not. However, there was no statistical 

difference between those that were exposed to three examples and those who re¬ 
ceived one example. 

Hoyt: Teacher Knowled^ e and Pupil Achievement 

We now outline an educational study done many years ago, because it was planned to 

answer an important theoretical and practical question, and because it clearly illus¬ 

trates a complex factorial design. The research question was: What are the effects on 

the achievement and attitudes of pupils if teachers are given knowledge of the 

characteristics of their pupils? Hoyt’s (1955) study explored several aspects of the 

basic question and used factorial design to enhance the internal and external validity 

of the investigation. The first design was used three times for each of three school 

participants and the second and third was used twice, once in each of two school 
systems. 

The paradigm for the first design is shown in Figure 21.1. The independent 

variables were treatments, ability, sex, and schools. The three self-explanatory 

treatments were no information (N), test scores (7), and test scores plus other infor- 

mation (70). Ability levels were High, Medium, and Low IQ. The variables Gender 

and Schools are obvious. Eighth-grade students were assigned at random within gen¬ 

der and ability levels. It will help us understand the design if we examine what a final 

analysis of variance table of the design looks like. Before doing so, however, it should 

be noted that the Achievement results were mostly indeterminant (or negative) The 
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[U Figure 21.1 

N T TO 

Male Female Male Female Male Female 

High IQ 

School A Medium IQ 

Low IQ Dependent 

Variable 

High IQ Measures 

SchoolB Medium IQ 

Low IQ 

F-ratios, with one exception, were not significant. Pupils’ attitudes toward teachers, 

on the other hand, seemed to improve with increased teacher knowledge of pupils, 

an interesting and potentially important finding. The analysis of variance table is 

given in Table 21.3. One experiment yields 14 tests! Naturally, a number of these 

tests are not important and can be ignored. The tests of greatest importance (marked 

[Ml Table 21.3 Sources of Variance and Degrees of Freedom for a 3 X 3 X 2 X 2 

Factorial Design with Variables Treatments, Ability, Sex, and School 

(Total and Within Degrees of Freedom are Omitted) 

Source df 

Main Effects 

Between Treatments* 2 

Between Ability Levels 2 

Between Gender 1 

Between Schools 1 

First-Order Interactions 

Interaction: Treatments X Ability 4 

Interaction: Treatments X Gender* 2 

Interaction: Treatments X School* 2 

Interaction: Ability X Gender 2 

Interaction: Ability X School 2 

Interaction: Gender X School 1 

Second-Order Interactions: 

Interaction: Treatments X Ability X Gender* 4 

Interaction: Treatments X Ability X School 4 

Interaction: Ability X Gender X School 2 

Third-Order Interactions: 

Interaction: Treatments X Ability X Gender X School 4 
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with asterisks in the table) are those involving the treatment variable. The most 

important test is between treatments, the first of the main effects. Perhaps equally 

important are the interactions involving treatments. Take the interaction treatment 

X sex. If this is significant, it means that the amount of information a teacher 

possesses about students has an influence on student achievement, but boys are influ¬ 

enced differently than girls. Boys with teachers who possess information about their 

pupils may do better than boys whose teachers do not have such information, 

whereas it may be the opposite with girls, or it may make no difference one way or 

the other. 

Second-order or triple interactions are more difficult to interpret. They seem to 

be rarely significant. If they are significant, however, they require special study. 

Cross-tabulation tables of the means are perhaps the best way, but graphic methods, 

as discussed earlier, are often enlightening. The student will find guidance in 

Edwards’s (1984) book or Simon’s (1976) manuscript. 

Evaluation of Randomized Subjects Designs 

Randomized subjects designs are all variants or extensions of Design 20.1, the basic 

experimental group-control group design in which participants are assigned to the 

experimental and control groups at random. As such they have the strengths of the 

basic design, the most important of which is the randomization feature, and the con¬ 

sequent ability to assume the preexperimental approximate equality of the experi¬ 

mental groups in all possible independent variables. History and maturation are con¬ 

trolled because very little time elapses between the manipulation of X and the 

observation and measurement of Y There is no possible contamination due to 
pretesting. 

Two other strengths of these designs, springing from the many variations pos¬ 

sible, are flexibility and applicability. These can be used to help solve many behav¬ 

ioral research problems, since they seem to be peculiarly well suited to the types of 

design problems that arise from social scientific and educational problems and hy¬ 

potheses. The one-way designs, for example, can incorporate any number of meth¬ 

ods, and the testing of methods is a major educational need. The variables that 

constantly need control in behavioral research —gender, intelligence, aptitude, so- 

cial class, schools, and many others — can be incorporated into factorial designs, 

and thus are controlled. Also, with factorial designs it is possible to have mixtures 

of active and attribute variables — another important need. But there are also 
weaknesses. 

One criticism has been that randomized subjects designs do not permit tests of 

the equality of groups, as do before-after (pretest-post test) designs. Actually, this is 

not a valid criticism for two reasons: (1) with enough participants and randomization, 

it can be assumed that the groups are equal, as we have seen; and (2) it is possible to 

c eck the groups for equality on variables other than Y, the dependent variable. For 

e ucational research, data on intelligence, aptitude, and achievement, for example, 
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are available in school records. Pertinent data for sociology and political science 

studies can often be found in county and election district records. 

Another weakness is statistical. One should have equal numbers of cases in the 

cells of factorial designs. It is possible to work with unequal ns, but it is both 

clumsy and a threat to interpretation. Dropping out cases at random or the use of 

missing data methods can cure small discrepancies (see Dear, 1959; Gleason & 

Staelin, 1975 for two excellent references on estimating missing data). This im¬ 

poses a limitation on the use of such designs because it is often not possible to have 

equal numbers in each cell. One-way randomized designs are not so delicate: un¬ 

equal numbers are not a difficult problem. How to adjust and analyze data for un¬ 

equal ns is a complex, thorny, and much-argued problem. For a discussion in the 

context mostly of analysis of variance, see Snedecor and Cochran (1989). Discus¬ 

sion in the context of multiple regression, which is actually a better solution of the 

problem, can be found in Kerlinger and Pedhazur (1973) and Pedhazur (1996). 

Pedhazur’s discussions are detailed and authoritative. He reviews the issues and 

suggests solutions. 

Compared to matched groups designs, randomized subjects designs are usually 

less precise; that is, the error term is ordinarily larger, other things being equal. It is 

doubtful, however, whether this is cause for concern. In some cases it certainly is — 

for example, where a very sensitive test of a hypothesis is needed. In much behavioral 

research, though, it is probably desirable to consider as nonsignificant any effect that 

is insufficiently powerful to make itself felt over and above the random noise of a 

randomized subjects design. 

All in all, then, these are powerful, flexible, useful, and widely applicable designs. 

In the opinion of the authors they are the best all-round designs, perhaps the first to 

be considered when planning the design of a research study. 

Correlated Groups 

A basic principle is behind all correlated groups designs: there is systematic variance 

in the dependent variable measures due to the correlation between the groups on 

some variable related to the dependent variable. This correlation and its concomitant 

variance can be introduced into the measures, and the design, in three ways: 

1. use the same units, for example, participants, in each of the experimental 

groups, 

2. match units on one or more independent variables that are related to the 

dependent variable, and 

3. use more than one group of units, like classes or schools, in the design. 

Despite the seeming differences among these three ways of introducing correlation 

into the dependent variable measures, they are basically the same. We now examine 

the design implications of this basic principle and discuss ways of implementing the 

principle. 
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The G eneral Paradigm 

With the exception of correlated factorial designs and so-called nested designs, all 

analysis of variance paradigms of correlated groups designs can be easily outlined. 

The word group should be taken to indicate set of scores. Then there is no confusion 

when repeated trials experiment is classified as a multigroup design. The general par¬ 

adigm is given in Figure 21.2. To emphasize the sources of variance, means of 

columns and rows have been indicated. The ittdividual dependent variable measures 

(Ts) have also been inserted. 

It is useful to know the system of subscripts to symbols used in mathematics and 

statistics. A rectangular table of numbers is called a matrix. The entries of a matrix 

are letters and/or numbers. When letters are used, it is common to identify any 

particular matrix entry with two (sometimes more) subscripts. The first of these 

indicates the positional number of the row, the second the positional number of the 

column. T32, for instance, indicates the Y measure in the third row and the second 

column. T52 indicates the Y measure of the fifth row and the second column. It is also 

customary to generalize this system by adding the letter subscripts. In this book, i 

symbolizes any row number and j any column number. Any number of the matrix is 

represented by Yt]. Any number of the third row is Yy; and any number of the second 

column is Ya. 

It can be seen that there are two sources of systematic variance: that due to 

columns, or treatments, and that due to rows (individual or unit differences). Analysis 

of variance must be of the two-way variety. 

The reader who has studied the correlation variance argument of Chapter 15, 

where the statistics and some of the problems of correlated groups designs were 

presented, will have no difficulty with the variance reasoning of Figure 21.2. The 

intent of the design is to maximize the between-treatments variance, identify the 

between-units variance, and the error (residual) variance. The maxmincon principle 

Figure 21.2 
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applies here as elsewhere. The only difference, really, between designs of correlated 

groups and randomized subjects is the rows or units variance. 

Units 

The units used do not alter the variance principle. The word unit is deliberately used 

to emphasize that units can be persons or participants, classes, schools, districts, 

cities, even nations. In other words, “unit” is a generalized rubric that can represent 

many kinds of entities. The important consideration is whether or not the units — 

whatever they are — differ from each other. If they do, variance between units is intro¬ 

duced. In this sense, talking about correlated groups or participants is the same as 

talking about variance between groups or participants. The notion of individual 

differences is extended to unit differences. 

The real value of correlated groups design, beyond allowing the investigator to 

isolate and estimate the variance due correlation, is in guiding the investigator to 

design research to capitalize on the differences that frequently exist between units. If 

a research study involves different classes in the same school, these classes are a pos¬ 

sible source of variance. It may thus be wise to use “classes” as units in the design. 

The well-known differences between schools are very important sources of variance 

in behavioral research. They may be handled as a factorial design, or they may be 

handled in the manner of the designs in this chapter. Indeed, if one looks carefully at 

a factorial design with two independent variables, one of them schools, and at a corre¬ 

lated groups design with units Schools, one finds, in essence, the same design. Study 

Figure 21.3. On the left is a factorial design and on the right a correlated groups 

design, but they look the same! They are the same, in variance principle. (The only 

differences might be numbers of scores in the cells and statistical treatment.) 

One Group, Repeated Trials Design 

In the one group, repeated trials design, as the name indicates, one group is given 

different treatments at different times. In a learning experiment, the same group of 

participants may be given several tasks of different complexity, or the experimental 

[U Figure 21.3 
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manipulation may be to present learning principles in different orders, say from 

simple to complex, from complex to simple, from whole to part, from part to whole. 

It was said earlier that the best possible matching of participants is to match the 

participant with himself or herself. The difficulties in using this solution of the con¬ 

trol problem have also been mentioned. One of these difficulties resembles pretest 

sensitization, which may produce an interaction between the pretest and the experi¬ 

mentally manipulated variable. Another is that participants mature and learn over 

time. A participant who has experienced one or two trials of an experimental manip¬ 

ulation and is facing a third trial, is now a different person from the one who faced 

trial one. Experimental situations differ a great deal, of course. In some situations, 

repeated trials may not unduly affect the performances of participants on later trials; 

in other situations, they may. The problem of how individuals learn, or become un¬ 

duly sensitized during an experiment, is difficult to solve. In short, history, maturation, 

and sensitization are possible weaknesses of repeated trials. The regression effect can 

also be a weakness because, as we saw in an earlier chapter, low scorers tend to get 

higher scores and high scorers lower scores on retesting, simply due to the imperfect 

correlation between the groups. A control group is, of course, needed. 

Despite the basic time difficulties, there may be occasions when a one group 

repeated trials design is useful. Certainly, in analyses of “time” data, this is the 

implicit design. If we have a series of growth measurements of children, for instance, 

the different times at which the measurements were made correspond to treatments. 

The paradigm of the design is the same as that shown in Figure 21.2. Simply 

substitute “participants” for “units” and label Xh X2, . . . as “trials.” 

From this general paradigm special cases can be derived. The simplest case is the 

one group, Before-After design, Design 19.2 (a), where one group of participants 

was given an experimental treatment preceded by a pretest and followed by a 

posttest. Since the weaknesses of this design have already been mentioned, further 

discussion is not necessary. It should be noted, though, that this design, especially in 

its nonexperimental form, closely approximates much commonsense observation and 

thinking. A person may observe educational practices today and decide that they are 

no good. In order to make this judgment, one implicitly or explicitly compares to¬ 

day’s educational practices with educational practices of the past. From a number of 

possible causes, depending on the particular bias, the researcher will select one or 

more reasons for what he or she believes to be the sorry state of educational affairs: 

“progressive education,” “educationists,” “moral degeneration,” “lack of firm 
religious principles,” and so on. 

Two Groups, Experimental Group-Control 
Group Designs 

This design has two forms, the better of which (repeated here) was described in 
Chapter 20 as Design 20.2: 

X Y 

X 

m 
Y 

(Experimental) 

(Control) 
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ID Figure 21.4 
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In this design, participants are first matched, and then assigned to experimental and 

control groups at random. In the other form, participants are matched, but not 

assigned to experimental and control groups at random. The latter design can be 

indicated by simply dropping the subscript r from Mr (described in Chapter 19 as 

Design 19.4, one of the less-adequate designs). 

The design-statistical paradigm of this war-horse of designs is shown in Figure 

21.4. The insertion of the symbols for the means shows the two sources of systematic 

variance: Treatments and Pairs, columns and rows. This is in clear contrast to the 

randomized designs in an earlier section of this chapter, where the only systematic 

variance was Treatments or columns. 

The most common variant of the two group, experimental group-control group 

design is the Before-After, two group design [see Design 20.3 (b)]. The design- 

statistical paradigm and its rationale are discussed later. 

search Exam pies of Correlated Group Designs 

Hundreds of studies of the correlated groups kind have been published. The most 

frequent designs have used matched participants, or the same participants with pre- 

and posttests. Correlated groups designs, however, are not limited to two groups; the 

same participants, for example, may be given more than two experimental treat¬ 

ments. The studies described below have been chosen not only because they illus¬ 

trate correlated groups design, matching, and control problems, but also because 

they are historically, psychologically, or educationally important. 

Thorndike's Transfer of Training Study 
In 1924, E. L. Thorndike published a remarkable study of the presumed effect on in¬ 

telligence of certain school participants. Students were matched according to scores 

on Form A of the measure of the dependent variable, Intelligence. This test also 



516 Part Six ■ Designs of Research 

served as a pretest. The independent variable was One Year’s Study of Participants, in 

subjects such as history, mathematics, and Latin. A posttest, Form B of the intelli¬ 

gence test, was given at the end of the year. Thorndike (1924) used an ingenious de¬ 

vice to separate the differential effect of each school subject. He did this by matching 

on Form A of the intelligence test those pupils who studied, for instance, English, 

history, geometry, and Latin, with those pupils who studied English, history, geome¬ 

try, and shopwork. Thus, for these two groups, he was comparing the differential 

effects of Latin and shopwork. Gains in final intelligence scores were considered a 

joint effect of growth plus the academic subjects studied. 

Despite its weaknesses, this was a colossal study. Thorndike was aware of the lack 

of adequate controls, as revealed in the following passage on the effects of selection. 

The chief reason why good thinkers seem superficially to have been made such 

by having taken certain school studies, is that good thinkers have taken such 

studies. . . . When the good thinkers studied Greek and Latin, these studies 

seemed to make good thinkers. Now that the good thinkers study Physics and 

Trigonometry, these seem to make good thinkers. If the abler pupils should all 

study Physical Education and Dramatic Art these subjects would seem to make 

good thinkers (p. 98). 

Thorndike pointed the way to controlled educational research, which has led to the 

decrease of metaphysical and dogmatic explanations in education. His work struck a 

blow against the razor-strop theory of mental training; the theory that likened the 

mind to a razor that could be sharpened by stropping it on “hard” subjects. 

It is not easy to evaluate a study such as this, the scope and ingenuity of which is 

impressive. One wonders, however, about the adequacy of the dependent variable, 

Intelligence or Intellectual Ability. Can school subjects studied for one year have 

much effect on intelligence? Moreover, the study was not experimental. Thorndike 

measured the intelligence of students and let the independent variables, School Sub¬ 

jects, operate. No randomization, of course, was possible. As mentioned above, he 

was aware of this control weakness in his study, which is still a classic that deserves 

respect and careful study despite its weaknesses in history and selection (maturation 

was controlled). 

Miller and DiCara: Learning of Autonomic Functions 

In a previous chapter we presented data from one of the set of remarkable studies of 

the learning of autonomic functioning done by Miller and his colleagues (Miller, 

1971, Miller & DiCara, 1968). Experts and nonexperts alike believe that it is not pos¬ 

sible to learn and control responses of the autonomic nervous system. That is, glan¬ 

dular and visceral responses heartbeat, urine secretion, and blood pressure, for ex¬ 

ample—were supposed to be beyond the “control” of the individual. Miller believed 

otherwise. He demonstrated experimentally that such responses are subject to instru¬ 

mental learning. The crucial part of his method consisted of rewarding- visceral 

responses when they occurred. In the study (data were cited in an earlier chapter of 

this book) rats were rewarded when they increased or decreased the secretion of 
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m Table 21.4 Secretion of Urine Data, Increase Rats and Decrease Rats, Before 

and After Training (Miller & DiCara study) 

Increase Ratsa Decrease Rats0 

Rats Before After 2 Rats Before After 2 

1 .023 .030 .053 1 .018 .007 .025 

2 .014 .019 .033 2 .015 .003 .018 

3 .016 .029 .045 3 .012 .005 .017 

4 .018 .030 .048 4 .015 .006 .021 

5 .007 .016 .023 5 .030 .009 .039 

6 .026 .044 .070 6 .027 .008 .035 

7 .012 .026 .038 7 .020 .003 .023 

Means .017 .028 020 .006 .023 

aIncrease Before-After: F — 43.875 (p < .001); or = .357. The measures in the table are milliliters 
per minute per 100 grams of weight. 

bDecrease, Before-After: F = 46.624 (p < .001); co2 = .663. 

urine. Fourteen rats were assigned at random to two groups called “Increase Rats” 

and “Decrease Rats.” The rats of the former group were rewarded with brain stimu¬ 

lation (which was shown to be effective for increases in urine secretion), whereas the 

rats of the latter group were rewarded for decreases in urine secretion during a 

“training” period of 220 trials in approximately three hours. 

To show part of the experimental and analytic paradigms of this experiment, the 

data before and after the training periods for the Increase Rats and the Decrease Rats 

are given in Table 21.4 (extracted from the Miller & DiCara’s Table 1). The mea¬ 

sures in the table are the milliliters of urine secretion per minute per 100 grams of 

body weight. Note that they are very small quantities. The research design is a 

variant of Design 20.3 (a): 

Yb X Ya (Experimental) 
[R] - 

Yb ~X Ya (Control) 

The difference is that ~X, which in the design means absence of experimental 

treatment for the control group, now means reward for decrease of urine secretion. 

The usual analysis of the after-training measures of the two groups is therefore 

altered. 
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We can better understand the analysis if we analyze the data of Table 21.9 

somewhat differently than Miller and DiCara did. (They used f-tests.) We did a 

two-way (repeated measures) analysis of variance of the Increase Rats data, Before 

and After, and the Decrease Rats data, Before and After. The Increase Before and 

After means were .017 and .028, and the Decrease means were .020 and .006. The 

Increase F-ratio was 43.875 (df = 1.6); the Decrease Rats F was 46.624. Both were 

highly significant. The two Before means of .017 and .020 were not significantly 

different, however. In this case, comparison of the means of the two After groups, the 

usual comparison with this design, is probably not appropriate because one was for 

increase and the other for decrease in urine secretion. 

This entire study, with its highly controlled experimental manipulations and its 

“control” analyses, is an example of imaginative conceptualization and disciplined 

competent analysis. The above analysis is one example. But the study’s authors did 

much more. For example, to be more sure that the reinforcement affected only urine 

secretion, they compared the Before and After heartrates (beats per minute) of both 

the Increase and the Decrease rats. The means were 367 and 412 for Increase rats, 

and 373 and 390 for the Decrease rats. Neither difference was statistically significant. 

Similar comparisons of blood pressure and other bodily functions were also not 

significant. 

Students will do well to study this fine example of laboratory research until they 

clearly understand what was done and why. It will help students learn more about 

controlled experiments, research design, and statistical analysis, than most textbook 

exercises. It is a splendid achievement! 

Tipper, Eissenberg, and Weaver-. Effects of Practice on Selective Attention 
When speaking about selective attention, one may recall the classic study by Stroop 

(1935) who demonstrated the role of interference on selective attention. Irrelevant 

stimulus can compete with the target stimulus for control of perceptual action. For 

those unfamiliar with this study, one memorable part was presenting participants 

with words such as green and blue that were printed in red or yellow. Participants 

were asked to name the colors in which the word was written but would instead read 

the words. People find it very difficult to suppress the habit of reading words even 

when they are asked not to. In order to do the task correctly, the participant must 

slow down and consciously suppress reading the words. This interference was called 

the Stroop effect. A large number of studies have been performed on selective atten¬ 

tion since Stroop’s famous study. Tipper, Eissenberg, and Weaver (1992) is one of 

them. This study is different in that they take issue with a number of studies that 

have been performed on selective attention. For one, Tipper et al. hypothesize that 

any selective attention experiment that uses a participant for one hour or so may be 

tapping into a different perceptual mechanism than those used in everyday life. Lab¬ 

oratory experiments usually require the participant to be present for about an hour. 

Within an hour the entire experimental experience is still novel. It may be that atten- 

tional selectivity is achieved by a different mechanism as the familiarity with the 
stimuli increases. 
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Tipper et al. designed a study to test their hypotheses concerning selective atten¬ 

tion using a completely within-subjects design. All of the participants experienced all 

of the treatment conditions. They looked at the effect of interference on reaction 

time and errors. They had each participant experience both levels of interference: 

negative priming and response inhibition across 11 blocks or trials taken over 4 days 

(practice effect). Their results showed that there was an interference effect 

(F = 35.15, pc.001) when using reaction time as the dependent variable. The 

reaction times were longer when the distraction was present. They also found a prac¬ 

tice effect (blocks) (F = 9.62, pC.OOOl) and no interaction effect. The practice effect 

indicated that the reaction time of participants becomes faster with the increase in 

practice. The fact that the interaction effect was not significant indicates that the in¬ 

terfering effects of the irrelevant stimulus remained constant even after extended 

practice. The findings of Tipper et al. do suggest that other mechanisms for selective 

attention exist and operate with different levels of experience. 

Mult igroup Correlated Groups Designs 

Units Variance 

While it is difficult to match three and four sets of participants, and while it is ordi¬ 

narily not feasible or desirable in behavioral research to use the same participants in 

each of the groups, there are natural situations in which correlated groups do exist. 

These situations are particularly important in educational research. Until recently, 

the variances due to differences between classes, schools, school systems, and other 

“natural” units have not been well controlled or often used in the analysis of data. 

Perhaps the first indication of the importance of this kind of variance was given in 

Lindquist’s (1940) fine book on statistical analysis in educational research. In this 

book, Lindquist placed considerable emphasis on schools variance. Schools, classes, 

and other educational units tend to differ significantly in achievement, intelligence, 

aptitudes, and other variables. The educational investigator has to be alert to these 

unit differences, as well as to individual differences. 

Consider an obvious example. Suppose an investigator chooses a sample of five 

schools for their variety and homogeneity. The goal of course is external validity: 

representativeness. The investigator uses pupils from all five schools and combines 

the measures from the five schools to test the mean differences in some dependent 

variable. In so doing, the investigator is ignoring the variance due to the differences 

among schools. It is understandable that the means do not differ significantly; the 

schools variance is mixed in with the error variance. 

Gross errors can arise from ignoring the variance of units such as schools and 

classes. One such error is to select a number of schools and to designate certain 

schools as experimental schools and others as control schools. Here the between- 

schools variance gets entangled with the variance of the experimental variable. 

Similarly, classes, school districts, and other educational units differ and thus engen¬ 

der variance. The variances must be identified and controlled, whether it be by 

experimental or statistical control, or both. 
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Factorial Correlated Groups 

Factorial models can be combined with the units notion to yield a valuable design: 

factorial correlated groups design. Such a design is appropriate when units are a natural 

part of a research situation. For instance, the research may require the comparison of 

a variable before and after an experimental intervention, or before and after an im¬ 

portant event. Obviously, there will be correlation between the before and after 

dependent variable measures. Another useful example is shown in Figure 21.5. This 

is a 3 X 2 factorial design with five units (classes, school, and so forth) in each level, 

and B2. 

The strengths and weaknesses of the factorial correlated groups design are simi¬ 

lar to those of the more complex factorial designs. The main strengths are the ability 

to isolate and measure variances and to test interactions. Note that the two main 

sources of variance, Treatments (A) and Levels (B), and the units variance can be 

evaluated; that is, the differences between the A, B, and units means can be tested for 

significance. In addition, three interactions can be tested: treatments by levels, treat¬ 

ments by units, and levels by units. If individual scores are used in the cells instead of 

means, the triple interaction, too, can be tested. Note how important such interac¬ 

tion can be, both theoretically and practically. For example, questions like the follow¬ 

ing can be answered: Do treatments work differently in differ units? Do certain 

methods work differently at differing intelligence levels? with differing sexes? with 

children from differing socioeconomic levels? The advanced student will want to 

know how to handle units (schools, classes, etc.) and units variance in factorial 

[H Figure 21.5 
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designs. Detailed guidance is given in Edwards (1984) and in Kirk (1995). The 

subject is difficult. Even the names of the designs become complex: randomized 

blocks, nested treatments, split-plot designs. Such designs are powerful, however: 

they combine virtues of factorial designs and correlated groups designs. When 

needed, Edwards and Kirk are good guides. Additionally, it is suggested that help be 

solicited from someone who understands both statistics and behavioral research. It is 

unwise to use computer programs just because their names seem appropriate or 

because they are available. It is equally unwise to seek analytic help from computer 

personnel. One cannot expect such people to know and understand, say, factorial 

analysis of variance. That is not their job. More will be said about computer analysis 

in later chapters. 

Suedjeld and Rank: Revolutionary Leaders and Conceptual Complexity 

Suedfeld and Rank (1976), in a study mentioned earlier in another context, 

tested the intriguing notion that successful revolutionary leaders — Lenin, Cromwell, 

Jefferson, for example — are conceptually simple in their public communications be¬ 

fore revolution, and conceptually complex after revolution. Unsuccessful revolution¬ 

ary leaders, on the other hand, do not differ in conceptual complexity before and af¬ 

ter revolution. The problem lends itself to a factorial design and to repeated 

measures analysis. The design and the data on conceptual complexity are shown in 

Table 21.5. It can be seen that the successful leaders became conceptually more com¬ 

plex— from 1.67 to 3.65 — but unsuccessful leaders did not change very much — 2.37 

and 2.21. The interaction E-ratio was 12.37, significant at the .005 level. The hy¬ 

pothesis was supported. 

A few points should be made here. First, note the effective combining of factor¬ 

ial design and repeated measures. When appropriate, as in this case, the combination 

is highly useful mainly because it sets aside, so to speak, the variance in the depen¬ 

dent variable measures due to individual (or group or block) differences. The error 

term is thus smaller and better able to assess the statistical significance of mean dif¬ 

ferences. Second, this study was nonexperimental: no experimental variable was ma¬ 

nipulated. Third, and most important, the intrinsic interest and significance of the 

research problem and its theory, and the ingenuity of measuring and using concep¬ 

tual complexity as a variable to “explain” the success of revolutionary leaders 

[M] Table 21.5 Factorial Design with Repeated Measures: Revolutionary Leaders 

(Suedfeld if Rank study)3 

Pretakeover Posttakeover 

Success 1.67 3.65 2.66 

Failure 2.37 2.22 2.30 

1.96 3.05 

Tabled measures are means of conceptual complexity measures. Interaction F= 12.37 (p < .005). 



Part Six ■ Designs of Research 

overshadow possible questionable methodological points. The above sentence, for 

instance, may be incongruent with the use of variables in this study. Suedfeld and 

Rank analyzed measures of the independent variable, conceptual complexity. But the 

hypothesis under study was actually: If conceptual complexity (after revolution), then 

successful leadership. But with a research problem of such compelling interest and a 

variable of such importance (conceptual complexity) imaginatively and competently 

measured, who wants to quibble? 

Perrine, Lisle, and Tucker: Offer of Help and Willingness to Seek Support 

Teachers at all levels of education use a course syllabus to introduce the course to 

students. How much and what features in the syllabus have the greatest impact on 

students even before classroom instruction starts? Perrine, Lisle, and Tucker (1995) 

developed a study to see if the offer of help on an instructor’s syllabus encourages 

college students of differing ages to seek help from their instructors. According to 

Perrine et al., to their best knowledge this is the first study to explore the use of so¬ 

cial support by college and university instructors to benefit students. Perrine et al. 

also studied the effect of class size on the student’s willingness to seek help. The 

study used 104 undergraduate students of whom 82 were female and 22 were male. 

Each participant was asked to read a description of two psychology classes. The de¬ 

scriptions included statements made by the instructor of each class on the course syl¬ 

labus. In the description, class size was manipulated. It was set either to 15, 45, or 

150 students. The course was described as demanding with a lot of work, but enjoy¬ 

able. It also encouraged the student not to fall behind in the readings and assign¬ 

ments. The two separate statements from the instructors consisted of one that was 

supportive and one that was neutral. In the supportive statement, the student was en¬ 

couraged to approach the instructor for help if the student ever encountered prob¬ 

lems in the class. The neutral one did not include such a statement. Each participant 

read both descriptions. After reading the descriptions, the participant responded to 

questions about his or her willingness to seek help from the instructor for six possible 

academic problems encountered in the class: (1) trouble understanding textbook, 

(2) low grade on first exam, (3) hard to hear instructor’s lectures, (4) study skills inef¬ 

fective for course, (5) thinking of dropping the course, and (6) trouble understanding 

major topic. The participant used a 6-point rating scale: 0 = definitely no to 6 = defi¬ 
nitely yes. 

The design was a 3 X 2 X 2 (class size X syllabus statement X student age) 

factorial design. The design contained one manipulated (active) independent 

variable, one measured (attribute) independent variable and one within-subjects 

(correlated) independent variable. Class size was the randomized and manipulated 

dependent variable. Student Age was the measured independent variable, and 

Syllabus Statement was the correlated independent variable. Using the appropriate 

analysis of variance (usually referred to as mixed ANOVA when at least one indepen¬ 

dent variable is between-subjects and at least one other is within-subjects) partici¬ 

pants expressed significantly more willingness to seek help from the instructor when 

the supportive statement appeared on the course syllabus, than when only the neutral 

statement appeared. Younger students (under age 25) expressed less willingness than 

older students. There was also an Age X Syllabus interaction (F = 4.85, p < .05) that 
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[Ml Table 21.6 Means cmd F-Values for Syllabus Statement Differences and Age Differences 

(P err me, Lisle, & Tucker study) 

Syllabus Age 

Academic Problem Supportive Neutral F Older Younger F 

Trouble understanding textbook 4.7 3.7 76.08** 4.8 4.1 5.48* 

Low grade on first exam 4.8 4.0 49.89** 5.2 4.3 7.64* 

Hard to hear instructor’s lectures 4.4 3.8 36.05** 4.4 4.0 1.01 

Study skills ineffective for course 4.7 3.6 79.57** 4.8 4.0 6.32* 

Thinking about dropping the course 4.9 3.8 61.80** 4.8 4.3 2.18 

Trouble understanding major topic 5.3 4.2 82.97** 5.3 4.6 7.69* 

*p < .05 
**p < .01 

was significant. The response to the offer of help was different between age groups. 

The statements affected younger students less than older students. Class size did not 

appear to be a significant factor on whether or not students were willing to seek help. 

Table 21.6 presents the summary statistics for the study. 

Analysis of Covariance 

The invention of the analysis of covariance by Ronald Fisher was an important event 

in behavioral research methodology. Here is a creative use of the variance principles 

common to experimental design and to correlation and regression theory—which 

we study later in the book—to help solve a long-standing control problem. 

Analysis of covariance is a form of analysis of variance that tests the significance of 

the differences among means of experimental groups after taking into account initial 

differences among the groups, and the correlation of the initial measures and the 

dependent variable measures. That is, analysis of covariance analyzes the differences 

between experimental groups on Y, the dependent variable, after taking into account 

either initial differences between the groups on Y (pretest), or differences between 

the groups in some potential independent variable or variables, X, substantially cor¬ 

related with Y, the dependent variable. The measure used as a control variable — the 

pretest or pertinent variable — is called a covariate. 

The reader should be cautious when using analysis of covariance. It is particu¬ 

larly sensitive to violations of its assumptions. The potential misuse of this method 

was of such concern that the journal Biometrics in 1957 devoted an entire issue to it. 

Elashoff (1969) wrote an important article for educational researchers on the use of 
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this method. The consensus is that it is generally not a good idea to use this method 

for nonexperimental research designs. 

Clark and Walbercj: Massive Reinforcement and Reading Achievement 

There is little point to describing the statistical procedures and calculations of analy¬ 

sis of covariance. First, in their conventional form, they are complex and difficult to 

follow. Second, we wish here only to convey the meaning and purpose of the ap¬ 

proach. Third, and most important, there is a much easier way to do what analysis of 

covariance does. Later in the book we shall see that analysis of covariance is a special 

case of multiple regression and is much easier to do with multiple regression tech¬ 

niques. To give the reader a feeling for what analysis of covariance accomplishes, let 

us look at an effective use of the procedure in educational and psychological studies. 

Clark and Walberg (1968) thought that their participants, potential school 

dropouts doing poorly in school, needed far more reinforcement (encouragement, 

reward, etc.) than participants doing well in school. They therefore used massive re¬ 

inforcement with their experimental group participants and moderate reinforcement 

with their control group participants. Since their dependent variable, Reading 

Achievement, is substantially correlated with Intelligence, they also needed to con¬ 

trol Intelligence. A one-way analysis of variance of the reading achievement means of 

the experimental and control groups yielded an Fof 9.52, significant at the .01 level, 

supporting their belief. It is conceivable, however, that the difference between the ex¬ 

perimental and control groups was due to intelligence rather than to reinforcement. 

That is, even though the 5s were assigned at random to the experimental groups, an 

initial difference in intelligence in favor of the experimental group may have been 

enough to make the experimental group reading mean significantly greater than the 

control group reading mean, since intelligence is substantially correlated with read¬ 

ing. With random assignment, it is unlikely to happen, but it can happen. To control 
this possibility, Clark and Walberg used analysis of covariance. 

Study Table 21.7 which shows in outline the design and analysis. The means of 

the X and Y scores, as reported by Clark and Walberg, are given at the bottom of the 

table. The Y means are the main concern. They were significantly different. 

Although it is doubtful that the analysis of covariance will change this result, it is 

possible that the difference between the X means, 92.05 and 90.73, may have tipped 

the statistical scales, in the test of the difference between the Y means, in favor of the 

experimental group. The analysis of covariance F-test, which uses Y sums of squares 

Table 21.7 Analysis of Covariance Paradigm (Clark & Walberg study) 

Experimental 

(Massive Reinforcement) 

X 

(Intelligence) 

92.05 

Control 

(Moderate Reinforcement) 

Y 

(Reading) 
X 

(Intelligence) 

90.73 

Y 

(Reading) 

26.86 
Means 31.62 
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and mean squares purged of the influence of X, was significant at the .01 level: 

F= 7.90. Thus, the mean reading scores of the experimental and control groups 

differed significantly, after adjusting or controlling for intelligence. 

search Design and Analysis: Concluding Remarks 

Four major objectives have dominated the organization and preparation of Part Six. 

The first was to acquaint the student with the principal designs of research. By so do¬ 

ing, it was hoped that narrowly circumscribed notions of doing research with, say, 

only one experimental group and one control group; or with matched participants; or 

with one group, before and after, may be widened. The second objective was to 

convey a sense of the balanced structure of good research designs, to develop sensi¬ 

tive feeling for the architecture of design. Design must be formally as well as 

functional (y fitted to the research problems we seek to solve). The third objective 

was to help the reader understand the logic of experimental inquiry and the logic of 

the various designs. Research designs are alternative routes to the same destination: 

reliable and valid statements of the relations among variables. Some designs, if 

practicable, yield stronger relational statements then other designs. 

In a certain sense, the fourth objective of Part Six—to help the student under¬ 

stand the relation between the research design and statistics—has been the most 

difficult to achieve. Statistics is, in one sense, the technical discipline of handling 

variance. And, as we have seen, one of the basic purposes of design is to provide 

control of systematic and error variances. This is the rationale used for treating 

statistics in such detail in Part Four and Part Five, before considering design in Part 

Six. Fisher (1951, p. 3) expresses this idea succinctly when he says, “Statistical proce¬ 

dure and experimental design are only two different aspects of the same whole, and 

that whole comprises all the logical requirements of the complete process of adding 

to natural knowledge by experimentation.” 

A well-conceived design is no guarantee of the validity of research findings. Ele¬ 

gant designs nicely tailored to research problems can still result in wrong or distorted 

conclusions. Nevertheless, the chances of arriving at accurate and valid conclusions 

are better with sound designs than with unsound ones. This much is relatively sure: if 

a design is faulty, one cannot arrive at clear conclusions. If, for instance, one uses a 

two group, matched subjects design when the research problem logically demands a 

factorial design, or if one uses a factorial design when the nature of the research situ¬ 

ation calls for a correlated groups design, no amount of interpretative or statistical 

manipulation can increase confidence in the conclusions of such research. 

It is fitting that Fisher (1951) should have the last word on this subject. In the 

first chapter of his book, The Design of Experiments, he says: 

If the design of an experiment is faulty, any method of interpretation that makes 

it out to be decisive must be faulty, too. It is true that there are a great many ex¬ 

perimental procedures which are well designed that may lead to decisive conclu¬ 

sions? but, on other occasions they may fail to do so; in such cases, if decisive 

conclusions are in fact drawn when they are unjustified, we may say that the fault 
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is wholly in the interpretation, not in the design. But the fault of interpretation 

. . . lies in overlooking the characteristic features of the design which lead to the 

result being sometimes inconclusive, or conclusive on some questions but not on 

all. To understand correctly the one aspect of the problem is to understand the 
other (p. 3). 

Computer Addendum 

Randomized designs can be analyzed with independent samples Utest or analysis of 

variance. The SPSS setup and discussions are given in Chapter 13 and Chapter 14. 

Here, we will discuss how to use SPSS to perform statistical analyses of data from a 

correlated groups design (repeated measures). For our discussion we will use the data 
from Miller and Dicara (1968) presented in Table 21.9. 

Following our previously established data entry instructions, you would enter 

the data into SPSS so that the resulting SPSS spreadsheet would look like that shown 
in Figure 21.6. 

Remember from our earlier discussion, the goal was to compare rats that had an 

increase in urine output to rats that had a decrease in urine output. The urine out¬ 

puts of those rats that showed an increase in urine output are “beforel” and “afterl.” 

The variables “before2” and “after2” are used to represent the before and after 
outputs of the rats that showed a decrease. 

To instruct SPSS to perform the appropriate analysis for the data given in Table 

21.9 and in Figure 21.6, point and click the “Statistics” option. This action will pre¬ 

sent a menu from which you choose “Compare Means.” After clicking “Compare 

Means,” another menu appears from which you choose “Paired Samples T-Test.” 
After this has been chosen, a new screen is reached (see Figure 21.7). 

H Figure 21.6 Miller and DiCara’s Data in SPSS 

File Edit View Data Transform Statistics Graphs Utilities Windows Help 

before 1 afterl before2 after2 Summarize ► 

1 .023 .030 .018 .007 Compare Means ► - 

2 .014 .019 .015 .003 
ANOVA Models ► - 

Correlate ► 
3 .016 .029 .012 .005 Regression ► 

4 .018 .030 .015 .006 
Log-linear ► - 

Classify ► 
5 .007 .016 .030 .009 Data Reduction ► 

6 .026 .044 .027 .008 
Scale - 

7 .012 .026 .020 .003 

Means 

One-Sample T-Test 

Independent Samples T-Test 

Paired Samples T-Test 

One Way ANOVA 
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HI FIGURE 21.7 SPSS Screen Used to Specify Variables for Analysis 

Paired Samples T-Test 

Paired Variables 

after 1 

after2 

before 1 

before2 

OK 

Paste 

Insert 

Cancel 

Help 

Options 

Two dependent samples t-tests can be tested simultaneously here by taking the 

following steps: 

1. Highlight the “afterl” variable (point and click on it). 

2. Highlight the “before 1” variable. 

3. Click the arrow button. 

4. Highlight the “after2” variable. 

5. Highlight the “before2” variable. 

6. Click the arrow button. 

At this point you will see that SPSS has formed two difference equations dis¬ 

played on the right side box. This is shown in Figure 21.8. When you click the “OK” 

[□] FIGURE 21.8 Preparing for SPSS Analysis 

Paired Samples T-Test 

Paired Variables 

Options 

before 1-afterl 

before2-after2 

OK 

Paste 

Insert 

Cancel 

Help 
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U Figure 21.9 SPSS Output 

Paired 
Differences 

Mean 
Std. 

Deviation t df Sig. (2-tailed) 

Pair 1 

Increase 
BEFORE1- 

AFTER1 
-.00111 .00445 

* 

-6.624 6 .001 

Pair 2 

Decrease 
BEFORE2- 

AFTER2 
.00137 .00531 6.828 6 .000 

button, SPSS will perform the analysis and output it. An abbreviated version of the 
output is given in Figure 21.9. 

The analysis just completed was done using SPSS’s f-test. You can also perform 
the same analysis by using SPSSis “General Linear Model.” 

Chapter Summary 

1. Randomized subjects designs are the preferred designs of behavioral 
research. 

2. Randomized subjects designs are true experiments with active, manipulated 
independent variables. 

3. The statistical method usually used to analyze data from randomized sub¬ 
jects designs is analysis of variance. 

4. Randomized subject designs usually require a large number (N) of partici¬ 
pants to achieve the desired precision. 

5. Correlated subjects designs usually involve 

a. using the same participants in each treatment condition 

b. matching participants on one or more independent variables related to 
the dependent variable 

c. using more than one group of participants (e.g., classrooms) 

6. Units can be different kinds of entities. In psychological research, units are 
usually people or animals. 

7. Coi related subjects designs include the one group repeated trials (measures) 
design. 

8. Design 20.2 is the design to use when participants are matched and 
randomly assigned to treatment groups. 

9" 4:^variate is a potential independent variable used to adjust the individual 

differences between groups that are not due to the treatment. Pretests are 
the most common covariates. 

* 
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10. Analysis of covariance is a correlated subjects method of statistical analysis. 

A covariate adjusts the dependent variable, then the adjusted values are used 

in an analysis of variance. Multiple regression is another statistical method 

that can used for this purpose. 

Study Suggestions 

1. In studying research design, it is useful to do analyses of variance — as many 

as possible: simple one-way analyses and two-variable factorial analyses, per¬ 

haps even a three-variable analysis. By means of this statistical practice, you 

will gain a better understanding of the designs. You may well attach variable 

names to your “data” rather than working with numbers alone. Some useful 

suggestions for projects with random numbers follow. 

a. Draw three groups of random numbers 0 through 9. Name the indepen¬ 

dent and dependent variables. Express a hypothesis and translate it into 

design-statistical language. Do a one-way analysis of variance. Interpret. 

b. Repeat 1 (a) using five groups of numbers. 

c. Now, increase the numbers of one of your groups by 2, and decrease 

those of another group by 2. Repeat the statistical analysis. 

d. Draw four groups of random numbers, 10 in each group. Set them up, at 

random, in a 2 X 2 factorial design. Do a factorial analysis of variance. 

e. Bias the numbers of the two right-hand cells by adding 3 to each number. 

Repeat the analysis. Compare the results to (d). 

f. Bias the numbers of the data of (d) as follows: add 2 to each of the 

numbers in the upper-left and lower-right cells. Repeat the analysis. 

Interpret. 
2. Return to Chapter 14, study suggestions 2 and 3. Work through both 

examples again. Are they easier for you now? 

3. Suppose you are the principal of an elementary school. Some of the fourth- 
and fifth-grade teachers want to dispense with workbooks. The superinten¬ 

dent does not like the idea, but is willing to let you test the notion that 

workbooks do not make much difference. (One of the teachers has even 

suggested that workbooks may have bad effects on both teachers and pupils.) 

To test the efficacy of the workbooks, set up two research plans and designs: 

a one-way design and a factorial design. Consider the variables Achieve¬ 

ment, Intelligence, and Gender. You might also consider the possibility of 

teacher attitude toward workbooks as an independent variable. 

4. Suppose an investigation using Methods and Gender as the independent 

variables, and achievement as the dependent variable, has been done with 

the results reported in Table 21.8. The numbers in the cells are fictitious 

means. The F-ratios of Methods and Gender are not significant. The 

interaction F-ratio is significant at the .01 level. Interpret these results 

statistically and substantively. To do the latter, give names to each of the 

three methods. 



530 Part Six ■ Designs of Research 

[□] Table 21.8 Hypothetical Data (Means) of a Fictitious 

Factorial Experiment 

Methods 

Ai A-2 A3 

Male 45 45 36 42 

Female 35 39 40 38 

40 42 38 

5. Although difficult and sometimes frustrating, there is no substitute for 

reading and studying original research studies. A number of studies using 

factorial design and analysis of variance have been cited and summarized in 

this chapter and in earlier chapters. Select and read two of these studies. Try 

summarizing one of them. Critique both studies for adequacy of design and 

execution of the research (to the best of your present knowledge and ability). 

Focus particularly on the adequacy of the design to answer the research 
question or questions. 

6. We did a two-way (repeated measure) analysis of variance of the Miller and 

DiCara Increase Rats data in Tible 21.9, with some of the results reported in 

the table: or (Hays omega-squared) was .357; co2 for the Decrease Rats data 
was .663. What do these coefficients mean? Why calculate them? 

7. Kolb (1965), basing his work on the outstanding work of McClelland on 

achievement motivation, did a fascinating experiment with underachieving 

high school boys of high intelligence. Of 57 boys, he assigned 20 at random 

to a training program in which, through various means, the boys were 

“taught” achievement motivation (an attempt to build a need to achieve into 

the boys). The boys were given a pretest of achievement motivation in the 

summer, and given the test again six months later. The mean change scores 

were, for experimental and control groups, 6.72 and -.34, respectively. 
These were significant at the .005 level. 

a. Comment on the use of change scores. Does their use lessen your faith in 
the statistical significance of the results? 

b. Might factors other than the experimental training have induced the 
change? If so, which factors? 

8. Lest the student believe that only continuous measures are analyzed and that 

analysis of variance alone is used in psychological and educational experi¬ 

ments, read the study by Freedman, Wallington, and Bless (1967) on guilt 

and compliance. There was an experimental group (As induced to lie) and a 

control group. The dependent variable was measured by whether a partici¬ 

pant did or did not comply with a request for help. The results were re¬ 

ported in cross-tabulation frequency tables. Read the study and, after study- 
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ing the authors’ design and results, design one of the three experiments an¬ 

other way. Bring in another independent variable, for instance. Suppose that 

it was known that there were wide individual differences in compliance. 

How can this be controlled? Name and describe two kinds of design to do it. 

9. In a study in which training on the complexities of art stimuli affected 

attitude toward music, among other things, Renner (1970) used analysis of 

covariance, with the covariate being measures from a scale designed to mea¬ 

sure attitude toward music. This was a pretest. There were three 

experimental groups. Sketch the design from this brief description. Why did 

Renner use the music attitude scale as a pretest? Why did she use analysis of 

covariance? (Note: The original report is well worth reading. The study, in 

part a study of creativity, is itself creative.) 

10. In a significant study on the effect of a liberal arts education on complex 

concept formation, Winter and McClelland (1978) found the difference be¬ 

tween seniors and freshmen attending a liberal arts college on measure of 

complex concept formation to be statistically significant (Ms = 2.00, My = 

1.22; t — 3.76; (p < .001). Realizing that a comparison was needed, they 

also tested similar mean differences at a teachers college and a community 

college. Neither of these differences was statistically significant. Why did 

Winter and McClelland test the relation at the teachers college and the 

community college? It is suggested that students find and read the original 

report—it is well worth study—and do an analysis of variance from the re¬ 

ported ns, means, and standard deviations, using the method outlined in 

Chapter 13 (Addendum). 
11. One virtue of analysis of covariance, seldom mentioned in texts, is that three 

estimates of the correlation between X and Y can be calculated. The three 

are: (i) the total r over all the scores; (ii) the between-groups r, which is the r 

between the X and Y means; (iii) and the within-groups r, the r calculated 

from an average of the rs between X and Y within the k groups. The within- 

groups r is the “best” estimate of the “true” r between X and Y Why is this 

so? 
[Hint: Can a total r, the one usually calculated in practice, be inflated or de¬ 

flated by between-groups variance?] 
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Chapter 22 

Quasi-Experimental and N= 1 

Designs of Research 

■ Compromise Designs a.k.a. Quasi-Experimental Designs 

Nonequivalent Control Group Design 

No-Treatment Control Group Design 

Research Examples 

Time Series 

Multiple Time Series Designs 

Single Subject Experimental Designs 

Some Advantages of the Single-Subject Design 

Some Disadvantages of the Single-Subject Design 

m Some Single Subject Research Paradigms 

The Stable Baseline 

Designs that Use the Withdrawal of Treatment 

The ABA Design 

The ABAB Design 

Some Research Examples 

Using Multiple Baselines 

In earlier chapters we stated and emphasized that one of the major goals of science is 

to find causal relations. In the behavioral sciences, the true experiment is the 

strongest approach used to meet this goal. When the true experiment is arranged and 

executed correctly, it can provide the researcher with a cause-and-effect statement con¬ 

cerning the relation between X (independent variable) and Y (dependent variable). 

This is generally considered the highest form of experimentation. However, there 

are research problems in the behavioral sciences and especially educational research 

535 
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that cannot be studied using a true experimental design. That is, Designs 20.1 

through 20.6 and some of its variants covered in Chapters 20 and 21 cannot be used. 

One or more of the components of a true experiment is missing or has been weak¬ 

ened by the nature of the study, or poor planning. The weakening of the components 

of the true experiment is what we will discuss in this chapter. We will examine two 

research designs where one or more of the components of the true experiment have 

been compromised. The first is called quasi experimental designs and the second is 
called single subject or N= 1 designs. 

Compromise Designs a.k.a. Quasi- 

Experimental Designs 

It is possible, indeed necessary, to use designs that are compromises with true experi¬ 

mentation. Recall that true experimentation requires at least two groups, one receiv¬ 

ing an experimental treatment and one not receiving the treatment, or receiving it in 

different form. The true experiment requires the manipulation of at least one inde¬ 

pendent variable, the random assignment of participants to groups, and the random 

assignment of treatments to groups. When one or more of these prerequisites is 

missing for one reason or another, we have a compromise design. Compromise designs 

are popularly known as quasi-experimental designs. They are called quasi because 

quasi means “almost” or “sort of.” Cook and Campbell (1979) present two major 

classifications of quasi-experimental design. The first is called the “nonequivalent 

control group designs,” the second is the “interrupted time series designs.” A num¬ 

ber of research studies performed outside the laboratory could fall into one of these 

categories. Many marketing research studies are in the form of quasi-experimental 

designs. Often a researcher is asked to “design” and analyze the data from a study 

that was unplanned. For example, a grocery buyer decides to stock a different brand 

of baby food. Her superiors later ask if such a move was profitable. This buyer then 

consults with a market researcher to determine what can be done to show whether 

or not her decision was a profitable one. Such analyses would not have the niceties 

of random selection and assignment and would consist of data taken over time, 

dditionally, other ads or the season of the year could influence the baby food sales, 

e only component resembling a true experiment is the fact that the independent 

variable was manipulated. Not all stores received the different baby food product 

With such problems the researcher would turn to the use of quasi-experimental or 
compromise research designs. 

Nonequivalent Control Group Design 

Perhaps the most commonly used quasi-experimental design is the experimental 

group-control group pattern in which one has no clear assurance that the experi¬ 

mental and control groups are equivalent. Some such as Cook and Campbell (1979) 

nstensen (1997), Ray (1997), and Graziano and Raulin (1993) refer to it as the 
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nonequivalent control group design. Cook and Campbell present eight variations of 

this design that they state are “interpretable”: 

no-treatment control group designs 

nonequivalent dependent variables designs 

removed treatment group designs 

repeated treatment designs 

reversed treatment nonequivalent control group designs 

cohort designs 

posttest only designs 

regression continuity designs 

In this book we will discuss in detail only one of these. It is the one most likely to oc¬ 

cur in some shape and form in the research literature. For a thorough discussion of 

these eight types of nonequivalent control group designs, read Cook and Campbell 

(1979). 

No-Treatment Control Group Design 

The structure of the no-treatment control group design has already been considered 

in Design 20.3. Cook and Campbell (1979) refer to this design as the untreated 

control group design with pretest and posttest. The compromise form is as follows: 

Design 22.1: No-Treatment Control Group Design 

Yh X Ya (Experimental) 

Yb ~X Ya (Control) 

The difference between Design 20.3 and Design 22.1 is sharp. In Design 22.1, there 

is no randomized assignment of participants to groups as in 20.3(a), and no matching 

of participants and then random assignment as in 20.3(b). Design 22.1, therefore, is 

subject to the weaknesses due to the possible lack of equivalence between the groups 

in variables other than X. Researchers commonly take pains to establish equivalence 

by other means, and, to the extent they are successful in doing so, the design is valid. 

This is done in ways discussed below. 
It is sometimes difficult or impossible to equate groups by random selection or 

random assignment, or by matching. Should one then give up doing the research? By 

no means. Every effort should be made to (1) select and (2) to assign at random. If 

both of these are not possible, perhaps matching and random assignment can be ac¬ 

complished. If matching and random assignment are not possible, an effort should be 

made to at least use samples from the same population, or samples that are as alike as 

possible. The experimental treatments should be assigned at random. Then the 
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similarity of the groups should be checked using any information available (sex, age, 

social class, and so on). The equivalence of the groups could be verified using the 

means and standard deviations of the pretests: £-tests and F-tests will do. The distribu¬ 

tions should also be checked. Although one cannot have the assurance afforded by ran¬ 

domization, if all these items check out satisfactorily, one can go ahead with a study 

knowing at least that there is no known evidence against the equivalence assumption. 

These precautions increase the possibilities of attaining internal validity. There 

are still difficulties, all of which are subordinate to one main difficulty—selection. 

These other difficulties will not be discussed here. For detailed discussion, see 
Campbell and Stanley (1963), or Cook and Campbell (1979). 

Selection is one of the difficult and troublesome problems of behavioral re¬ 

search. Since its aspects will be discussed in detail in Chapter 23 on nonexperimental 

research, only a brief description will be given here. One of the important reasons 

for the emphasis on random selection and assignment is to avoid the difficulties of 

selection. When participants are selected into groups on bases extraneous to the re¬ 

seal ch purposes, we call this “selection,” or alternatively, “self-selection.” Take a 

common example: let us assume that volunteers are used in the experimental group 

and other participants are used as controls. If the volunteers differ in a characteristic 

related to Y, the dependent variable, the ultimate difference between the experimen¬ 

tal and control groups may be due to this characteristic rather than to X, the inde¬ 

pendent variable (treatment). Volunteers may be more intelligent (or less intelligent) 

than nonvolunteers. If we were doing an experiment with some type of learning as 

the dependent variable, obviously the volunteers might perform better on Y because 

of superior intelligence, despite the initial likeness of the two groups on the pretest. 

Note that if we had used only volunteers and had assigned them to experimental and 

control groups at random, the selection difficulty is lessened. External validity or 
representativeness, however, would be decreased. 

Cook and Campbell (1979) claim that even in very extreme cases, it is still possi¬ 
ble to draw strong conclusions if all the threats to validity are considered and ac- 

counted for. Without the benefit of random assignment, attempts should be made 

through other means to eliminate rival hypotheses. We consider only the design that 

uses the pretest because the pretest could provide useful information concerning the 

e ectiveness of the independent variable on the dependent variable. The pretest 

could provide data on how equal the groups are to each other prior to administering 
treatment to the experimental group. 6 

Another more frequent example in educational research is to take some school 

c asses for the experimental group and others for the control group. If a fairly large 

number of classes are selected and assigned at random to experimental and control 

groups, there is no great problem. Bu, if they are not assigned at random, certain 

ones may select themselves into the experimental groups, and these classes may have 

characteristics that predispose them to have higher mean Y scores than the other 

a^Ssive0 TWP h KaCherS ™y ^ m°re alert’ m0re intellig««> and more 
aggressive. These characteristics interact with the selection to produce, irrespective 

" A that are higher for the experimental group than for control group Y In 
other words, something that influences the selection processes (e.g. volunteer 
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participants), also influences the dependent variable measures. This occurs even 

though the pretest may show the groups to be the same (alike) on the dependent 

variable. The X manipulation is “effective” because of selection, or self-selection, but 

it is not effective in and of itself. Additionally, an educational researcher may have to 

receive the school district’s approval for research. At times, the district will assign the 

school and the classroom that a researcher may use. 

A classic study by Sanford and Hemphill (1952) reported in Campbell and Stan¬ 

ley (1963) used this design. This study was conducted at the U.S. Naval Academy at 

Annapolis. This study was done to see if a psychology course in the curriculum in¬ 

creased the students’ (midshipmen) confidence in social situations. The second-year 

midshipmen were the first group of students to take the psychology course. The 

comparison or control group was the third-year class. The third-year students had 

not taken the course in their second year. A social situation questionnaire was admin¬ 

istered to both classes at the beginning of the academic year and at the end of the 

year. The results showed an increase in confidence scores for the second-year class 

from 43.26 to 51.42. The third-year class also showed an increase, but this increase 

was considerably smaller changing from 55.80 to 56.78. One might conclude from 

these data that taking the psychology course did have an effect of increasing confi¬ 

dence in social situations. However, other explanations are also possible. One could 

explain that the greater gains made by the second-year class were the result of some 

maturational development that has its largest growth in the second year, with a 

smaller growth in the third year. If such a process exists, the larger score increase for 

the second-year class would have occurred even if the midshipmen had not taken the 

psychology class. The fact that the second-year class started with a lower score than 

the third-year class might indicate that these students had not yet reached a level 

equivalent to the third-year class. Also, the end-of-year scores of the second-year 

class were not equivalent to the beginning scores for the third-year class. A better 

and stronger design would be to create two equivalent groups from the second-year 

class through random selection and give at random the psychology class to only one 

group. 
Possible outcomes from this design are given in Figure 22.1. There is the possi¬ 

bility of a different interpretation on causality depending on which outcome the re¬ 

searcher obtains. In almost all of the cases the most likely threat to internal validity 

would be the selection-maturation interaction. You might recall that this interaction 

occurs when (1) two groups are different to begin with as measured by the pretest; 

then (2) one of the groups experience greater differential changes, such as getting- 

more experienced, more accurate, more tired, and so on, than the other group. The 

after-treatment difference, as observed in the posttest, can not exactly be attributed 

to the treatment itself. 
In Figure 22.1(a), there are three possible threats to internal validity. As men¬ 

tioned above, the most prevalent threat is the selection-maturation interaction. 

With the outcome in Figure 22.1a, Cook and Campbell (1979) state that there are 

four alternative explanations. 
The first is selection-maturation interaction. Let’s say the study involves 

comparing two strategies or methods of problem-solving. Group E has higher 
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Figure 22.1 Five Possible Outcomes for the Nonequivalent Control Group 
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intelligence than Group C. Group E scores higher on the pretest than Group C 
Group E sees an increase in the posttest scores after treatment. Group C sees little or 
no change. One might feel that the treatment that Group E receives is superior to 
the treatment received by Group C. However, with selection-maturation interac- 
tion, Group Es increase may be due to their higher level of intelligence. With a 

Group CVd °f mtC lgenCe’ these Participants can process more, or grow faster, than 

A second explanation is one of instrumentation. The scale used to measure the 
epen ent variable may be more sensitive at certain levels than others. Take per¬ 

centiles for example. Percentiles have an advantage over raw scores in that they con¬ 
vey direct meaning without other pieces of information. However, percentiles are 
nonlinear transformations of the raw scores. In a normal distribution, changes in raw 
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scores near the center of the distribution reflect bigger percentile changes than at the 

tails. A change of only 2 or 3 points on the raw score scale can reflect a 10 percentile 

point change near the center of the distribution. This would not be the case when 

considering the tails of the normal distribution. A change of 15 raw score points 

might be necessary to see a 10 percentile point increase at the tail of distribution. 

Hence, Group C’s percentile measurements may not change much because the mea¬ 

surements are not sensitive enough to detect the changes [at the tails]. However, 

Group E will show a greater amount of change because its percentile happens to be 

in the more sensitive part of the measurement scale. 

The third explanation is statistical regression. Let’s say that the two groups, E 

and C, actually come from different populations, and Group C is the group of inter¬ 

est. The researcher wants to introduce an educational plan to help increase the intel¬ 

lectual functioning of these participants. These participants are selected because they 

generally score low on intelligence tests. The researcher creates a comparison or 

control group from normal scoring students. This group is depicted as Group E in 

Figure 22.1a. These students would be at the low end of the test score scale, but not 

as low as Group C. If this is the setup, then statistical regression is a viable alternative 

explanation. The increase in scores by Group E would be due to their selection on 

the basis of extreme scores. On the posttest, their scores would go up because they 

would be approaching the population baseline. 

The fourth explanation centers on the interaction between history and selection. 

Cook and Campbell (1979) refer to this as the local history effect. In this situation, 

something other than the independent variable will affect one of the groups (Group 

E) and not the other (Group C). Let’s say a market researcher wanted to determine 

the effectiveness of an ad for soup starters. Sales data are gathered before and after 

introducing the ad. Two groups are used from different regions of the country: one 

group is from Southern California and the other is from the Midwest. In this case, 

the growth in sales seen by one of the groups (E) may not necessarily be due to the 

ad. Both groups may have similar purchasing behavior during the spring and sum¬ 

mer; that is, not a high need for soup starters. However, as the fall season ap¬ 

proaches, the sale of soup starters may increase for the group in the Midwest. In 

Southern California, where the temperatures are considerably warmer all year 

around, the demand for soup starters would remain fairly constant. So here the ex¬ 

planation for increased sales in the Midwest would be the season of the year and not 

the ad. 
All of the threats mentioned for Figure 22.1(a) are also true for Figure 22.1(b). 

While in Figure 22.1(a) one of the groups (Group C) remains constant, in Figure 

22.1(b), both groups experience an increase from pretest to posttest. Selection- 

maturation is still a possibility, since by definition the groups are growing (or declin¬ 

ing) at a different rate where the lower-scoring group (Group C) progresses at a 

lower rate than the high-scoring group (Group E). To determine if selection-matu¬ 

ration is playing a main role in the results, Cook and Campbell (1979) recommend 

two methods. The first method involves looking only at the data for the experimental 

group (Group E). If the within-group variance for the posttest is considerably greater 

than the within-group variance of the pretest, then there is evidence of a 
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[Ml FIGURE 22.2 Comparison of Experimental Group and Control Group 
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selection maturation explanation. The second method is to develop two plots and 

the regression line associated with each plot. One plot is for the experimental group 

(Group E). The pretest scores are plotted against the maturational variable. The 

maturation variable can be age or experience. The second plot would be the same, 

except it would be for the control group (Group C). If the regression line slopes for 

each plot differ from each other, then there is evidence of a differential average 

growth rate, meaning that there is the likelihood of a selection —maturation interac¬ 
tion (see Figure 22.2). 

The outcome shown in Figure 22.1(c) is more commonly found in clinical 

psychology studies. The treatment is intended to lead to a decline of an undesired 

behavior. Like the previous two outcomes, this one is also susceptible to 

selection-maturation interaction, statistical regression, instrumentation, and local 

history effects. In this outcome, the difference between the experimental and control 

groups is very dramatic on the pretest, but after the treatment the groups get closer 
to one another. 

The fourth outcome is shown in Figure 22.1(d). This differs from the previous 

three in that the control group (Group C) starts out higher than the experimental 

group (Group E) and remains higher even at posttest. However Group E, showed a 

greater gain from pretest to posttest. Statistical regression would be a threat if the 

participants in Group E were selected on the basis of their extremely low score. 

Cook and Campbell (1979) state, however, that the selection-maturation threat can 

be ruled out since this effect usually results in a slower growth rate for low scores and 

a taster growth rate for high scorers. Here, the low scorers show the greater growth 

in scores than the high scorers. This evidence lends support to the effectiveness of 

the treatment condition received by Group E. What cannot be easily ruled out are 

the threats from instrumentation and local history that we saw in the previous three 
outcomes of nonequivalent control group designs. 

With the final outcome shown in Figure 2211(e), the means of the experimental 
(Group E) and control (Group C) groups are significantly different from one another 

at both pretest and posttest. However, the differences are in the reverse direction in 

the posttest than in the pretest. The trend lines cross over one another. Group E ini- 
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tially starts low but then overtakes Group C who initially scored high. Cook and 

Campbell (1979) found this outcome to be more interpretable than the previous four. 

Instrumentation or scaling is ruled out because no transformation of the scores could 

remove or reduce this crossover or interaction effect. Statistical regression becomes 

untenable because it is extremely rare that a low score can regress enough to overtake 

an initially high score. Other than a very complicated selection-maturation interac¬ 

tion effect, this pattern is not akin to selection-maturation threats. Maturation, for 

example, does not generally start off different, meet, and then grow apart in opposite 

directions. Hence, the outcome in Figure 22.1(e) seems to be the strongest one and 

should enable the researcher to make a causal statement concerning treatment. Cook 

and Campbell, however, warn that researchers should not plan on developing quasi- 

experimental research with the expectation of obtaining this outcome. Definitely, the 

designing of a nonequivalent control group study should be done with care and 
caution. 

Research Exam pies 

Nelson, Hall, and Walsb-Bowers: Nonec/uivalent Control Group Design 
The research study by Nelson, Hall, and Walsh-Bowers (1997) specifically states that 

they used a nonequivalent control group design to compare the long-term effects of sup¬ 

portive apartments (SA), group homes (GH), and board-and-care homes (BCH) for 

psychiatric residents. Supportive apartments and group homes are run by nonprofit 

organizations; board-and-care homes are run for profit. The main goal was to com¬ 

pare the two intervention groups: supportive apartments and group homes. They 

were unable to assign participants to different housing settings randomly. Nelson et al. 

tried their best to match the residents, but there were some significant differences in 

the composition of the groups that led them to use the nonequivalent control group 

design. With this design they decided to use BCH residents as the comparison 

group. They could not correct through matching the following variables that could 

have an effect on the dependent variables: (1) The SA and GH groups tended to be 

younger than the BCH group (33 years versus 45), and had spent less time in resi¬ 

dence (2.5 years versus 39 years). (2) The SA and GH residents had a higher level of 

education than those in the BCH group. Nelson et al. found a significant difference 

between these groups on these variables. Even though gender was not significant, 

there were more men than women in the SA and GH groups; and more women than 

men in the BCH group. 

Nelson et al. state that the difference they found between these three groups on 

posttest measures could have been due to the selection problem, and not the type of 

care facility. 

Chapman and McCauley: Quasi-Experiment 
In this study, Chapman and McCauley (1993) examined the career growth of 

graduate students who applied for a National Science Foundation (NSF) Graduate 

Fellowship Award. Although one can perhaps think of this study as a nonexperimen- 

tal one, Chapman and McCauley felt that it came under the classification of 
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quasi-experimental. We shall see why. In comparing the award winners and non-win¬ 

ners, the choice of winners was not exactly done at random. The study did not look 

at the Quality Group 1 applicants. The Group 1 applicants were in the top 5% and 

all received awards. The Quality Group 2 NSF applicants made up of the next 10% 

and were considered a highly homogeneous group. Awards were given to approxi¬ 

mately half of a homogeneous group of applicants in a procedure that Chapman and 

McCauley say approximates random assignment to either fellowship or honorable 

mention. The students were assigned with regard to academic promise. Chapman 

and McCauley assumed that differences in performance between Quality Group 2 

applicants, who were and were not awarded an NSF fellowship, could reveal the ef¬ 

fect of positive expectations associated with this prestigious award. 

The results showed that those receiving an NSF award were more likely to finish 

the Ph.D. However, Chapman and McCauley found no reliable fellowship effect on 

achieving faculty status, achieving top faculty status, or submitting or receiving an 

NSF or a National Institutes of Health research grant. It seems that the positive ex¬ 

pectancies associated with this prestigious award have some influence in graduate 

school, but no effect on accomplishments after graduate school. 

Time Designs 

Important variants of the basic quasi-experimental design are time designs. The form 
of Design 20.6 can be altered to include a span of time: 

Yh X Ya 

Yy ~A Ya 

X Ya 

~X Ya 

The F^s of the third and fourth lines are observations of the dependent variable 

at any specified later date. Such an alteration, of course, changes the purpose of the 

design, and may cause some of the virtues of Design 20.6 to be lost. We might, if we 

had the time, the patience, and the resources, retain all the former benefits and still 
extend in time by adding two more groups to Design 20.6 itself. 

A common research problem, especially in studies of the development and 

growth of children, involves the study of individuals and groups using time as a vari¬ 

able. Such studies are longitudinal studies of participants, often children, at different 
points in time. One such design among many might be: 

Design 22.2: A Longitudinal Time Design (a.k.a. Interrupted Time Series Design) 

Yi Y-, Yx Y, X Y< Y, Yn Fa 
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Note the similarity to Design 19.2, where a group is compared to itself. The use of 
Design 22.2 allows us to avoid one of the difficulties of Design 19.2. Its use makes it 
possible to separate reactive measurement effects from the effect, of X. It enables us 
to determine, if the measurements have a reactive effect, and whether X was strong- 
enough to overcome that effect. The reactive effect should show itself by comparing 
F3 to T4 ; this can be contrasted with T5. If there is an increase at Ys over and above 
the increase at T4 from T3, it can be attributed to X. A similar argument applies for 
maturation and history. 

One difficulty with longitudinal or time studies, especially with children, is the 
growth or learning that occurs naturally over time: Children do not stop growing 
and learning for research convenience. The longer the time period, the greater the 
problem. In other words, time itself is a variable. With a design like Design 20.2, 
Yb X Ya, the time variable can confound X, the experimental independent variable. 
If there is a significant difference between Yb and Ya, one cannot tell whether A or a 
time “variable” caused the change. But with Design 22.2, one has other measures 
of Y, and thus a baseline against which to compare the change in Y presumably due 
toX. 

One method of determining whether the experimental treatment had an effect is 
to look at a plot of the data over time. Caporaso (1973) presents a number of addi¬ 
tional possible patterns of behavior that could be obtained from time-series data. 
Whether or not a significant change in behavior followed the introduction of the 
treatment condition, is determined by tests of significance. The most widely used 
statistical test is ARIMA (autoregressive, integrated, moving average) developed by 
Box and Jenkins, (1970) (see also Gottman, 1981). This method consists of determin¬ 
ing whether or not the pattern of postresponse measures differs from the pattern of 
preresponse measures. The use of such a statistical analysis requires the availability of 
many data points. 

The statistical analysis of time measures is a special and troublesome problem: 
The usual tests of significance applied to time measures can yield spurious results. 
One reason is that such data tend to be highly variable, and it is as easy to misinter¬ 
pret changes not due to X as due to X. That is, in time data, individual and mean 
scores tend to move around a good bit. It is easy to fall into the trap of seeing one of 
these shifts as “significant,” especially if it accords with our hypothesis. If we can le¬ 
gitimately assume that influences other than X—both random and systematic—are 
uniform over the whole series of Ys, the statistical problem can be solved. But such 
an assumption may be, and probably often is, unwarranted. 

The researcher who explores time studies should make a special study of the sta¬ 
tistical problems and consult a statistician. For the practitioner, this statistical com¬ 
plexity is unfortunate in that it may discourage needed practical studies. Since longi¬ 
tudinal single-group designs are particularly well suited to individual class research, it 
is recommended that in longitudinal studies of methods or studies of children in edu¬ 
cational situations analysis be confined to drawing graphs of results and interpreting 
them qualitatively. Crucial tests, especially those for published studies, however, must 
be buttressed with statistical tests. 
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Multiple Time Series Design 

The multiple time series design is an extension of the interrupted time series design. 

With the interrupted time series design, only one group of participants was used. As 

a result, alternative explanations can come from a history effect. The multiple time 

series design has the advantage of eliminating the history effect by including a con¬ 

trol group comprised of an equivalent—or at least comparable — group of partici¬ 

pants who do not receive the treatment condition. This is shown in Design 22.3 

where one experimental group receives the treatment condition and the control 

group does not. Consequently, the design offers a greater degree of control over 

sources of alternative explanations or rival hypotheses. The history effects, for exam¬ 

ple, are controlled because they would influence the experimental and control groups 
equally. 

Design 22.3: A Multiple Time Series Design 

Y\ Y, F3 T4 X Y5 Y6 Y7 Y8 (Experimental) 

Y\ Y2 F3 Y4 Ys Y6 Yy Fg (Control) 

Naturally, there are other possible variations of Design 22.2 beside Design 22.3. One 

important variation is to add one or more control groups; another is to add more 

time observations. Still another is to add more Xs, more experimental interventions 

(see Gottman, 1981; Gottman, McFall, & Barnett, 1969; Campbell & Stanley, 1963). 

Single Subject Experimental Designs 

The majority of today’s behavioral research involves using groups of participants. 

However, there are other approaches. In this section we deal with strategies for 

achieving control in experiments using one or only a few participants. These single¬ 

subject designs are sometimes referred to as the N = 1 design. Single-subject designs 

are an extension of the interrupted time series design. Where the interrupted time 

series generally looks at a group of individuals over time; for example, children, the 

single-subject study uses only one participant or at most a few participants. Even 

when a few participants are used, each is studied individually and extensively. These 

will also be called single-subject designs or studies. Although they have different 
names, they all share the following characteristics: 

• Only one or a few participants are used in the study. 

Each subject participates in a number of trials (repeated measures). This is 

similar to the within-participants designs described in Chapter 21. 

Randomization (i.e., random assignment and/or random selection) procedures 

are hardly ever used. The repeated measurements or time intervals are instead 
assigned at random to the different treatment conditions. 
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These designs observe the organism’s behavior before the experimental treatment 

and use the observations as a baseline measure. Observations taken after the treat¬ 

ment are then compared to the baseline observations. The participant serves as his or 

her own control. These designs are usually applied in school, clinical, and counseling 

research. They are used to evaluate the effects of behavioral interventions over time. 

This mode of research is popular among those who do operant learning experiments 
or behavior modification. 

Research using single participants is not new, as the following illustrates. Gustav 

Fechner, who developed the discipline of psychophysics in the 1860s, used only two 

participants: himself and his brother-in-law. Fechner is credited with inventing the 

basic psychophysical methods that are still used today to measure sensory thresholds. 

Fechner heavily influenced Hermann Ebbinghaus, who is known for his experimen¬ 

tal work on memory. Ebbinghaus also used himself as his own subject. Wilhelm 

Wundt, who is credited with founding the first psychological laboratory in 1879, 

conducted experiments measuring various psychological and behavioral responses in 

individual participants. I. P. Pavlov did his pioneering work on instrumental condi¬ 

tioning using individual dogs. The list of psychologists using single participants is ex¬ 

tensive, with most of them occurring before 1930 and the advent of R. A. Fisher’s 
and William Sealy Gossett’s work in modern statistics. 

Behavioral scientists doing research before the development of modern statistics 

attempted to solve the problem of reliability and validity by making extensive obser¬ 

vations and frequent replication of results. This is a traditional procedure used by 

researchers doing single-subject experiments. The assumption is that individual 

participants are essentially equivalent and that one should study additional partici¬ 

pants only to make certain that the original subject was within the norm. 

The popularity of Fisher’s work on analysis of variance and Gossett’s work on the 

Student’s f-test led the way for group-oriented research methodology. Some claim 

that these works were so popular that the single-subject tradition nearly became ex¬ 

tinct. In fact, even in today’s world, there are hiring practices at major universities 

that depend on whether the candidate is a group-oriented research scientist or a sin¬ 

gle-participants design-oriented researcher. Despite the popularity of Fisher’s meth¬ 

ods and group-oriented research, certain psychologists continued to work in the sin¬ 

gle-subject tradition The most notable of these was Burrus Frederick Skinner. 

Skinner refrains from using inferential statistics. He does not advocate the use of 

complex of inferential statistics. Skinner feels that one can adequately demonstrate 

the effectiveness of the treatment by plotting the actions of the organism’s behavior 

over time. Skinner called this the cumulative record. Some, such as E. L. Thorndike, 

call it a “learning curve.” Skinner feels that it is more useful to study one animal for 

1,000 hours than to study 1,000 animals for one hour. Sidman (1960) in his classic 

book describes Skinner’s philosophy of research, and makes a clear distinction be¬ 

tween the single-subject approach and the group approach to research. The single¬ 

subject approach assumes that the variance in the subject’s behavior is dictated by the 

situation. As a result, this variance can be removed through careful experimental con¬ 

trol. The group difference research attitude assumes that the bulk of the variability is 

inherent and can be controlled and analyzed statistically. 
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Some Advantages of Doing Single-Subject Studies 
Group-oriented research usually involves the computation of the mean or some 

other measure of average or central tendency, but averages can be misleading. Look 

at (a) and (b) in Figure 22.3—both have exactly the same values. If we were to com¬ 

pute the mean for the data in each figure, we would find that they are exactly equal. 

Even if we computed the standard deviation or variance, we would find that the two 

measures of variability are exactly the same. However, visual inspection for the data 

shows that the graph, Figure 22.3(a) exhibits a trend whereas Figure 22.3(b) does 

not. In fact, Figure 22.3(b) shows what appears to be a random pattern. The single¬ 

subject approach does not have this problem, because a participant is studied 

extensively over time. The cumulative record for that participant shows the actual 

performance of the participant. 

One of the major problems in using large samples is that statistical significance 

can be achieved for differences that are very small. With inferential statistics a large 

sample will tend to reduce the amount of error variance. Take the f-test as an exam¬ 

ple. Even if the mean difference remains the same, the increase in sample size will 

tend to lower the standard error. With a reduction of the standard error, the t-value 

gets larger, hence increasing its chance of statistical significance. However, statistical 

significance and practical significance are two different things. The experiment may 

have little practical significance even if it has plenty of statistical significance. Simon 

(1987) has criticized the indiscriminant use of large groups of participants. He finds 

them wasteful and unable to produce useful information. Simon advocates the use of 

screening experiments to find the independent variables that have the greatest effect 

on the dependent variable. These would be the powerful variables that produce large 

effects. Simon doesn’t exactly endorse single-subject designs. He advocates using 

well-constructed designs with the number of participants necessary to find the 

strongest effects. Simon (1976) refers to these as “Economical Multifactor Designs.” 

Single-subject researchers, on the other hand, favor increasing the size of the effect 

rather than attempting to lower error variance. They feel that this can be done 
through tighter control over the experiment. 

In this same vein, single-subject designs have the advantage over group-oriented 

designs in that with only a few participants researchers can test different treatments. In 

Figure 22.3 Comparison of Experimental Group and Control Group 
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other words, they can determine the effectiveness or the ineffectiveness of a treatment 

intervention without employing a large number of participants, which can be costly. 

With single-subject studies, the researcher can avoid some of the ethical problems 

that face group-oriented researchers. One such ethical problem concerns the control 

group. In some situations, the control group does not receive any real treatment. Al¬ 

though in most of the studies done today the participants in the control group are not 

harmed in any way, there are still some ethical questions. Take for example the study 

by Gould and Clum (1995) to determine if self-help with minimal therapist contact is 

effective in the treatment of panic disorder. All participants in this study were suffer¬ 

ers of panic attacks. The participants were assigned randomly to either an experimen¬ 

tal or control group. The experimental group received self-help material. The control 

“did not receive treatment during the course of the experiment” (p. 536). Instead, the 

control group was told that they were on the waiting list for treatment. 

In the study of certain type of individuals, the size of the population is small and 

hence it would be difficult to do adequate sampling or to obtain enough participants 

for the study. In fact, the study by Strube (1991) shows that even random sampling 

tends to fail when using small samples. If there are not enough participants of a cer¬ 

tain characteristic available for study, the researcher can consider single-subject de¬ 

signs instead of abandoning the study. Simon (1987) cites the attempted study by 

Adelson and Williams in 1954 concerning the important training parameters in pilot 

education. The study was abandoned because there were too many variables to con¬ 

sider and not enough participants. Simon pointed out that the study could have been 
done, but not using the traditional group-oriented methodology. 

Some Disadvantages of Using Single-Subject Designs 
Single-subject studies are not without problems and limitations. Some of these will 

become more apparent when we actually discuss the types of single-subject designs. 

One of the more general problems with the single-subject paradigm is external valid¬ 

ity. Some find it difficult to believe that the findings from one study using one subject 

(or maybe three of four) can be generalized to an entire population. 

With repeated trials on one participant, one can question whether the treatment 

would be equally effective for a participant who has not experienced previous treat¬ 

ments. If we are talking about a therapeutic treatment, it may be the accumulation of 

sessions that is effective instead of one single session. The person going through the 

ra-th trial can be a very different person from the one in the first trial. It is here that 

group-oriented research can eliminate this problem. Each person is given the treat¬ 
ment only once. 

Single-subject studies are perhaps even more sensitive to aberrations on the part of 

the experimenter and participant. These studies are effective only if the researcher can 

avoid biases and the participant is motivated and cooperative. The researcher can be 

prone to look only for certain effects and ignore others. We discussed Blondlot earlier in 

this book. He was the only scientist able to see “N-rays.” It wasn’t so much that he was a 

fraud, but that he was biased toward seeing something that was not there. A researcher 

doing single-subject research could be affected more so than the group-oriented re¬ 

searcher and needs to develop a system of checks and balances to avoid this pitfall. 
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A number of research studies are by nature required to follow group-oriented 

methods and as such would be ill-suited for single-subject designs. For example, to 

study the behavior of jury members would require the use of groups and the influ¬ 

ence of group dynamics. In a previous chapter, we discussed the research surround¬ 

ing Janis’s Groupthink. The study of this important phenomenon was best done with 

groups, since it was the group as a whole that displayed this phenomenon. 

Some Single-Subject Research Paradigms 

The Stable Baseline: An Important Goal 

In a group-oriented design, one group of participants is compared to another. Or a 

group of participants receiving one condition is compared to the same set of partici¬ 

pants receiving a different condition. We assume that the groups are equal prior to giv¬ 

ing treatment so that, if the dependent variable differs after treatment, we can associate 

that difference to the treatment. The determination of an effective treatment is done 

by comparing the difference between the two groups statistically on some outcome 

variable. When we use only one subject, however, a different tactic must be employed. 

In this one-subject situation we need to compare the behavior that occurs before, to 

the behavior that occurs after, the introduction of the experimental intervention. The 

behavior before the treatment intervention must be measured over a long enough time 

period so that a stable baseline can be obtained. This baseline, or operant level, is im¬ 

portant because it is compared to later behavior. If the baseline varies considerably, it 

could be more difficult to assess any reliable change in behavior following intervention. 

The baseline problem with single-subject designs is an important one. For a complete 

description of the problems and possible solutions, one should consult Barlow and 
Hersen (1984). Another excellent reference is Kazdin (1982). 

An example when baseline measures are very important is in the use of a poly¬ 

graph (lie detector). Here, the operator gets physiological measurements of the per¬ 

son (suspect). The operator asks the suspect a number of questions the answer to 

which are known to be true (name, eye color, place of birth, etc.). The responses 

emitted are recorded and used as the baseline measure for truthful responses. 

Another baseline is taken for responses known to be untrue: the suspect is told to de¬ 

liberately lie to the questions asked. After establishing these two baselines, the ques¬ 

tion of importance (i.e., did you commit the crime?) is asked and compared to the 

two baselines. If the physiological response resembles the lie baseline, the suspect is 
considered to have lied. 

Designs that Use the Withdrawal of Treatment 

The ABA Design 

The ABA design involves three major steps. The first step is to establish a stable 

baseline (A). The experimental intervention is applied to the participant in the sec¬ 

ond step (B). If the treatment is effective, there will be a response difference from the 
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baseline. In order to determine if the treatment intervention caused the change in 

behavior, the researcher exercises step three: a return to baseline (A). The third step 

is required because we don’t know what the response rate would have been if the par¬ 

ticipant received no treatment. We also need to know whether the response change 

was due to the treatment intervention or something else. 

A major problem with the ABA design is that the effect of the intervention may 

not be fully reversible. If the treatment involved surgery, where the hypothalamus is 

removed or the corpus callosum is severed, it would be impossible to reverse these 

procedures. A learning method that causes some permanent change in a participant’s 
behavior would not be reversible. 

There are also some ethical concerns about reverting the organism back to the 

original state if that state was an undesirable behavior (Tingstrom, 1996). Experi¬ 

ments in behavior modification seldom return the participant back to baseline. This 

return to baseline is called the withdrawal condition. To benefit the participant, the 

treatment is reintroduced. The ABAB design does this. 

Repeating Treatments (ABAB DesignsJ 
There are two versions of the ABAB design. The first was briefly described in the 

above section. ABAB is the same as the ABA design except that treatment is reintro¬ 

duced to the participant, and the participant leaves the study having achieved some 

beneficial level. Repeating the treatment also provides the experimenter with addi¬ 

tional information about the strength of the treatment intervention. By demonstrat¬ 

ing that the treatment intervention can bring the participant back to the beneficial 

level after taking that person back to baseline, lends strength to the statement that 

treatment caused the change in behavior; that is, evidence of internal validity. The 

ABAB design essentially produces the experimental effect twice. 

The second variation of the ABAB design is called the alternating treat?nents de¬ 

sign. In this variation there is no baseline taken. The A and B in this design are two 

different treatments that are alternated at random. The goal of this design is to eval¬ 

uate the relative effectiveness of the two treatment interventions. The A and B may 

be two different methods of controlling overeating. The participant is given each 

treatment at different times. Over a period of time, one method might emerge as 

being more effective than the other. The advantage this design has over the first 

ABAB design is that there is no baseline to be taken, and the participant is not sub¬ 

jected to withdrawal procedures. Since this method involves comparing two sets of 

series of data, some have called it the between-series design. 

There are some other interesting variations of the ABAB design where with¬ 

drawal of the treatment is not done. McGuigan (1996) calls it the ABCB design 

where in the third phase, the organism is given a “placebo” condition. This placebo 

condition is essentially a different method. 

Single-subject designs are unlike group designs in that they only permit the re¬ 

searcher to vary one variable at a time. The researcher would not be able to deter¬ 

mine which variable or which combination of variables caused the response changes, 

if two or more variables are altered simultaneously. The best that anyone can do is to 

make a statement that the combination of variables led to the change. However, the 
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researcher won’t be able to tell which one or how much of each. If there are two vari¬ 

ables, called B and C, and the baseline is A, then a possible presentation sequence of 

the conditions would be A-B-A-B-BC-B-BC. In this sequence every condition was 

preceded and proceeded by the same condition at least once, with only one variable 

changing at a time. 

The A-B-A-B-BC-B-BC design is often called an interaction design. All possible 

combinations of B and C, however, are not presented. Condition C is never pre¬ 

sented alone (A represents the absence of B and C). The interaction here differs from 

the interaction discussed in the chapter on factorial designs. What is tested by this 

procedure is whether or not C adds to the effect of B. 

In a learning experiment using this design, we could examine the effect of prais¬ 

ing a student for giving the correct answer (C) to a question on geography along with 

a merit point (B). If we find that praise plus merit point has a greater effect than a 

merit point alone, we have information that is useful in designing a learning situation 

for this and other students; but we will not know the singular effect of praise. Praise 

used by itself may have been just as effective as the merit point plus praise; or praise 

by itself, may have little or no effect. We can, however, assess praise by lengthening 

the single-subject design: the A-B-A-B-BC-B-BC-C-BC sequence. But lengthening 

a single-subject experiment of this kind comes with other problems; for example, a 

subject may become fatigued or disinterested. As a result, too long of a session may 

not produce useful information even though the design looks sound. 

A Research Exam pie 

Powell and Nelson.- Example of an ABAB Design 

This study by Powell and Nelson (1997) involved one participant, Evan, a 7-year-old 

boy, who had been diagnosed with attention deficit hyperactivity disorder (ADHD). 

Evan was receiving 15 mg of Ritalin® per day. Most of Evan’s classroom behavior 

was described as undesirable. Evan also had poor peer relations and did not under¬ 

stand his schoolwork. The undesirable behaviors included noncompliance, leaving 

his desk, disturbing others, staring off into space, and not doing the work. Data were 

collected on the occurrence of interactions between Evan and his teacher. 

Ehe treatment intervention was letting Evan choose the class assignments he 

wanted to work on. There were two conditions: choice and no-choice. Baseline data 

were collected during the no-choice phase. Evan was given the same assignment as 

the rest of the class. During the choice phases, the teacher presented Evan with three 

different assignments and he chose one to complete. The assignment choices were 

identical in length and difficulty and varied only in content. Evan was not given the 

same choice of assignments twice. 

Powell and Nelson used an ABAB design to evaluate the effects of choice-mak¬ 

ing on Evan’s undesirable behavior. The results showed that during the choice condi¬ 

tion, the number of undesirable behaviors decreased. This study supported the effi¬ 

cacy of choice-making as an antecedent control technique. These results suggest that 

educators attempting to manage the behaviors of students in classrooms may use 
choice procedures. 
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Using Multiple Baselines 

There is a form of single-subject research that uses more than one baseline. Several 

different baselines are established before treatment is given to the participant. These 

types of studies are called multiple baseline studies. There are three classes of multiple 

baseline research designs: across behaviors, across participants, and across environ¬ 
ments. 

The use of multiple baselines is another approach to demonstrate the effective¬ 

ness of a treatment on behavior change. There is a common pattern for implement¬ 

ing all three classes of this design. That pattern is shown in Figure 22.4. 

With the multiple baselines across behaviors, the treatment intervention for 

each different behavior is introduced at different times. In Figure 22.4, each baseline 

would be a baseline of a different behavior. In the case of an autistic child, Baseline 1 

might be banging his or her head against the wall. Baseline 2 would be talking 

constantly in different tones and adding noises. Baseline 3 would be hitting others. 

The three baselines are established to see if the change in behavior coincides with 

the treatment intervention. If one of the behavior changes, while the other behaviors 

remain constant or stable at the baseline, the researcher could state that the treat¬ 

ment was effective for that specific behavior. After a certain period of time has 

passed, the same treatment is applied to the second undesirable behavior (Baseline 2). 

Every following behavior is subjected to the treatment in the same step-wise proce¬ 

dure. If the treatment intervention is effective in changing the response rate of each 

behavior, one can state that the treatment is effective. 

An important consideration with this particular class of multiple baseline design 

is that one assumes the responses for each behavior are independent of the responses 

for the other behaviors. The intervention can be considered effective if this indepen¬ 

dence exists. If the responses are in some way correlated, then the interpretation of 

the results becomes more difficult. 

FIGURE 22.4 General Format of Multiple Baseline Design n 

Baseline 1 —► Treatment 
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Baseline 2 Treatment 

Baseline 3 Treatment 
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- 



554 PART Seven * Types of Research 

In the multiple baseline design across participants, the same treatment is applied in 

series to the same behavior of different individuals in the same environment. In Figure 

22.4, each baseline represents a different participant. Each participant will receive 

the same treatment for the same behavior in the same environment. The study by 

Tingstrom, Marlow, Edwards, Kelshaw, and Olmi (1997) is an example of a multiple 

baseline study across participants. Their compliance training package is the treat¬ 

ment intervention. This intervention uses time-in (physical touch and verbal praise) 

and time-out (a coercive procedure) to increase the rate of student compliance to 

teachers’ instructions. The behavior of interest here is compliance to teachers’ in¬ 

structions. The environment is the classroom. The participants of this study were 

three students—A, B and C—who have demonstrated noncompliance behavior. All 

three students have articulation and language disorders. The design of the study ad¬ 

hered to the following intervention phases: baseline, time-in only, time-in/time-out 

combined, and follow-up. Students B and C remained in the baseline phase, while 

the time-in only phase was implemented for student A. When A showed a change in 

compliance, the time-in only phase was implemented for B, while C remained in 

baseline. When B showed a change in compliance, time-in only was implemented for 

C. Tingstrom et al were able to demonstrate the effectiveness of the combined time- 
in and time-out intervention in increasing compliance. 

In the multiple baseline design across environments, the same treatment is given to 

different participants who are in different environments. In Figure 22.4, each baseline 

represents a different participant in a different environment. The treatment and be¬ 

havior under study would be the same. Here we may have three different patients 

where each is a resident in a different type of psychiatric care facility such as those 

studied by Nelson et al. discussed earlier in this chapter. In this study Nelson, Hall 

and Walsh-Bowers (1997) compared the long-term effects of supportive apartments 
(SA), group homes (GH) and board-and-care homes (BCH). 

Chapter Summary 

1. True experiments are those where the experimenter can select the partici¬ 

pants randomly, assign the participants to treatment conditions randomly, 

and control the manipulation of the independent variable. The quasi-experi- 
mental design lacks one or more of these features. 

2. Cook and Campbell (1979) cover eight variations of the nonequivalent con¬ 

trol group design. The one covered in this book is the no-treatment control 

group design. Five different results are discussed in terms of internal validity. 

3. Time series designs are longitudinal designs that involve repeated measure¬ 

ments of the same dependent variables at different fixed intervals of time. 
Usually, at some point, treatment intervention is introduced. 

4. Selection and selection-maturation interactions are two alternative explana¬ 

tions that plague the results obtained from quasi-experimental designs. 

5. Experiments using single participants are not new. The early researchers in 
experimental psychology used single-subject designs. 
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6. In single-subject designs, researchers feel that with proper experimental 

control, variability of the situation can be removed. 

7. Group-oriented researchers feel variability can be statistically analyzed. 

8. Single-subject research has several advantages over group research in terms 

of flexibility and ethics. However, it suffers from external validity credibility. 

9. Small but statistically significant effects found in group research may have 

little clinical or practical significance, and may have been artificially induced 

by large sample sizes. When this happens, the effect size is small. Single¬ 

subject research concentrates on effect size and not sample size. 

10. The establishment of a stable baseline is one of the most important tasks in 

single-subject research. 

11. The establishment of a baseline, followed by administration of treatment, 

followed by a withdrawal of the treatment, is called the ABA design. 

12. A major problem with the ABA design is that the treatment may be irre¬ 

versible— leaving the participant in the improved state, rather than return¬ 

ing that person to the original undesirable state. 

13. A variation of the ABA design is the ABAB design wherein the participant is 

restored to the improved state. 

14. In a single-subject study only one independent variable can be varied at a time. 

15. The so-called interaction design does not permit testing for an interaction as 

defined earlier in factorial designs. It merely examines two variables jointly. 

16. There are three types of multiple baseline designs. In each case, the inter¬ 

vention is introduced at different times for different behaviors, participants, 

or environments. If behavior changes coincide with the introduction of 

treatment, this gives evidence that the treatment is effective. 

Study Suggestions 

1. Look up each of the following studies and determine which are quasi- 

experimental, nonequivalent control group, and single-subject designs. 

Adkins, V. K., & Matthews, R. M. (1997). Prompted voiding to reduce incon¬ 

tinence in community-dwelling older adults. Journal of Applied Behavior 

Analysis, 30, 153-156. 

Lee, M. J., & Tingstrom, D. H. (1994). A group math intervention: The 

modification of cover, copy, and compare for group application. Psychology 

in the Schools, 31, 133-145. 

Streufert, S., Satish, U., Pogash, R., Roache, J., & Severs, W. (1997). Excess 

coffee consumption in simulated complex work settings: Detriment or fa¬ 

cilitation of performance? Journal of Applied Psychology, 82, 774-782. 

2. Why is a baseline measure necessary in single-subject designs? 

3. Should the data from single-subject designs be analyzed statistically? Explain 

why or why not. 
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4. Give an example of when a single-subject design should be used. Also, cite a 

research situation in which group design is more appropriate. 

5. A university student wants to do a time series study on the effects of the full 

moon on psychiatric patients. What dependent variable should this student 

use? Where should this person look to locate data for such a study? 

6. Are single-subject studies applicable to medical research? Should medical 

school students be taught single-subject designs? Read the following article: 

\ 

Bryson-Brockmann, W., and Roll, D. (1996). Single-case experimental de¬ 

signs in medical education: An innovative research method. Academic 
Medicine, 71, 78-85. 



Chapter 23 

Nonexperimental Research 

■ Definition 

a Basic Difference between Experimental and Nonexperimental Research 

■ Self-selection and Nonexperimental Research 

■ Large Scale Nonexperimental Research 

■ Smaller Scale Nonexperimental Research 

■ Testing Alternative Hypotheses 

■ Evaluation of Nonexperimental Research 
Limitations of Nonexperimental Interpretation 
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» Conclusion 

Among prevalent fallacies, one of the most dangerous to science is that known as post 

hoc, ergo propter hoc: after this, therefore caused by this. We may joke, with a tinge of 

seriousness, “If I take an umbrella, it won’t rain.” We may even seriously say that 

delinquents are delinquent because of a lack of discipline in the schools, or that 

religious education makes children more virtuous. It is easy to assume that one thing 

causes another simply because it occurs before the other, and because one has such a 

wide choice of possible “causes.” Then, too, many explanations often seem plausible. 

It is easy to believe, for instance, that the learning of children improves because we 

institute a new educational practice or teach in a certain way. We assume that the 

improvement in their learning was due to the new spelling method, to the institution 

of group processes into the classroom situation, to stern discipline and more home¬ 

work (or little discipline and less homework). We rarely realize that children will 

usually learn something if they are given the opportunity to learn. 

557 
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The social scientist and the educational scientist constantly face the problem of 

the post hoc fallacy. The sociologist who seeks the causes of delinquency knows that 

extreme care must be used in studying the problem. Slum conditions, broken homes, 

amount of lead in water pipes, lack of love — each or all of these conditions are possi¬ 

ble causes of delinquency. The psychologist seeking the roots of adult personality 

faces an even subtler problem: hereditary traits, child-rearing practices, educational 

influences, parental personality, and environmental circumstances are all plausible 

explanations. The educational scientist, with the goal of understanding the basis of 

successful school achievement, also faces a large number of reasonable possibilities: 

intelligence, aptitude, motivation, home environment, teacher personality, pupil 
personality, and teaching methods. 

The danger of the post hoc assumption is that it can, and often does, lead to er¬ 

roneous and misleading interpretations of research data, the effect being particularly 

serious when scientists have little or no control over time and independent variables. 

When they seek to explain a phenomenon that has already occurred, scientists are 

confronted with the unpleasant fact that they do not have real control of the possible 

causes. Hence, they must pursue a course of research action, different in execution 
and interpretation, from that of scientists who experiment. 

Definition 

Nonexperimental research is systematic empirical inquiry in which the scientist does not 

have direct control of independent variables because their manifestations have already 

occurred or because they are inherently not manipulable. Inferences about relations 

among variables are made, without direct intervention, from concomitant variation of 

independent and dependent variables. 

Assume that an investigator is interested in the relation between sex and creativ¬ 

ity in children. The investigator measures the creativity of a sample of boys and girls 

and tests the significance of the difference between the means of the two sexes. The 

mean of boys is significantly higher than the mean of girls. One conclusion is that 

boys are more creative than girls. This may or may not be a valid conclusion. The re¬ 

lation exists, true. With only this evidence, however, the conclusion is doubtful. We 

would ask the question: Is the demonstrated relation really between sex and creativ¬ 

ity? Since other variables are correlated with sex, it might have been one or more of 

these other variables that produced the difference between the creativity scores of 
the two sexes. 

Basic Difference Between Experimental and 

Nonexperimental Research 

The basis of the structure in which experimental science operates is simple. One hy- 

pot esizes: If x, then y; if frustration, then aggression. Depending on circumstances 

and personal predilection in research design, one uses some method to manipulate or 
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measure a. One then observes y to see if concomitant variation, the variation 

expected or predicted from the variation in x, occurs. If it does, this is evidence for 

the validity of the proposition, x —■* y, “If x theny.” Note that we here predict from a 

controlled x to y. To help us achieve control, we can use the principle of randomiza¬ 

tion and active manipulation of x and can assume, other things being equal, that y is 

varying as a result of the manipulation of x. 

In nonexperimental research, on the other hand, y is observed, and an a, or sev¬ 

eral as, are also observed. They are observed either before, after, or concomitant to 

the observation ofy. There is no difference in the basic logic. It can be shown that 

the argument structure and its logical validity are the same in experimental and non¬ 

experimental research. Also, the basic purpose of both is the same: to establish the 

empirical validity of so-called conditional statements of the form: If p, then q. The 

essential difference is direct control of p, the independent variable. In experimental 

research, p can be manipulated, which is rather direct “control.” When Clark and 

Walberg (1968) had teachers give one group of participants massive reinforcement 

and other teachers give another group moderate reinforcement, they were directly 

manipulating or controlling the variable reinforcement. Similarly, when Dolinski and 

Nawrat (1998) put one group under stress (anxiety), another under stress that was 

subsequently reduced, and a third group with little or no stress, they were directly 

manipulating the variable anxiety. In addition, participants can be assigned at random 

to the experimental groups. 

In nonexperimental research, direct control is not possible: neither experimental 

manipulation nor random assignment can be used. These are two essential differ¬ 

ences between experimental and nonexperimental approaches. Owing to lack of rela¬ 

tive control of x and other possible as, the “truth” of the hypothesized relation 

between a and y cannot be asserted with the confidence of the experimental situation. 

Basically, nonexperimental research has, so to speak, an inherent weakness: lack of 

control of independent variables. 
The most important difference between experimental research and nonexperi¬ 

mental research, then, is control. In experiments, investigators at least have manipula¬ 

tive control: they have at least one active variable. If an experiment is a “true” experi¬ 

ment, they can also exercise control by randomization. They can assign participants 

to groups at random, or assign treatments to groups at random. In the nonexperi¬ 

mental research situation, this kind of control of the independent variables is not 

possible. Investigators must take things as they are and try to disentangle them. 

Take a well-known case. When we paint the skins of rats with carcinogenic 

substances (a), adequately control other variables, and the rats ultimately develop 

carcinoma (y), the argument is compelling because a (and other possible as, theoreti¬ 

cally) is controlled and y is predicted. But when we find cases of lung cancer (y) and 

then go back among the possible multiplicity of causes (xb a2, . . ., x„) and pick 

cigarette smoking (say a3) as the culprit, we are in a more difficult and ambiguous 

situation. Neither situation is sure, of course; both are probabilistic. But in the 

experimental case we can be considerably more sure if we have adequately made 

“other things being equal” — that the statement, If a, theny, is empirically valid. In 

the nonexperimental case, however, we are always on shakier ground because we 

cannot say, with nearly as much assurance, “other things being equal.” We cannot 
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control the independent variables by manipulation or by randomization. In short, the 

probability that x is “really” related to y is greater in the experimental situation than 

it is in the nonexperimental situation because the control of x is greater. 

Self-Selection and Nonexperimental Research 

In an ideal behavioral research world, the drawing of random samples of participants, 

and the random assignment of participants and treatments to groups, would always 

be possible. In the real world, however, one, two, or even all three of these possibili¬ 

ties do not exist. It is possible to draw participants at random in both experimental 

and nonexperimental research. But it is not possible, in nonexperimental research, to 

assign participants to groups at random or to assign treatments to groups at random. 

Participants can “assign themselves” to groups. They can “select themselves” 

into the groups on the basis of characteristics other than those that interest the 

investigator. The participants and the treatments come, as it were, already assigned to 
the groups. 

Self-selection occurs when the members of the groups being studied are in the 

groups, in part, because they differentially possess traits or characteristics extraneous 

to the research problem; characteristics that possibly influence or are otherwise 

related to the variables of the research problem. Examples of self-selection may aid 
understanding. 

In the well-known research on cigarette smoking and cancer, the smoking habits 

of a large number of people were studied. This large group was divided into those 

who had lung cancer—or who had died of it—and those who did not have it. The 

dependent variable was thus the presence or absence of cancer. Investigators probed 

the participants’ backgrounds to determine whether they smoked cigarettes, and if 

so, how many. Cigarette smoking was the independent variable. The investigators 

found that the incidence of lung cancer rose with the number of cigarettes smoked 

daily. They also found that the incidence was lower in the cases of light smokers and 

nonsmokers. They came to the conclusion that cigarette smoking “causes” lung 

cancer. This conclusion may or may not be true. But the investigators cannot come 

to this conclusion, although they can say that there is a statistically significant 

relation between the variables. Note that careful scientific investigators will usually 

not use the word cause unless the study was performed under the strictest conditions 

I he word cause is used here to illustrate how the media often interprets scientific 
findings that suggest causality. 

Scientific investigators also cannot state a causal connection because there are a 

number of other variables, any one of which, or any combination of which, may have 

caused lung cancer. And they have not controlled other possible independent 

variables. They cannot control them, except by testing alternative hypotheses, a 

piocedure to be explained later. Even when they also study “control groups” of 

people who have no cancer, self-selection may be operating. Perhaps, for example, 

tense, anxious men are doomed to have lung cancer if they marry tall women. It 

may just happen that this type of man also smokes cigarettes heavily. The cigarette 
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smoking is not what kills him—he kills himself by being tense and anxious —and 

possibly by marrying a tall woman. Such men are selected into the sample by investi¬ 

gators only because they smoke cigarettes. But such men select themselves into the 

sample because they commonly possess a temperament that happens to have ciga¬ 

rette smoking as a concomitant. 

Self-selection can be a subtle business. There are two types: (1) self-selection 

into samples and (2) self-selection into comparison groups. The latter occurs when par¬ 

ticipants are selected because they are in one group or another: cancer and no cancer, 

college and no college, underachievement and no underachievement. That is, they 

are selected because they possess the dependent variable in greater or lesser degree. 

Self-selection into samples occurs when participants are selected in a nonrandom 

fashion into a sample. 
The crux of the matter is that when assignment is not random, there is always a 

loophole for other variables to crawl through. When we put participants into groups, 

in the above case and in similar cases, or they “put themselves” into groups, on the 

basis of one variable, it is possible that another variable (or variables) correlated with 

this variable is the “real” basis of the relation. The usual nonexperimental study uses 

groups that exhibit differences in the dependent variable. In some longitudinal-type 

studies the groups are differentiated first on the basis of the independent variable. 

But the two cases are basically the same, since group membership on the basis of a 

variable always brings selection into the picture. 
For example, we may select college freshmen at random and then follow them to 

determine the relation between intelligence and success in college. The students 

selected themselves into college, so to speak. One or more of the characteristics they 

bring with them to college, other than intelligence—socioeconomic level, motiva¬ 

tion, family background—may be the principal determinants of college success. 

Starting with the independent variable, in this case intelligence, does not change the 

self-selective nature of the research situation. In the sampling sense, the students 

selected themselves into college, which would be an important factor if we were 

studying college students and noncollege students. But if we are interested only in 

the success and nonsuccess of college students, self-selection into college is irrelevant, 

whereas self-selection into success and nonsuccess groups is crucial. That we 

measure the intelligence of the students when they enter college and follow 

them through to success and nonsuccess does not change either the selection 

problem or the nonexperimental character of the research. In sum, the students 

selected themselves into college and selected themselves to succeed or not to succeed 

in college. 

rge-Scale Nonexperimental Research 

Research examples will, as usual, help us to understand the nature of nonexperimental 

research. Instead of summarizing only individual studies, as we have up to now, we de¬ 

scribe both individual studies and sets of studies centered on some phenomenon 
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or variable of interest. Nonexperimental behavioral research often focuses on large 

problems of social and human importance: social class, political processes, 

segregation and desegregation, public attitudes, school achievement, for example. 

The importance—relevance is the fashionable word — of the subject of these studies 

should not obscure our understanding of their nonexperimental character. Because 

nonexperimental research has inherent weaknesses, however, does not mean that 

experimental research is more important. As said earlier, the experiment is one of the 

great inventions of all time, an ideal of control toward which we aspire. This does 

not mean that experiments are necessarily “better” than nonexperimental studies. On 

the other hand, nonexperimental research is not necessarily “better” than experimen¬ 

tal research because its content and variables seem to be socially important. This 

would be like saying that psychological research is “better” than sociological research 

because psychologists more often use an experimental approach and sociologists a 
nonexperimental approach! 

Determinants of School Achievement 

A large preoccupation of educational researchers has been a search for the determi¬ 

nants of school achievement. What factors lead to successful achievement in school? 

Intelligence is an important factor, of course. While measured intelligence, especially 

verbal ability, accounts for a large proportion of the variance of achievement, there 

are many other variables, psychological and sociological: sex, race, social class, 

aptitude, environmental characteristics, school and teacher characteristics, family 

background, teaching methods. The study of achievement is characterized by both 

experimental and nonexperimental approaches. We are here concerned only with the 
latter since it clearly illustrates problems of nonexperimental research. 

In 1966 the now-famous Coleman report was published (Coleman, Campbell 

Hobson, McPartland, Mood, Weinfeld, & York, 1966). As its title {Equality of Educa¬ 

tional Opportunity) indicates, it was a large-scale attempt to answer the question: Do 

American schools offer equal educational opportunity to all children? Equally impor¬ 

tant, however, was the question of the relation between student achievement and the 

kinds of schools students attend. This study was a massive and admirable effort to 

answer these questions (and others). Its most famous and controversial finding 

was that the differences among schools account for only a small fraction of the 

differences in school achievement. Most achievement variance was accounted for by 

what the children brought with them to school. There was much to question about 

tie studys methodology and conclusions. Indeed, its reverberations are still with us 

Some major school districts across the United States used the report as justification 

oTchfiXeenientmg Certain controversial educational policies such as the bussing 

The principal dependent variable in this study was verbal achievement. There 

were, however, more than 100 independent variables. The authors used relatively 

sophisticated multivariate procedures to analyze the data. Much of the core of the 
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analytic problems, the interpretations of the findings, and the subsequent critiques 

inhere in the nonexperimental nature of the research. 

The controversial conclusion mentioned above of the relative importance of 

home background variables and school variables depends on a completely reliable 

and valid method for assessing relative impacts of different variables. In experimental 

research, one is safer drawing comparative conclusions because the independent 

variables are not correlated. In the real educational world, however, the variables are 

correlated, making their unique contributions to achievement difficult to determine. 

While there are statistical methods to handle such problems, no method can tell us 

unambiguously that Xx influences Y to this or that extent, because the real influence 

may be X2, which influences both Xx and Y The “correct” interpretation of the 

findings of Equality, and studies like it, is always unattainable. While there are 

powerful analytic methods to use with nonexperimental data, unequivocal answers to 

questions of the determinants of achievement are forever beyond reach. 

Response Style Differences between East Asian 

and North American Students 

This study by Chen, Lee, and Stevenson (1995) was a large-scale study that spanned 

four countries, four cultures and two continents. The major concern in this study 

centered on the use of rating scales. Rating scales are one of the staples in behavioral 

science research. However, are there cultural differences in how certain ethnic 

groups answer questions that use a rating scale? Chen et al. wanted to determine 

whether or not there existed a response style difference between East Asians and 

North Americans. These researchers collected data from 944 Japanese students, 

1,357 Taiwanese students, 687 Canadian students, and 2,174 Midwestern and East 

Coast United States students. The comparisons in this study involved the differences 

between two cultures (East Asian versus North American) and the difference be¬ 

tween the two representative groups within each culture (United States versus 

Canada, and Japan versus Taiwan). The questionnaire administered to these students 

included items on ideas, values, attitudes, beliefs, and self-evaluations related to 

school and daily life. A 7-point Likert scale was used, where a 7 usually indicated 

“more” or “strongly agreed”; a 1 was used for “not at all important,” “less,” or 

“strongly disagree.” The results showed that in the area of individualism and collec¬ 

tivism there were highly significant differences between the two cultures. They also 

found a relation between endorsement of individualism and the use of extreme values 

on rating scales. 
This study is also classified as nonexperimental because there is no manipulated 

independent variable. The independent variable in this study was culture and it was 

not manipulated. This study did shed light on a response style difference between 

different cultures. Regardless of the sampling in this study, the study is nonexperi¬ 

mental. Hence, one cannot really state explicitly that if you are from this culture, you 

will respond on rating scales in such-and-such way. 
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Smaller Scale Nonexperimental Research 

To illustrate nonexperimental behavioral research studies or series of studies is not 

easy—there are too many of them; but a few satisfy the authors’ personal criteria of 

methodological soundness and substantive interest. We have chosen the following- 

studies for three reasons: (1) We felt each represents a unique, original, and interest¬ 

ing approach to an important sociological, psychological, or educational problem. (2) 

Each contributes significantly to scientific knowledge. (3) Each is nonexperimental. 

Cochran and Mays: Sex, Lies, and HIV 

This is the classic, often-cited, often-mentioned study concerning the difference in 

sexual behavior between men and women. Cochran and Mays (1990) found that 

advising young adults and teenagers about the precautions they should take to 

protect himself or herself from the human immunodeficiency virus (HIV) might be 

wasted. For example, one advice is for the person to ask his or her date about their 

risk history before deciding whether or not to engage in sexual intercourse. Cochran 

and Mays, however, found that young people tend to lie about their sexual history. In 

a sample of 665 students (age 18-25) in Southern California, 196 sexually experi¬ 

enced men and 226 sexually experienced women reported that they told a lie in order 

to have sex. That means over 63% of the sample stated that they have lied in the past 

in older to have sex with their date. Men were found to tell lies significantly more 

often than women. In addition, both men and women indicated that they would 

deceive their dating partner again. Men were found to be more willing to do this 

than women. A brief summary of Cochran and Mays’s analysis of their 18-page 

questionnaire on sexual behavior, HIV-risk reduction, and deception in dating is 

given in Table 23.1. The comparison between men and women involves the 

measured or attributive independent variable, sex. This study has great significance 

when advising young people about safe-sex practices. The implication is that you 

M Table 23.1 Percent Responses to Sex and Dishonesty Questions by Men and 
Women (Cochran & Mays study) 

Question Men Women 

Has told a lie in order to have sex 34 10 

Lied about ejaculatory control or likelihood of pregnancy 38 14 

Would lie about having negative HIV-antibody test 20 4 

Would lie about ejaculatory control or likelihood of pregnancy 29 2 

Would underestimate number of previous partners 47 42 
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cannot trust the word of your date. Even though the data points strongly toward 

men’s willingness to lie in order to obtain sexual favors, one cannot automatically 

assume that all men will lie about their sexual history. 

Elbert: Impaired Reading and Written Language in 

Attention Deficit Children 

The phenomenon known as Attention Deficit Hyperactivity Disorder (ADHD) is 

currently a popular area of psychological and educational research. One of the major 

concerns is directed toward children who are afflicted with this disorder. Those 

children afflicted generally exhibit poor self-regulation of behaviors and poor acade¬ 

mic performance (usually 1 to 1.5 standard deviation units below the scores of nor¬ 

mal children). As research in this area matured, researchers turned their emphasis to 

more specific questions than a comparision of ADHD children to normal children. 

One area of interest is on the subclasses or subgroups within ADHD, specifically, 

Attention Deficit Disorder (ADD). These studies usually compared children with 

attention deficit and hyperactivity (ADD+H) to children with attention deficit and 

no hyperactivity (ADD-H). 
One of those studies was done by Elbert (1993). Elbert wanted to determine if 

these two subgroups of ADHD (ADD+H and ADD-H) were different in achieve¬ 

ment. Achievement was measured by standardized reading, spelling, and written 

language tests. Elbert also sought to determine if an interaction existed between 

gender (male and female), age (6-0 to 7-11, 8-0 to 9-11, and 10-0 to 12-11) and 

subgroup type (ADD+H and ADD-H). The study used data from 115 children 

between the ages of 6 through 12. Each child was classified as either ADD+H or 

ADD-H, using objective teacher evaluations and the guidelines set by Barkley (1990). 

Note that there is no manipulated independent variable here. Group membership was 

not done through random process. The nonexperimental nature of this study resulted 

in very different-sized groups. The ADD+H group had 83 children and the ADD-H 

group had 32 children. There was also more males (86) than females (29). Elbert did 

however, perform numerous analyses to check on the equality of the groups on the 

variables age, grade level, mother’s level of education, and IQ. Statistical tests between 

ADD+H and ADD-H on these variables were not significant. 

The results on reading scores showed a poorer performance by children in the 

ADD+H (97) group than the ADD-H (90) group. Elbert also found a significant 

gender-by-age interaction on reading scores. Post hoc tests showed the female chil¬ 

dren in the middle age group doing much worse than males. Statistical tests per¬ 

formed on spelling and written language scores showed no effect between age 

groups, gender or subgroup types. However, Elbert found a significant gender-by¬ 

age interaction effect. Again it was the middle age group females who had the poor¬ 

est performance. Elbert also found than one subtest of spelling and written language 

(Written Spelling to Diction) was the most impaired skill in both ADD subgroups. 

Note the nonexperimental nature of Elbert’s study. No manipulated independent 

variable and no randomization. 
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With these nonexperimental studies behind us, we can discuss and evaluate 

nonexperimental research in general. We precede evaluative discussion, however, 

with a more systematic inquiry into the testing of alternative hypotheses, one of the 
highly important features of scientific research. 

r Alte rnative Hypotheses 

Most investigations begin with hypotheses; the empirical implications of these 

hypotheses are then tested. Although we “confirm” hypotheses in the manner 

described in earlier chapters, we can also “confirm” and “disconfirm” hypotheses 

under study by trying to show that alternative plausible hypotheses are, or are not, 

supported. First, consider alternative independent variables as antecedents of a 

dependent variable. The reasoning is the same. If we say “alternative independent 

variables,” for example, we are in effect stating alternative hypotheses or explanations 
of a dependent variable. 

In nonexperimental studies, although one cannot have the confidence in the 

truth of an Ifx, theny statement that one can have in true experiments, it is pos¬ 

sible to set up and test alternative or “control” hypotheses. (Of course, alternative 

hypotheses can also be and are tested in experimental studies.) This procedure has 

been formalized and explained by Platt (1964) who was influenced by Chamberlin 

(1890; 1965). Platt calls it “strong inference.” Chamberlin aptly calls the procedure 

the “method of working multiple hypotheses,” and outlines how the investigator’s 
own “intellectual affections” can be guarded against. Chamberlin (p. 756) says: 

The effort is to bring up into view every rational explanation of new phenom¬ 

ena, and to develop every tenable hypothesis respecting their cause and history. 

The investigator thus becomes the parent of a family of hypotheses; and, by the 

parental relation to all, the investigator is forbidden to fasten his affections 
unduly upon any one. 

For a historical development of the alternative hypothesis, see Cowles (1989). 

Let xu x2, and x3 be three alternative independent variables, and let y be the 

dependent variable, the phenomenon to be “explained” with a statement of the form: 

If x, then y. Assume that xt, x2, and x3 exhaust the possibilities. This assumption 

cannot actually be made in scientific research, because it is practically impossible to 

exhaust all the possibilities. Still, here we will assume it for pedagogical reasons. 

i investigator has evidence that Xl andy are substantially related; having reason 

o believe that xt is the determinative factor, x2 and x3 are held constant. The work¬ 

ing assumption is that one of the three factors xx or x2 or x3 is the “true” independent 

variable. Again, note the assumption. It may be none, or some combination of all 

three Suppose that the investigator succeeds in eliminating x2; that is, x2 is shown 

is not related to y. If the investigator also succeeds in eliminating x3, then 
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the conclusion is that x{ is the influential independent variable. Since the alternative 

or “control” hypotheses have not been substantiated, the original hypothesis is 

strengthened. 

Similarly, we can test alternative dependent variables, which also imply alternative 

hypotheses. We shift the alternatives to the dependent variable. Alper, Blane, and 

Abrams (1955) illustrate this in a study of the different reactions of middle- and 

lower-class children to fingerpaints as a consequence of different child-rearing prac¬ 

tices. The general question asked was: Do social class differences in child-training 

practices result in class differences in personality? The theory invoked required that 

there be differences in reactions to fingerpaints. Alper et al. reasoned that middle- 

class children would react differently than lower-class children to 16 different 

variables when fingerpaints were used: acceptance of task, washing, and so on. The 

reactions were significantly different on most of the variables. In a “control experi¬ 

ment,” the same procedure was followed using crayons instead of fingerpaints. The two 

groups did not differ significantly on any of the 11 variables measured. This was a 

surprising contrast to the fingerpaint results. The study was nonexperimental 

because it was not possible to manipulate the independent variable, and because 

the children came to the study with their reactions ready-made. This use of a 

control study was ingenious and crucial. Imagine the researchers’ consternation if the 

differences between the two groups on the crayon task had been significant! 

Now, consider Sarnoff, Lighthall, Waite, Davidson, and Sarason’s (1958) classic 

study that predicted that English and American children would differ significantly in 

test anxiety but not in general anxiety. The hypothesis was carefully delineated: If 

eleven-plus examinations are taken, then test anxiety results. (The eleven-plus exami¬ 

nations are given to English schoolchildren at age 11 to help determine their educa¬ 

tional futures.) Since it was possible that there might be other independent variables 

causing the difference between the English and American children on test anxiety, 

the investigators evidently wished to rule out at least some of the major contenders. 

This they accomplished by carefully matching the samples: they probably reasoned 

that the difference in test anxiety might be due to a difference in general anxiety, 

since the measure of test anxiety obviously must reflect some general anxiety. If this 

was found to be so, the major hypothesis would not be supported. Therefore, Sarnoff 

et al., in addition to testing the relation between examination and test anxiety, also 

tested the relation between examination and general anxiety. The hypothesis that 

English children would have higher test anxiety scores than American children was 

supported by the data. They also found no significant difference between the two 

countries on general anxiety and that girls had a higher level of test anxiety than boys 

in both countries. Test anxiety was found to be positively correlated with grade level. 

The method of testing alternative hypotheses, though important in all research, 

is particularly important in nonexperimental studies, because it is one of the only 

ways to control the independent variables of such research. Lacking the possibility of 

randomization and manipulation, nonexperimental researchers, perhaps more 

so than experimentalists, must be very sensitive to alternative hypothesis-testing 

possibilities. 
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Evaluation of Nonexperimental Research 

The reader may feel from the preceding discussion that nonexperimental research is 

inferior to experimental research, but this conclusion would be unwarranted. It is easy 

to say that experimental research is “better” than nonexperimental research, or that 

experimental research tends to be “trivial,” or that nonexperimental research is 

“merely correlational.” Such statements, in and of themselves, are oversimplifications. 

What the student of research needs is a balanced understanding of the strengths and 

weaknesses of both kinds of research. To be committed unequivocally to experimen¬ 
tation or to nonexperimental research may be shortsighted. 

The Limitations of Nonexperimental Interpretation 

Nonexperimental research has three major weaknesses, two of which have already 

been discussed in detail: (1) the inability to manipulate independent variables, 

(2) the lack of power to randomize, and (3) the risk of improper interpretation. 

In other words, compared to experimental research, other things being equal, 

nonexperimental research lacks control; this lack is the basis of the third weakness: 
the risk of improper interpretation. 

The danger of improper and erroneous interpretations in nonexperimental 
research stems in part from the plausibility of many explanations of complex events. 

It is easy to accept the first and most obvious interpretation of an established 

relation, especially if one works without hypotheses to guide investigation. Research 

unguided by hypotheses, or research “to find out things,” is most often nonexperi¬ 

mental. Experimental research is more likely to be based on carefully stated 
hypotheses. 

Hypotheses are if-then predictions. In a research experiment the prediction is 

from a well-controlled x to a y. If the prediction holds true, we are relatively safe in 

stating the conditional: “If x, theny.” In a nonexperimental study under the same 

conditions, however, we are considerably less safe in stating the conditional for 

reasons discussed earlier. Careful safeguards are more essential in the latter case 

especially in the selection and testing of alternative hypotheses, such as the predicted 

ack of relation between the eleven-plus examination and general anxiety in the 

Sarnoff study. A predicted (or unpredicted) relation in nonexperimental research may 

e quite spurious but its plausibility and conformity to preconception may make it 

easy to accept. This is a danger in experimental research, but it is less of a danger 

t an it is in nonexperimental research because an experimental situation is so much 
easier to control. 

Nonexperimental research that is conducted without hypotheses, without pre¬ 
dictions, research in which data are just collected and then interpreted, is even more 

angerous in its power to mislead. Significant differences or correlations are located 

if possible, and then interpreted. The second author of this book has witnessed grad- 

ua e students collecting a large amount of data without hypotheses, and then using a 

computer program to perform every analysis possible with the hope of finding statis- 
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tical significance somewhere. After one or more significant differences are found, 

hypotheses are then developed to fit the analysis. To illustrate the problem with this, 

assume that an educator decides to study the factors leading to underachievement. 

Selected are a group of underachievers and a group of normal achievers. Each group 

takes a battery of tests. Next, the means of the two groups on the tests are computed, 

and the mean differences are analyzed with f-tests. Among, say, 12 such differences, 

three are significant. The investigator concludes, then, that underachievers and 

normal achievers differ on the variables measured by these three tests. Armed with 

these analyses, the investigator now feels willing to tell others what characterizes 

underachievers. Since all three tests seem to measure insecurity, the cause of under¬ 

achievement is therefore insecurity. 

When guided by hypotheses the credibility of the results of studies like the one 

just cited may be enhanced, but the results remain weak because they capitalize on 

chance: by chance alone one or two results of many statistical tests may be signifi¬ 

cant. Above all, plausibility can be misleading. A plausible explanation often seems 

compelling—even though quite wrong! It seems so obvious, for example, that 

conservatives and liberals are opposites. The research evidence, however, seems 

to indicate that they are not opposites (see Kerlinger, 1967, 1980, 1984). Another 

difficulty is that plausible explanations, once found and believed, are often hard to 

test. According to Merton (1949), post factum explanations do not lend themselves 

to nullifiability because they are so flexible. Whatever the observations, he says, new 

interpretations can be found to “fit the facts” (pp. 90-91). 

The Value of Nonexperimental Research 

Despite its weaknesses, much nonexperimental research must be done in psychology, 

sociology, and education simply because many research problems do not lend them¬ 

selves to experimental inquiry. A little reflection on some of the important variables 

in behavioral research—intelligence, aptitude, home background, achievement, 

social class, rigidity, ethnocentrism—will show that they are not manipulable. 

Controlled inquiry is possible, of course, but true experimentation is not. 

It can even be said that nonexperimental research is more important than experi¬ 

mental research. This is, of course, not a methodological observation. It means, 

rather, that most social scientific and educational research problems do not lend 

themselves to experimentation, although many do lend themselves to controlled 

inquiry of the nonexperimental kind. Consider Piaget’s studies of children’s thinking; 

the authoritarianism studies of Adorno, Frenkel-Brunswik, Levinson, and Sanford; 

the highly important study Equality of Educational Opportunity; and Cochran and 

Mays’s study of lies and safe-sex practices. Consider further the influence of the 

nonexperimental study concerning cigarette smoking and health problems. It led to 

specific legislation to have warnings printed on the product itself. If a tally of sound 

and important studies in the behavioral sciences and education were made, it is 

possible that nonexperimental studies would outnumber and outrank experimental 

studies. 
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Conclusions 

Students of research differ widely in their views of the relative values of experimental 
and nonexperimental research. There are those who exalt experimental research and 
decry nonexperimental research. There are those who criticize the alleged narrowness 
and lack of “reality” of experiments, especially laboratory experiments. These critics, 
especially in education, emphasize the value and relevance of nonexperimental 
research in “real life,” “natural” situations (for a review, see Keith, 1988). A rational 
position seems obvious. If it is possible, use experimentation because, other things 
being equal, one can interpret the results of most experiments with greater confidence 
that statements of the “If p, then q” kind are what we say they are. It would also seem 
desirable to test the “Ifp, then q” propositions in other settings. One should also look 
for nonexperimental evidence of the empirical validity of one’s hypotheses. So, if it is 
possible, conditional statements should be studied using both experimental and 
nonexperimental approaches. Some nonexperimental research studies are impressive 
and convincing. But how much more impressive and convincing it would be if similar 
conclusions arose from well-conducted experiments! Conversely, how much more 
convincing experimental conclusions are if substantiated by well-conducted nonex¬ 
perimental research. 

Replication is always desirable, even necessary. An important point being made is 
that replication of research does not only mean repetition of the same studies in the 
same settings. It can and should mean testing empirical implications of theory—in¬ 
terpreting theory broadly—in similar and dissimilar situations and experimentally 
and nonexperimentally. It is easier to ask for extensions of research from the labora¬ 
tory to the field. But researchers should also try to conceive of experimental testing 
of propositions arrived at nonexperimentally. Of course, this is more difficult and is 
seldom done. The point made here is that it should be conceived and, when possible 
done. 

To adopt a firm position that experimental or nonexperimental research is the 
only road to research heaven is dogmatic guruism. It may be very difficult, perhaps 
impossible in many cases, to do both experimental and nonexperimental research on 
the same problem. Can one experimentally manipulate Cochran and Mays’s gender 
variable or Chen, Lee, and Stevenson’s cultural variable, for example? Difficult does 
not mean impossible, of course. Our point is that experimental and nonexperimental 
possibihties should be explored and exploited if it is possible to do so. Moreover, it 
should not immediately be assumed that it is not possible to do research differently 
rom the way it has been done. There is no one methodological road to scientific va- 
i ity; there are many roads. And we should choose our roads for their appropriate¬ 

ness to the problems we study. This does not mean, however, that we cannot exploit 
an approach that is different from what we are used to. 

For some strange reason, perhaps the spurious belief in the alleged certitude of 
science, when people, including scientists, think of science and scientific research, 
they mistakenly believe there is only one “right” way to approach and do research. 

arely is such a mistake made in music, or art, or building a house. Science, too, has 
many roads, and experimental and nonexperimental approaches are two such broad 
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roads. Neither is right or wrong. But they are different. Our task has been to try to 

understand the differences and their consequences. We are far from finished with the 

subject, however. Maybe we will even attain a fair degree of understanding before we 

are through. When thinking about the different viewpoints on experimental and 

nonexperimental methods, we should consider the Chinese maxim that states, 

“There are many paths to the top of the mountain, but the view there is always the 

same.” 

Chapter Summary 

1. Nonexperimental studies are just as valuable as experimental studies when 

they are conducted correctly. 

2. One ingredient for a good nonexperimental study is the development of 

hypotheses before the start of the study. 

3. Replication is used to increase the credibility of results obtained from non¬ 

experimental studies. 

4. Nonexperimental research is defined as that which does not have an active 

independent variable. 

5. The most important difference between experimental and nonexperimental 

methods is control. 

6. Self-selection of participants is a major problem with nonexperimental 

studies. 

7. There are a large number of nonexperimental studies performed and 

published in the behavioral sciences. 

8. Some nonexperimental studies — such as the one relating cigarette smoking 

to health problems — have been highly influential. 

9. There are three major weaknesses in nonexperimental research: (i) indepen¬ 

dent variables cannot be manipulated, (ii) lack of randomization, and (iii) 

risk of improper interpretation. 

10. The stepwise elimination of alternative hypotheses is one way at arriving at a 

possible variable that “causes” changes in the dependent variable. 

11. Relatively new developments in nonexperimental studies have included the 

mathematical modeling of “cause-and-effect.” These models do not really 

imply cause-and-effect. 

Study Suggestions 

1. A social psychologist plans to investigate factors behind anti-Semitism. He 

believes that people who have had authoritarian parents and authoritarian up¬ 

bringing tend to be anti-Semitic. Would a research project designed to test 

this hypothesis be experimental or nonexperimental? Explain. 
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2. An educational psychologist decides to test the hypothesis that intelligence 

and motivation are the principal determinants of success in school. Would his 

research most likely be experimental or nonexperimental? Explain. 

3. An investigator is interested in the relation between role perception and social 
values. 

a. Which is the independent variable? the dependent variable? 

b. Whatever judgment you have made, can you justifiably reverse the vari¬ 
ables? 

c. Do you believe that a research project designed to investigate this problem 

would be basically experimental or nonexperimental? 

d. Can the investigator do two researches, one experimental and one nonex¬ 

perimental, both designed to test the same hypothesis? 

e. If your answer to (d) was “Yes,” will the variables of the two problems be 

the same? Assuming that the relations in both researches were significant, 
will the conclusions be substantially the same? 

4. In the study suggestions of Chapter 2, a number of problems and hypotheses 

were given. Take each of these problems and hypotheses and decide whether 

research designed to explore the problems and test the hypotheses would be 

basically experimental or nonexperimental. Can any of the problems and 
hypotheses be tackled both ways? 

5. McClelland (1961) presents data on the electrical production during 

1952 —1958 of countries high in n Achievement and low in n Achievement. 

Counting the number of countries in each of the four cells we obtain the 
results shown in Table 23.2. 

(ID Table 23.2 Countries High and Low in Achievement Motivation Whose 

Elect! ical Pi oduction Was Above or Below Expectation 
(McClelland study)* 

Above Expectation Below Expectation 

High Achievement Motivation 13 (65%) 7 (35%) 

Low Achievement Motivation 5 (26%) 14 (70%) 

The cell entries are number of countries that, for example, had high Achievement Motivation and 
whose electrical output was above expectation (13). The indices in the parentheses are the percent- 
ages. 

Do these results support McClelland’s hypothesis? (Hint: Calculate v2 and C as in 
the percentages to help interpret the table.) 
[Answer: X2 = 5.87, df= 1 (p < .05); C = .36. Yes, the hypothesis is supported.] 

Chapter 10. Use 
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6. The venturesome student may wish to take a plunge into stimulating, 

provocative, controversial, and important thinking. The famous Club of 

Rome report by Meadows, Meadows, Randers, and Behrens (1974) has out¬ 

raged some observers, startled almost anyone who has read it, and disturbed 

everyone. Using important societal variables—natural resources, pollution, 

population, for example — and their complex interactions, ultimate disaster to 

cities and the world has been predicted. The research on which the conclu¬ 

sions are based is entirely nonexperimental. Read this report. Do you think 

that the research’s nonexperimental character lowers its credibility? 

7. Read one (or all) of the following studies. They all are nonexperimental. 

Write down the reasons why you think they are nonexperimental based on the 
points made in this chapter. 

Goodman, S. H., & Emory, E. K. (1992). Perinatal complications in births to 

low socioeconomic status schizophrenic and depressed women. Journal of 

Abnormal Psychology, 101, 225-229. 

Koniak-Griffin, D., & Brecht, M. (1995). Linkages between sexual risk tak¬ 

ing, substance use, and AIDS knowledge among pregnant adolescents and 

young mothers. Nursing Research, 44, 340-346. 
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■ A Field Study: Newcomb's Bennington College Study 
Characteristics and Criteria of Laboratory Experiments, Field Experiments, and 
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* Qualitative Research 

■ Addendum: The Holistic Experimental Paradigm 

Social scientific research can be divided into four major categories: laboratory 

experiments, field experiments, field studies, and survey research. This breakdown 

stems from two sources: the distinction between experimental and nonexperimental 

research and that between laboratory and field research. This chapter owes much to 

the material from three books: (1) Festinger and Katz (1953), (2) Taylor and Bodgan 

(1998), and (3) Padgett (1998). Although the Festinger and Katz publication is over 

forty-five years old, it remains a valuable source on many aspects of behavioral re¬ 

search methodology. We begin this chapter by presenting examples of the laboratory 

experiment, two field experiments, and a field study. We do this so that the reader can 

see the major components of each method and the differences between each method. 

575 
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A Laboratory Experiment: Miller's Studies of the 
Learning of Visceral Responses 

A brilliant series of experiments by Miller (1969, 1971) has upset a long-held and 

cherished belief: that learning occurs only with voluntary responses, and that the 

involuntary autonomic system is subject only to classical conditioning. This, in 

effect, says that responses like moving the hand and talking can be brought under 

control and thus taught; but that involuntary responses, like heartrate, intestinal 

contractions, and blood pressure, cannot be brought under instrumental control, and 

thus not “taught.” To understand Miller’s studies, we must define certain psychologi¬ 

cal terms. In classical conditioning a neutral stimulus, inherently unable to produce a 

certain response, becomes able to by being associated repeatedly with a stimulus 

inherently capable of doing so. The most famous example is Pavlov’s dog salivating at 

the clicking of a metronome, which had been repeatedly associated with meat pow¬ 

der. In instrumental or operant conditioning, a reinforcement given to an organism im¬ 

mediately after it has made a response produces an increment in the response. 

Reward a response and it will be repeated. Voluntary responses or behavior are 

thought to be superior, presumably because they are under the control of the individ¬ 

ual, whereas involuntary responses are inferior because they are not controlled. It has 

been believed that involuntary responses can be modified only by classical condition¬ 

ing and not by instrumental conditioning. In other words, the possibility of “teach¬ 

ing the heart, stomach, and blood is remote, since classical conditioning situations 

are difficult to come by. If the organs are subject to instrumental conditioning, how¬ 

ever, they can be brought under experimental control, and can be “taught”; and thev 
can “learn.” 

Miller’s work has shown that, through instrumental conditioning, the heartrate 

can be changed, stomach contractions can be altered, and even urine formation can 

be increased or decreased! This discovery is of enormous theoretical and practical 

importance. To show the nature of laboratory experiments, we take one of Miller’s 
interesting and creative experiments. 

The idea of the experiment is simple: reward one group of rats when their 

heartrates go up, and reward another group when their heartrates go down. This is a 

straightforward example of the two-group design discussed earlier. Miller’s big prob¬ 

lem was control. There are a number of other causes of changed heartrate — for 

example, muscular exertion. To control such extraneous variables, Miller and a 

colleague (Trowill) paralyzed the rats with curare. But if the rats were paralyzed, 

what could be used as reward? They decided to use direct electrical stimulation of 

the biain. The dependent variable, heartrate, was continuously recorded with the 

electrocardiograph. When a small change in heartrate occurred (in the “right” way: 

up for one group, down for the other), an animal was given an electrical impulse to a 

reward center of its brain (see also, Olds & Fobes, 1981, brain research demonstrat¬ 

ing that mild electrical stimulation of a certain part of the brain acts as a reward). 
This was continued until the animals were “trained.” 
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The increases and decreases of heartrate were statistically reliable but small: only 

5% in each direction. So Miller and another colleague (DiCara) used the technique 

known as shaping which, in this case, means rewarding first small changes and then 

requiring increasing changes in rate to obtain the rewards. This increased the 

heartrate changes to an average of 20% in either direction. Moreover, further re¬ 

search, using escape from mild shock as reinforcement, showed that the animals re¬ 

membered what they had learned and “differentiated” the heart responses from other 
responses. 

Miller has been successful in “training” a number of other involuntary responses: 

intestinal contraction, urine formation, and blood pressure, for example. In short, 

visceral responses can be learned and can be shaped. But can the method be used with 

people? Miller says that he believes people are as smart as rats, but that it has not yet 

been completely proved. Although the use of curare might present difficulty, people 
can be hypnotized, says Miller. 

A Field Experiment: Rind and Bordia's Study on the 

Effects of a Server's "Thank You" and Personalization on 

Restaurant Tipping 

Does the common practice among servers to write “thank you” on the back of the 

dining bill and deliver it in such a way that the diners will see the server’s gratitude 

produce increased tips? If this does produce increased tips, then at an extremely low 

cost the server stands to benefit by this action. Rind and Bordia (1995) conducted 

this field experiment to determine the effectiveness of using this technique; namely, 

writing “thank you” and personalizing the server-diner interaction by adding the 

server’s name. This study was conducted at an upscale restaurant in Philadelphia dur¬ 

ing the lunch period for five days. Fifty-one diners participated in the study. All the 

servers were female. The independent variable was Impression and consisted of three 

levels: (1) the back of the diner’s bill either contained nothing, (2) the handwritten 

words “thank you,” or (3) the words “thank you” plus the server’s first name. Rind 

and Bordia hypothesized using impression management theory that the addition of 

written gratitude and personalization would lead to higher tips than if the server 

wrote nothing on the back of the bill. They also hypothesized that the personaliza¬ 

tion of the bill would lead to higher amounts of tips than no personalization. Each 

level or condition of the independent variable was determined randomly for each 

dining party. Prior to delivering the bill to the diners, the server picked one of three 

pennies (dated 1981, 1982, and 1983) from her pocket randomly. If she picked the 

1981 coin, the server wrote nothing on the backside of the bill. If she selected the 

1982 coin, the server wrote “thank you” on the back of the bill. If the coin chosen 

was 1983, the server wrote “thank you” on the back of the bill and also added her 

name. For each group of diners, the size of the tip, the size of the bill, the size of the 

dining party, and the method of payment were recorded. The results of this study 



578 Part Seven ■ Types of Research 

showed that adding the words “thank you” to the bill resulted in significantly higher 

tips than if nothing was written on the bill (18% of the bill versus 16.3%). There was 

no significant differences between the written gratitude and the written gratitude 

plus personalization. Rind and Bordia mention that there are competing theories on 

why they got this result. However, from their results, it appears that this practice is a 

beneficial one for the server. These researchers also note the limitations of their 

experiment. For one, their choice of conducting the study at an upscale restaurant 

may produce different results than a study done at a typical restaurant. The use of 

only female servers leaves open the possibility that customers may treat male servers 
differently. 

A Field S tudy: Newcomb's Bennington College Study 

Newcomb (1943) conducted one of the most important classical studies concerning 

the influence of a college environment on students. In this study, Newcomb studied 

the entire student body of Bennington College (about 600 young women) from 1935 

to 1939. An unusual facet of the study was Newcomb’s attempt to explain both social 

and personality factors in influencing attitude changes in the students. Although 

other hypotheses were tested, the principal hypothesis of the Bennington study was 

that new students would converge on the norms of the college group, and that the 

more the students assimilated to the college community, the greater would be the 
change in their social attitudes. 

Newcomb used a number of paper-and-pencil attitude scales, written reports on 

students, and individual interviews. The study was longitudinal and nonexperimental. 

The independent variable, while not easy to categorize, can be said to be the social 

norms of Bennington College. The dependent variables were social attitudes and 
certain behaviors of the students. 

Newcomb found significant changes in attitudes between freshmen, on the one 

hand, and juniors and seniors, on the other. The changes were toward less conser¬ 

vatism on a variety of social issues. For example, the political preferences of juniors 

and seniors in the 1936 presidential election were much less conservative than those 

of freshmen and sophomores. Of 52 juniors and seniors, 15% preferred Landon 

(Republican); whereas of 52 freshmen, 62% preferred Landon. The percentages of 

preferences for Roosevelt (Democrat) were 54% and 29%. The mean scores of all 

students for four years on a scale designed to measure political and economic conser¬ 

vatism were freshmen, 74.2; sophomores, 69.4; juniors, 65.9, and seniors, 62.4. 
Evidently the college had affected the students’ attitudes. 

Newcomb asked a control” question: Would these attitudes have changed in 

other colleges? To answer this question, Newcomb administered his conservatism 

measures to students of Williams College and Skidmore College. The comparable 

mean scores of Skidmore students — freshmen through seniors—were 79.9, 78.1, 

77.0, and 74.1. It seems that Skidmore (and Williams) students did not change as 

much, and as consistently over time, as did the Bennington students. 
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Newcomb, Koenig, Flacks, and Warwick (1967) reported a follow-up study on 

the students at Bennington College after 25 years. They found that the changes had 
lasted and that the Bennington influence was persistent. 

Characteristics and Criteria of Laboratory 

periments, Field Experiments, and Field Studies 

A laboratory experiment is a research study in which the variance of all, or nearly all, of 

the possible influential independent variables not pertinent to the immediate prob¬ 

lem of the investigation is kept at a minimum. This is accomplished by isolating the 

research in a physical situation apart from the routine of ordinary living, and by 

manipulating one or more independent variables under rigorously specified, opera¬ 
tionalized, and controlled conditions. 

Strengths and Weaknesses of Laboratory Experiments 

The laboratory experiment has the inherent virtue of the possibility of relatively 

complete control. The laboratory experimenter can, and often does, isolate the 

research situation from the life around the laboratory by eliminating the many 

extraneous influences that may affect the independent and dependent variables. 

In addition to situation control, laboratory experimenters can ordinarily use 

random assignment and can manipulate one or more independent variables. There 

are other aspects to laboratory control: the experimenter in most cases can achieve a 

high degree of specificity in the operational definitions of variables. The relatively 

crude operational definitions of field situations, such as many of those associated with 

the measurement of values, attitudes, aptitudes, and personality traits, do not plague 

the experimentalist, though the definitional problem is never simple. The Miller 

(1969, 1971) experiment is a good example. The operational definitions of 

reinforcement and heartrate change are precise and highly objective. 

Closely allied to operational strength is the precision of laboratory experiments. 

Precise means accurate, definite, and unambiguous. Precise measurements are made 

with precision instruments. In variance terms, the more precise an experimental pro¬ 

cedure is, the less the error variance. The more accurate or precise a measuring 

instrument is, the more certain we can be that the measures obtained do not vary 
much from their “true” values. 

Precise laboratory results are achieved mainly by controlled manipulation and 

measurement in an environment from which possible “contaminating” conditions 

have been eliminated. Research reports of laboratory experiments usually specify in 

detail how the manipulations were done and the means taken to control the environ¬ 

mental conditions under which they were done. By specifying the conditions of the 

experiment exactly, we reduce the risk that participants may respond equivocally and 

thus introduce random variance into the experimental situation. Miller’s experiment 

is a model of laboratory experimental precision. 
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The greatest weakness of the laboratory experiment is probably the lack of 

strength of independent variables. Since laboratory situations are, after all, situations 

that are created for special purposes, it can be said that the effects of experimental 

manipulations are usually weak. Increases and decreases in heartrate by electrical 

brain reinforcement, while striking, were relatively small. Compare this to the rela¬ 

tively large effects of independent variables in realistic situations. In the Bennington 

study, for example, the college community apparently had a massive effect. In labora¬ 

tory research on conformity, only small effects are usually produced by group pres¬ 

sure on individuals. Compare this to the relatively strong effect of a large group ma¬ 

jority on an individual group member in a real-life situation. The board of education 

member who knows that a desired action goes against the wishes of the majority of 

his or her colleagues, and perhaps the majority of the community, is under heavy 

pressure to converge on the norm. 

One reason for the preoccupation with laboratory precision and refined statistics 

is the weakness of laboratory effects. To detect a significant difference in the 

laboratory requires situations and measures with a minimum of random noise, and 

accurate and sensitive statistical tests that will show relations and significant differ¬ 
ences when they exist. 

Another weakness is a product of the first: the artificiality of the experimental re¬ 

search situation. Actually, it is difficult to know if artificiality is a weakness or simply 

a neutral characteristic of laboratory experimental situations. When a research situa¬ 

tion is deliberately contrived to exclude the many distractions of the environment, it 

is perhaps illogical to label the situation with a term that expresses in part the result 

being sought. The criticism of artificiality does not come from experimenters who 

know that experimental situations are artificial; it comes from individuals lacking an 

understanding of the purposes of laboratory experiments. 

The temptation to interpret the results of laboratory experiments incorrectly is 

great. While Miller’s results are believed by social scientists to be highly significant, 

they can only be tentatively extrapolated beyond the laboratory. Similar results may 

be obtained in real-life situations, and there is evidence that they do in some cases. 

But this is not necessarily so. The relations must always be tested anew under non¬ 

laboratory conditions. Miller’s research, for instance, will have to be carefully and 

cautiously done with human beings in hospitals and even in schools. 

Although laboratory experiments have relatively high internal validity, they lack 

external validity. Earlier we asked the question: Did X, the experimental manipula¬ 

tion, really make a significant difference? The stronger our confidence in the “truth” 

of the relations discovered in a research study, the greater the internal validity of the 

study. When a relation is discovered in a well-executed laboratory experiment, we 

generally can have considerable confidence in it, since we have exercised the maxi¬ 

mum possible control of the independent variable and other possible extraneous in¬ 

dependent variables. When Miller “discovered” that visceral responses could be 

learned and shaped, he could be relatively sure of the “truth” of the relation between 

reinforcement and visceral response in the laboratory. He had achieved a high degree 
of control and of internal validity. 
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One can say: If I study this problem using field experiments, maybe I will find the 

same relation. This is an empirical, not a speculative, matter; we must put the rela¬ 

tion to test in the situation to which we wish to generalize. If a researcher finds that 

individuals converge on group norms in the laboratory, does the same or similar phe¬ 

nomenon occur in community groups, faculties, and legislative bodies? This lack of 

external validity is the basis of the objections of many educators to the animal studies 

of learning theory. Their objections are only valid if an experimenter generalizes 

from the behavior and learning of laboratory animals to the behavior and learning of 

children. Capable experimentalists, however, rarely blunder in this fashion — they 
know that the laboratory is a contrived environment. 

Purposes of the Laboratory Experiment 

Laboratory experiments have three related purposes. First, they are a means of 

studying relations under “pure” and uncontaminated conditions. Experimenters ask: 

Is x related to y} How is it related to y} How strong is the relation? Under what 

conditions does the relation change? They seek to write equations of the form y - 

f (x), make predictions on the basis of the function, and see how well and under what 
conditions the function performs. 

A second purpose should be mentioned in conjunction with the first purpose: 

the testing of predictions derived from theory, primarily, and other research, secon¬ 
darily. 

A third purpose of laboratory experiments is to refine theories and hypotheses, 

to formulate hypotheses related to other experimentally or nonexperimentally tested 

hypotheses and, perhaps most important, to help build theoretical systems. This was 

one of Miller’s major purposes. Although some laboratory experiments are conducted 

without this purpose most laboratory experiments are, of course, theory-oriented. 

The aim of laboratory experiments, then, is to test hypotheses derived from the¬ 

ory, to study the precise interrelations of variables and their operation, and to control 

variance under research conditions that are uncontaminated by the operation of ex¬ 

traneous variables. As such, the laboratory experiment is one of the great inventions 

of all time. Although weaknesses exist, they are weaknesses only in a sense that is re¬ 

ally irrelevant. Conceding the lack of representativeness (external validity) the well- 

done laboratory experiment still has the fundamental prerequisite of any research: 
internal validity. 

The Field Experiment 

A field experiment is a research study conducted in a realistic situation in which one 

or more independent variables are manipulated by the experimenter under condi¬ 

tions as carefully controlled as the situation will permit. The contrast between the 

laboratory experiment and the field experiment is not sharp: the differences are 

mostly matters of degree. Sometimes it is hard to label a particular study “laboratory 
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experiment” or “field experiment.” Where the laboratory experiment has a maximum 

of control, most field experiments must operate with less control, a factor that is 

often a severe handicap. 

Strengths and Weaknesses of Field Experiments 

Field experiments have values that especially recommend them to social psycholo¬ 

gists, sociologists, and educators because they are admirably suited to many of the 

social and educational problems of interest to social psychology, sociology, and 

education. Because independent variables are manipulated, and randomization is 

used, the criterion of control can be satisfied — at least theoretically. 

The control of the experimental field situation, however, is rarely as tight as that 

of the laboratory. We have here both a strength and a weakness. The investigator in a 

field experiment, though having the power of manipulation, is always faced with the 

unpleasant possibility that the independent variables are contaminated by uncon¬ 

trolled environmental variables. We stress this point because the necessity of control¬ 

ling extraneous independent variables is particularly critical in field experiments. The 

laboratory experiment is conducted in a tightly controlled situation, whereas the field 

experiment takes place in a natural, often loose, situation. One of the main preoccu¬ 

pations of the field experimenter, then, is to try to make the research situation more 

closely approximate the conditions of the laboratory experiment. Of course this is 

often a difficult goal to reach, but if the research situation can be kept tight, the field 

experiment is powerful because one can, in general, have greater confidence that 
relations are indeed what one says they are. 

As compensation for dilution of control, the field experiment has two or three 

unique virtues. The variables in a field experiment usually have a stronger effect than 

those of laboratory experiments. The effects of field experiments are often strong 

enough to penetrate the distractions of experimental situations. The principle is: The 

more realistic the research situation, the stronger the variables. This is one advantage 

of doing research in educational settings. For the most part, research in school 

settings is similar to routine educational activities, and thus need not necessarily be 

viewed as something special and apart from school life. Despite the pleas of many 

educators for more realistic educational research, there is no special virtue in realism 

as realism. Realism simply increases the strength of the variables. It also contributes 

to external validity, since the more realistic the situation, the more valid are 
generalizations to other situations likely to be. 

Another virtue of field experiments is their appropriateness for studying complex 

social and psychological influences, processes, and changes in lifelike situations. 

Click, DeMorest, and Hotze (1988), for example, studied the effects of group 

membership, personal space, and requests for help on people’s interpersonal anxiety 

and compliance. These researchers did their research at a shopping mall using actual 

shoppers as participants. Schmitt, Dube, and Leclerc (1992) studied a similar prob¬ 

lem on personal space by examining intrusions into waiting lines. These researchers 

conducted three laboratory experiments and a field experiment, in an attempt to de¬ 

termine whether behavioral reactions to the intrusions are based on personal or so- 
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cial interests. Jaffe (1991) did a field experiment on advertising targeted at women. In 

this research participants evaluated print advertisement that contained different posi¬ 

tioning of women. The position used was either the traditional woman (nurturing, 

family-oriented) or the modern woman (successful in career and family). Rabinowitz, 

Colmar, Elgie, Hale, Niss, Sharp, and Sinclito (1993) studied the complex behavior 

of cashiers at souvenir shops that cater to tourists. These researchers wanted to know 

whether the mishandling of money was due to dishonesty, indifference, or careless¬ 

ness. The Wogalter and Young (1991) study on the effectiveness of voice and printed 

warnings in handling hazardous substances, or a slippery floor in a shopping mall, 

can be very useful for those concerned with safety issues in an industrial or consumer 

setting. Wogalter and Young did two laboratory studies and one field experiment to 

demonstrate that the combination of printed and voice warnings were the most 

effective in producing behavioral compliance of people. All of these studies used 

experimental manipulation on participants from the real world in real-world settings. 

Laboratory experiments are suited mainly for testing aspects of theories, whereas 

field experiments are suited both to testing hypotheses derived from theories and to 

finding answers to practical problems. Methods experiments in education, usually 

practical in purpose, often seeks to determine which method among two or more 

methods is best for a certain purpose. Industrial research and consumer research de¬ 

pend heavily on field experiments. Much social psychological research, on the other 

hand, is basically theoretical. The Schmitt et al. (1992) study mentioned above tested 

two theories about the behavioral reactions of people waiting in line who have expe¬ 

rienced an intrusion. The two theories tested were the moral outrage theory and the 

individual cost theory. The Glick et al. (1988) and Jaffe (1991) field experiments were 

also theory-oriented. 

Flexibility and applicability to a wide variety of problems are important charac¬ 

teristics of field experiments. The only two limitations are whether one or more in¬ 

dependent variables can be manipulated, and whether the practical exigencies of the 

research situation are such that a field experiment can be done on the particular 

problem under study. Surmounting these two limitations is not easy. When it can be 

done, a wide range of theoretical and practical problems is open to experimentation. 

As indicated earlier, the main weaknesses of field experiments are practical. 

Manipulation of independent variables and randomization are perhaps the two most 

important problems. They are particularly acute in research in school settings. 

Manipulation, although quite possible, may often not be practicable because, say, 

parents object when their children, who happen to have been assigned randomly to a 

control group, will not get a desirable experimental treatment. Or there may be 

objection to an experimental treatment because it deprives children of some gratifi¬ 

cation, or places them into conflict situations. 

There is no real reason why randomization cannot be used in field experiments. 

Nevertheless, difficulties are frequently met. Unwillingness to break up class groups 

or to allow children to be assigned to experimental groups at random are examples. 

Even if random assignment is possible and permitted, the independent variable may 

be seriously blurred, because the effects of the treatments cannot be isolated from 

other effects. Teachers and children, for example, may discuss what is happening 
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during the course of the experiment. To prevent such muddying of the variables, the 

experimenter should explain to administrators and teachers the necessity for random 

assignment and careful control. 

An experimental field characteristic of a different nature is to some experi¬ 

menters a weakness, and to others a strength. Field investigators have to be, at least 

to some extent, socially skilled operators. They should be able to work with, talk to, 

and convince people of the importance and necessity of their research. They should 

be prepared to spend many hours, even days and weeks, of patient discussion with 

people responsible for the institutional or community situation in which they are to 

work. For example, if they are to work in a rural school system, they should have 

knowledge of rural, as well as general, educational problems, and of the particular 

rural system they wish to study. Some researchers become impatient with these pre¬ 

liminaries because they are anxious to get the research job done. They find it difficult 

to spend the time and effort necessary in most practical situations. Others enjoy the 

inevitable socializing that accompanies field research. Good advice on handling this 
aspect of field situations is given by French (1953). 

An important obstacle to good design, an obstacle that seems ordinarily to be 

overlooked, is the attitude of the researcher. For example, the planning of educa¬ 

tional research often seems to be characterized by a negative attitude epitomized by 

such statements as, “That can’t be done in schools,” “The administrators and teach¬ 

ers won t allow that,” and “Experiments can’t be done on this problem in that situa¬ 

tion.” Starting with attitudes like these compromises any good research design be¬ 

fore the research even begins. If a research design calls for the random assignment of 

teachers to classes, and if the lack of such assignment seriously jeopardizes the inter¬ 

nal validity of the proposed study, every effort should be made to assign teachers at 

random. Educators planning research seem to assume that the administrators or the 

teachers will not permit random assignment. This assumption is not necessarily 
correct, however. 

The consent and cooperation of teachers and administrators can often be ob¬ 

tained if a proper approach, with adequate and accurate orientation, is used, and if 

explanations of the reasons for the use of specific experimental methods are given. 

The points being emphasized are these: Design research to obtain valid answers to 

the research questions. Then, if it is necessary to make the experiment possible, 

modify the ‘ideal” design. With imagination, patience, and courtesy, many of the 

practical problems of implementation of research design can be solved satisfactorily. 

One other weakness inherent in field experimental situations is lack of precision. 

In the laboratory experiment it is possible to achieve a high degree of precision or ac¬ 

curacy, so that laboratory measurement and control problems are usually simpler 

than those in field experiments. In realistic situations, there is always a great deal of 

systematic and random noise. In order to measure the effect of an independent vari¬ 

able on a dependent variable in a field experiment, it is not only necessary to maxi¬ 

mize the variance of the manipulated variable and any assigned variables, but also to 

measure the dependent variable as precisely as possible. But in realistic situations, 

such as in schools and community groups, extraneous independent variables abound, 

d measures of dependent variables, unfortunately, are sometimes not sensitive 
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enough to pick up the messages of our independent variables. In other words, the 

dependent variable measures are often so inadequate they cannot pick up all the 

variance that has been engendered by the independent variables. 

Field Studies 

Field, studies are nonexperimental scientific inquiries aimed at discovering the 

relations and interactions among sociological, psychological, and educational vari¬ 

ables in real social structures. In this book any scientific studies (large or small), that 

systematically pursue relations and test hypotheses, that are nonexperimental, and 

that are done in life situations (e.g., communities, schools, factories, organizations, 
and institutions) will be considered field studies. 

The investigator in a field study first looks at a social or institutional situation, 

and then studies the relations among the attitudes, values, perceptions, and behaviors 

of individuals and groups in the situation. The field study investigator ordinarily ma¬ 

nipulates no independent variables. Before we discuss and appraise the various types 

of field studies, it will be helpful to consider examples. We have already examined 

field studies in earlier chapters and in this chapter: the Newcomb Bennington study. 

We now briefly examine two smaller field studies. 

Anderson, Warner, and Spencer (1984), studied the inflation bias of job appli¬ 

cants. The participants in this study were actual applicants for positions with the state 

of Colorado. Job applicants usually claim they have more experience and more knowl¬ 

edge than they really do. To measure the degree of this inflation, Anderson et al. cre¬ 

ated nonexistent tasks and asked the applicants how much experience they had with 

these tasks. The results showed that nearly half of the applicants claimed experience in 

one or more nonexistent tasks. Those applicants that claimed to have a great amount 

of experience at nonexistent tasks also overinflated their ability on real tasks. This 

field study yields important information for those involved in making hiring decisions. 

This was a field study because there was no manipulated independent variable. Real 

and bogus tasks were listed on a questionnaire and participants were asked to indicate 

the amount of experience they had on each task using a 4-point scale. Note that this 

study was not done in the laboratory, and used unsuspecting participants. 

The field study by Tom and Lucey (1997) studied waiting time in checkout 

stations in supermarkets and customer satisfaction with the checker and the store. 

These researchers studied both fast and slow checkers during busy and nonbusy 

periods of store operations. The researchers recorded the waiting times for each 

customer, and also interviewed the customer as he or she departed from the store. 

The results showed that customers were generally more satisfied with the store and 

cashier when the perceived waiting time was short. However, Tom and Lucey noted 

that this is not always the case. In one of the two stores used in the study, they found 

some customers reporting higher satisfaction with slow cashiers. Further inquiries 

revealed that cashiers were slower because they took the time to give the customer 

more personal attention. 

Note that the problems of these field studies were attacked nonexperimentally: 

neither randomization nor experimental manipulation was possible. In the Jones and 
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Cook study, data were collected directly from students at two universities. In the 

Tom and Lucey study only two grocery stores were used. Neither of these studies 

had randomization or an active independent variable, yet both were able to provide 

useful information. 

Types of Field Studies 

Katz (1953) has divided field studies into two broad types: exploratory and hypothesis 

testing. The exploratory type, says Katz, seeks what is rather than predicts relations to 

be found. The massive Equality of Educational Opportunity, cited in Chapter 23, exem¬ 

plifies this type of field study. Exploratory studies have three purposes: to discover 

significant variables in the field situation, to discover relations among variables, 

and to lay the groundwork for later, more systematic and rigorous testing of 
hypotheses. 

Throughout our book to this point, the use and testing of hypotheses have been 

emphasized. It is well to recognize, though, that there are activities preliminary to 

hypothesis testing in scientific research. In order to achieve the desirable aim of hy¬ 

pothesis testing, preliminary methodological and measurement investigation must 

often be done. Some of the finest work of the twentieth century has been in this area. 

An example is that done by the factor analyst who is preoccupied with the discovery, 

isolation, specification, and measurement of underlying dimensions of achievement, 
intelligence, aptitudes, attitudes, situations, and personality traits. 

The second subtype of exploratory field studies—research aimed at discovering 

or uncovering relations—is indispensable to scientific advance in the social sciences. 

It is necessary to know, for instance, the correlates of variables. Indeed, the scientific 

meaning of a construct springs from the relations it has with other constructs. As¬ 

sume that we have no scientific knowledge of the construct “intelligence”; we know 

nothing of its causes or concomitants. For example, suppose that we know nothing 

whatsoever about the relationship of intelligence to achievement. It is conceivable 

that we might do a field study in school situations. We might carefully observe a 

number of boys and girls who are said to be intelligent or nonintelligent by teachers 

(though here we introduce contamination because teachers must obviously judge in¬ 

telligence, at least in part, by achievement). We may notice that a larger number of 

more intelligent children come from homes of higher socioeconomic levels; they 

solve problems in class more quickly than other children; have a broader vocabulary, 

and so on. We now have some clues to the nature of intelligence, so that we can at¬ 

tempt to construct a simple measure of intelligence. Note that our “definition” of in¬ 

telligence springs from what presumably intelligent and nonintelligent children do. 
A similar procedure can be followed with the variable “achievement.” 

Strengths and Weaknesses of Field Studies 

Field studies are strong in realism, significance, strength of variables, theory orienta¬ 

tion, and heuristic quality. The variance of many variables in actual field settings is 
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large, especially when compared to the variance of the variables of laboratory experi¬ 

ments. Consider the contrast between the impact of social norms in a laboratory ex¬ 

periment like Sherif’s (1963), and the impact of these norms in a community where, 

say, certain actions of teachers are frowned upon and others approved. Consider also 

the difference between studying cohesiveness in the laboratory where participants are 

asked, for example, whether they would like to remain in a group (measure of cohe¬ 

siveness), and studying the cohesiveness of a school faculty where staying in the 

group is an essential part of one’s professional future. Compare the group atmos¬ 

phere in the Bennington College Study and that in a field experiment where college 

instructors playing different roles engender different atmospheres. Variables such as 

social class, prejudice, conservatism, cohesiveness, and social climate can have strong 

effects in these studies. The strength of variables is not an unalloyed blessing, how¬ 

ever. In a field situation there is usually so much noise in the channel that even 

though the effects may be strong and the variance great, it is not easy for the experi¬ 
menter to separate the variables. 

The realism of field studies is obvious. Of all types of studies, they most closely 

resemble real life. There can be no complaint of artificiality here. (The remarks 

about realism in field experiments apply, a fortiori, to the realism of field studies.) 

Field studies are highly heuristic and ad hoc. One of the research difficulties of a 

field study is to keep it contained within the limits of the problem. Hypotheses fre¬ 

quently fling themselves at one because the field is rich in discovery potential. For 

example, one may wish to test the hypothesis that the social attitudes of board of ed¬ 

ucation members is a determinant of board of education policy decisions. After start¬ 

ing to gather data, however, many interesting notions arise that can deflect the 

course of the investigation. 

Despite these strengths, the field study is a scientifically weak cousin of labora¬ 

tory and field experiments. Its most serious weakness, of course, is its nonexperimen- 

tal character. Thus statements of relations are weaker than they are in experimental 

research. To complicate matters, the field situation almost always has a plethora of 

variables and variance. Think of the many possible independent variables that we can 

choose as determinants of delinquency or of school achievement. In an experimental 

study, these variables can be controlled to a large extent, but in a field study they 

must somehow be controlled by more indirect and less satisfactory means. 

Another methodological weakness is the lack of precision in the measurement 

of field variables. In field studies the problem of precision is more acute, naturally, 

than in field experiments. The difficulty encountered by Astin (1968) in measur¬ 

ing college environment is one of many similar examples. Administrative environ¬ 

ment, for example, was measured by students’ perceptions of aspects of the environ¬ 

ment. Much of the lack of precision is due to the greater complexity of field 

situations. 
Studies of organizations, for example, are mostly field studies, and the measure¬ 

ment of organizational variables well illustrates the difficulties. “Organizational Ef¬ 

fectiveness” appears to be as complex as “Teacher Effectiveness.” For a thorough and 

enlightening discussion see Katz and Kahn (Chapter 8, 1978). This superb book well 

repays careful reading and study. 
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Other weaknesses of field studies are practical problems: feasibility, cost, sam¬ 

pling, and time. These difficulties are really potential weaknesses—none need be a 

real weakness. The most obvious questions that can be asked are: Can the study be 

done with the facilities at the investigator’s disposal? Can the variables be measured? 

Will it cost too much? Will it take too much time and effort? Will the participants be 

cooperative? Is random sampling possible? Anyone contemplating a field study has to 

ask and answer such questions. In designing research it is important not to underesti¬ 

mate the large amounts of time, energy, and skill necessary for the successful comple¬ 

tion of most field studies. The field researcher needs to be a salesperson, administra¬ 
tor, and entrepreneur, as well as investigator. 

Qualitative Research 

One area within field studies is qualitative research. Up until now, we have pretty 

much talked exclusively about quantitative research. Field studies with a quantitative 

emphasis have the problems mentioned in the last section. However, qualitative re¬ 

search is different since it does not rely on the use of numbers or measurements. 

This area of qualitative research has been growing in interest mainly because re¬ 

searchers have come to realize that not all studies can, or should be, quantified. 

There are areas for research where quantitative approaches cannot adequately cap¬ 

ture the appropriate information. For example, quantitative research would be un¬ 

able to capture valuable information that could be used to understand the life experi¬ 

ences of kidney patients who are on dialysis. Quantitative research can provide 

doctors and nurses with information on the relation between clinical factors (such as 

nutrition), and outcome measures (such as survival rates), but cannot tell us what the 

dialysis patient experiences. It is through a description of these experiences that 

could allow the development ot better rehabilitation programs. The term “qualitative 

research is used here to refer to social and behavioral research based on unobtrusive 

field observations that can be analyzed without using numbers or statistics. We men¬ 

tioned earlier that those involved with operant learning or Skinnerian research also 

are not interested in using inferential statistics. However, they depart from qualita¬ 

tive research in that they do use numbers and measurements. The participants in the 

qualitative research studies may not be aware that they are being observed or studied. 

How much the participant is actively involved in the research process varies. Unlike 

single-subject or time-series research, the participant is unaware that any measure¬ 

ments are taken at all. Dooley (1995) presents an outstanding example of qualitative 

research with the study of cognitive dissonance theory. Dooley sites the research of 

Festinger (1956) that studied people who predict the end of the world but do not see 

then prediction come true. This type of research requires a research methodology 

that is nonquantitative and unobtrusive. It would be very difficult to have these peo¬ 

ple who belong to a sect come into a laboratory at a university to be studied The re¬ 

searcher really cannot effectively study these people who have just experienced cog¬ 

nitive dissonance, by having them complete a questionnaire or participate in a 

structured interview. Instead, the researcher must be as unobtrusive as possible. The 

researcher would pose as someone who is curious or concerned, or might even join 
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the sect as an observer and find the required information in a nonthreatening way. 

The participants are studied without them noticing that they are being studied. 

However, Festinger did the research a long time ago (1956). In today’s environment, 

it would be extremely dangerous for researchers to join a sect for the purpose of 

studying them. Why? In recent years, especially in 1997, all members of a sect called 

Heaven’s Gate committed suicide with the coming of the Hale-Bopp comet. The 

male members of this sect were subjected to severe physical/surgical alterations. 

There are also a number of powerful sects that utilized strong programming meth¬ 

ods and hypnotic drugs on their members to keep them under control. So, although 

Dooley’s example is a good illustration of qualitative research, the authors of this 

textbook do not recommend to anyone interested in doing qualitative research on 
sects to join or become a member of the sect. 

It may be somewhat safer to consider a study done by Rosenhan (1973). Rosen- 

han was interested in the how psychiatric hospitals made psychiatric diagnoses, and 

what the experiences of a mental patient would be like. Rosenhan had eight of his 

confederates pose as psychiatric patients suffering from hallucinations. Each of these 

pseudopatients were admitted to different hospitals. During their stay, the pseudopa¬ 

tients never exhibited any symptoms. Rosenhan’s confederates made observations of 

the hospital conditions, how they were treated, and the behavior of the staff and 

other patients. Rosenhan reported that the hospital staff never knew that the 

pseudopatients were not ill. 

There are also, however, qualitative research studies where the participant knows 

that he or she is participating in a study. In such cases, the research needs to develop 

a high level of rapport with the participants. For example, Jones (1998) used the 

qualitative approach to study a unique culture (teenage and adolescent gangs) in 

American society. Little has been reported on gangs except statistics. Little is known 

about the dynamics within gangs and the difference between some types of gangs. 

Jones had to spend an enormous amount of time in prisons and detention centers in¬ 

terviewing gang members. The experiences of being in a gang, the dynamics between 

gang members, their value systems, and how these members of American society as¬ 

sign meaning to their lives, fit the goal of qualitative research methodology. Qualita¬ 

tive research such as the study by Jones is suited for studying complex life experi¬ 

ences. 

Qualitative research is a field study because it is conducted in the field where 

the participants are behaving naturally. Heppner, Kivlighan, and Wampold (1992) 

refer to qualitative research as naturalistic-ethnographic or phenomenological. 

Heppner et al. present four differences between quantitative and qualitative research 

(summarized in Table 24.1). 

Qualitative research has several advantages over quantitative research. Qualita¬ 

tive research uses direct observation and semistructured interviewing in real-world 

settings. The researcher looks for social transactions and interactions between people 

and events. The data collection process is less structured than quantitative research. 

The researcher may make a number of adjustments during the observations. The re¬ 

searcher may even develop new hypotheses during the research process. Qualitative 

research is naturalistic, participatory, and interpretive. 
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[Ml Table 24.1 Four Differences between Quantitative and Qualitative Research 

(Heppner, Kivlighan, & Wampold) 

Quantitative Qualitative 

Emanates from post-positivistic tradition; 

major constituents are physical objects 

and processes 

Emanates from phenomenological 

perspective; emphasizes internal, mental 

events as the basic unit of existence 

Assumes knowledge comes from observa¬ 

tions of the physical world 
Knowledge is actively constructed and 

comes from examining the internal 

constructs of people 

Investigator makes inferences based on 

direct observations or derivatives of the 
direct observations 

Investigator relies on outside observational 

schemes and tries to keep intact the 

participants perspective 

Goal is to describe cause and effect Attempts to describe the ways that people 

assign meaning to behavior 

Quantitative research seldom deviates from the research plan. Qualitative re¬ 

search, on the other hand, is very flexible. This has led to some criticism of qualita¬ 

tive research. Some feel that qualitative research suffers from some of the same valid¬ 

ity problems inherent in single-subject designs. Another area of vulnerability is 

experimenter bias. The qualitative researcher must be extra careful in guarding 

against viewing situations with a personal bias. However, qualitative researchers state 

that the unobtrusive involvement and natural blending of the observer into the envi¬ 

ronment reduces the amount of disruption in the setting' and group under study. Af¬ 

ter a short period of time, participants return to their normal mode of behavior and 

no longer show a fayade. The well-trained observer can acquire perceptions of the 

participants behavior from different points of view. If done properly, the data col¬ 

lected from qualitative research can yield more information and less spurious vari¬ 

ability than other research methods. Perhaps the two views of science presented by 

Sampson (1991) in Chapter 1 of this book encompass the differences between quan¬ 

titative and qualitative research. In qualitative research, the determination of sample 

size can be done near the end of the study instead of at the beginning. Sample size 

determination isn’t as important to the qualitative researcher. A rule in qualitative re¬ 

search is that the greater the number of interviews with each participant, the less the 
need for more participants. 

The design of qualitative research usually uses an unobtrusive observer or a par¬ 

ticipant observer. As an unobtrusive observer the researcher makes passive observa¬ 

tions and tries to avoid responding to the participant in any way. No variables are 

manipulated; the researcher just lets natural events occur. If the researcher wanted to 

see if the presence of another person in the restroom affects the willingness to wash 
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one’s hand, the researcher must wait and observe how people behave when there is 

another person in the restroom and when there is no other person. In quantitative 

research, the researcher would use a confederate to alter the situation (see Pedersen, 

Keithly, & Brady, 1986). In the participant-observer situation, the researcher be¬ 

comes a part of the environment being studied. One feature of the participant-ob¬ 

server form is that the researcher can see the effect of manipulating his or her own 

behavior. Hence, occasionally, qualitative designs can resemble a natural experiment. 

One of the more famous qualitative research studies is the work of Margaret 

Mead, who studied the Samoan culture. Such studies not only rely on personal ob¬ 

servation but also often require the recruitment of informants. Studies such as those 

conducted to see what life was like for first-generation immigrants who came to the 

United States in the early part of the twentieth century can be a qualitative study. 

Interviewers can interview a number of first-generation immigrants and develop 

life histories. With enough life histories showing similar patterns of behavior a 

picture can be developed as to what life was like for those who lived in that era. For 

the best results, the interviews are tape recorded. The interview process is conducted 

in such a way and at such a length to enable the informant to adjust to the inter¬ 

viewer and the recording device. It is part of the plan of qualitative research to 

carefully choose the interviewer in order to have the best match to the informant. 

Since diaries, recordings, and descriptions are taken from the people under study 

in their natural environment, ethical issues are very important. In particular, the con¬ 

fidentiality of records and information needs to be kept strictly secure. Hertz and 

Imber (1993) have stated that social science research tends to concentrate on the 

powerless (e.g., animals, college students) since they are easily accessible whereas the 

powerful are not (e.g., politicians, corporate executives, school administrators). It is 

doubtful that a student would be allowed to do a case study on the president of the 

university. Hence, some qualitative research studies involve deception. Deception is 

an issue that requires a case-by-case review and justification. 

An excellent reference on qualitative research is Taylor and Bogdan, (1998). This 

book is in its third edition and provides clear details from designing, data collection, 

and final write up of qualitative research. Another very good reference on qualitative 

research is by Creswell (1998) who notes that there are five different traditions 

within qualitative research. He compares and critiques biography, phenomenology, 

ground theory, ethnography, and case study. Taylor and Bogdan, and Cresswell 

provide detailed examples of qualitative research. An excellent reference on the use 

of qualitative research methodology in studying renal failure patients is the Renal 

Rehabilitation Report1 published by the Life Options Rehabilitation Advisory Council. 

In the July/August 1998 issue of this publication, there is a comparison of the tradi¬ 

tional approach to the qualitative approach. This article gives reasons why qualitative 

'A copy of this report is available from the Life Options Rehabilitation Resource Center at (800) 
468-7777. The authors wish to thank Dr. Abdul Abukurah for providing us with a copy of this 
publication. 
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methods are good science. Where Creswell compares five different traditions within 

qualitative research, the article provides descriptions of seven different areas. Among 

the categories are Feminist Research, Action Research, and Qualitative Evaluation 

Research. With Feminist Research the focus is on the improvement of women’s 

needs, interests, experiences, and aims. Action Research involves the joint effort of 

the researcher and participant in bringing about a change. Qualitative Evaluation 
Research deals with stories and cases studies. 

Although we have given a positive view of qualitative research methods, not all 

individuals hold the same opinion. The bulk of the behavioral sciences — especially 

psychology—have been in favor of the quantitative approach. There have been a 

few, such as Sampson (1991) and Phillips (1973), who have stated that quantification 

is not the appropriate method for all research situations. Earlier we briefly discussed 

the benefits of quantitative methods; however, at the same time, we mentioned that 

they are unable to answer certain questions dealing with culture or certain ways of 

life. This conflict between the qualitative research methodology and the quantitative 

methodology is well documented in the literature (see Cook & Reichardt, 1979; Pad¬ 

gett, 1998). There have been staunch proponents for both sides. However, quantita¬ 

tive researchers, such as Cook and Reichardt, have discussed the issues and presented 

some thoughts on combining the two instead of separating them. They talk about 

the possibility of a research study that could have both qualitative and quantitative el¬ 

ements. In fact, Padgett (1998) lays out three forms for doing both quantitative and 

qualitative research in one study. The combination of the two methods — qualitative 
and quantitative—is called multimethod research. 

According to Padgett, the first of the three ways of doing multimethod research 

is to start the research as qualitative and finish it as quantitative. The qualitative 

method is used to explore and identify the ideas, hypotheses, and variables, of inter¬ 

est to the researcher. This would be done through direct observation, interviewing, 

or focus groups. The concepts derived from the qualitative portion of the study can 

then be studied through the use of quantitative methods and hypothesis testing. The 

generahzabihty of the concepts and hypotheses tested through quantitative research 

can gam more credibility by obtaining a better link to the real world. Qualitative 
methods would have provide that link. 

The second way of doing multimethod research is to use the quantitative 

method first, followed by the qualitative method. The results from the quantitative 

portion of the study are used as the starting point for the qualitative portion. Padgett 

feels that many quantitative studies could benefit from a qualitative analysis of the 

results. Qualitative methods could help provide insight and information concerning 

questions that were unanswered or unanswerable by the quantitative study For 

example in quantitative studies that use multiple regression analysis (covered in a 

ater chapter of this book), the researcher is more often than not, left with a certain 

percentage of unaccountable variance. For example, a research study that reports a 

correlation coefficient of 0.48 between Graduate Record Examination scores and 

Success in Graduate School is telling us that only 23% of the total variance of 

graduate school success is accounted for by GRE scores. This also says that 77% is 

unaccounted for. At this point through the use of qualitative methods, we can begin 

the process of determining what other variables may be involved. This can in turn 
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lead to another quantitative study which includes those variables found by the 

qualitative portion of the study. 

The third mode discusssed by Padgett differs slightly from the first two, which 

have a more definite temporal division. That is, after completing one method, the 

other followed. In the third mode of multimethod research, both qualitative and 

quantitative approaches are used simultaneously. Such studies can have one method 

more dominant than the other. When this happens, one method — the less dominant 

one—is “nested” within the other—the dominant one. Padgett reports that there 

are more studies of this “nested” nature than a true integration of the two methods in 

the study. In the case where researchers follow a quantitative result with a qualitative 

finding, qualitative methods are said to supplement but not alter the quantitative ap¬ 

proach to the study. In the opposite case where the qualitative method is the domi¬ 

nant one, the researcher conducts a survey or interview but uses standardized mea¬ 

surement scales and instruments in the process. This includes the use of Likert scales 

and census data to supplement the data obtained from intensive interviews. Here the 

quantitative data does not intrude into the inductive and holistic nature of qualitative 

methods. 

Although the joint use of qualitative and quantitative methods is promising, 

there are still some doubts in the minds of many. Cook and Reichardt (1979), for ex¬ 

ample, state some of the obstacles facing multimethod research. The obstacles they 

state deal primarily with economics and training. A study with the joint efforts of 

qualitative and quantitative methods can be costly in terms of time and money. Even 

if multimethod research requires faith and vigilance, Padgett (1998) feels 

multimethod research is worth the cost and effort. 

Addendum 

The Holistic Experimental Paradigm 

The Holistic experimental paradigm provides an economical means of empirically 

quantifying the complex relationships among critical factors affecting human perfor¬ 

mance on individual operational tasks. The approach produces an equation of re¬ 

quired order for most of the potentially critical factors related to the task, people, 

equipment, environment, and time across their effective operational ranges. When 

combined with various bias-reduction techniques, the Holistic approach materially 

improves the predictive accuracy of the experimental results and produces more gen- 

eralizable information than is possible with the few-factors-at-a-time approach. 

Contrary to allegations made in many of today’s behavioral science textbooks re¬ 

garding large factorial experiments, the approach is extremely economical. In fact, by 

using fractional designs in a sequential manner it is far less expensive to do megafac¬ 

tor2 experiments than it would be to obtain the same information about the same 

2Dr. Charles Simon coined this term to avoid confusion with the word “multifactor” which textbook 

writers often refer to 2-, 3- and 4-factor experiments. The first definition of “mega” is “large,” and 

“Megafactor” implies a much larger number of factors than have been used traditionally. 
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number of factors in a series of small experiments. Nor are large megafator experi¬ 

ments merely extensions of smaller experiments; they are done differently. They re¬ 

quire fewer assumptions of the types present in the few-factor experiments and in the 

Holistic paradigm, the few assumptions that are made are tentative and will be even¬ 

tually tested as the experiment progresses and modified as necessary. While the 

methodology is primarily suited to problems involving quantitative factors and the 

ANOVA model, many of its principles can be used across the board in behavioral sci¬ 

ence research. The approach is heuristic, pragmatic, and empirical. 

The Holistic experimental paradigm is a complete methodology, one that inte¬ 

grates a set of principles, a strategy, and a body of techniques to provide minimum- 

biased quantitative answers to complex behavioral questions. Bias is defined as the 

difference between performance estimates based on the experimental results and per¬ 

formance obtained under operational conditions. The basic strategy in this Holistic 

approach was taken from G.E.P. Box’s response surface methodology (Box, 1954), 

modified to fit the special problems encountered in behavioral experiments. How¬ 

ever, the Holistic approach does not depend on a specific experimental design or sta¬ 

tistical technique; to the contrary, statistical devices play a much smaller role than 
they do in traditional experiments. 

The Holistic approach emphasizes a pre-experimental planning and exploration 
stage as a time to check for conditions that might adversely affect the conduct of the 

experiment and the operator s performance. At that time, relevant experimental fac¬ 

tors are selected on the basis of the investigator’s current knowledge and preliminary 

tests. Then, following Box’s strategy of using a sequence of fractional factorial de- 

signs, those factors are studied at the lowest level of resolution, a first-order equa¬ 

tion. Then, if it is found that this model does not adequately fit the empirical data, 

another block of data is collected to expand the order of the equation, and another 

test is made. Because most human performance can be adequately approximated by 

not more than a third order polynomial, one can usually conclude this iterative ap¬ 

proach after taking considerably less data than would be required to fill the factorial 
design. 

The more important techniques employed in this approach were developed 

mainly in the 1930s and 1960s. New techniques were developed to make the sequen¬ 

tial data collection of hundreds of experimental conditions robust to trends and in- 

trasenal transfer, or “carryover” effects, without wasteful counterbalancing or ran- 

omizing. Other techniques employed in the Holistic approach include graphical 
transformations and graphical data analysis. 

A critical analysis of the traditional approach to behavioral experimentation re¬ 

veals that many of its rites have become sacrosanct, deified into something they are 

not. As this book goes to press, one of the icons of behavioral science, the test of sta¬ 

tistical significance is being challenged again (see Harlow, Mulaik & Steiger, 1997) 

as it frequently has been for more than thirty years (see Chapter 1 of Bakan, 1973). 

Other so-called rules of scientific inquiry have dictated experiments that produce 

results of little or no enduring value and sometimes with totally incorrect conclu¬ 

sions. This can happen, for example, when critical factors not included in the'experi¬ 

ment are held constant. The choice of the constant values at which such factors are 
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held can alter the level of difficulty of the task and markedly alter the overall results. 
Randomization does not guarantee freedom from bias or “internal validity” and 
should only be used after all known systematic controls have been exhausted. 

A procedure frequently recommended by traditionalist to improve the “external 
validity” or generalizability of the experimental results is to perform a few studies 
with modestly different parameters after a main experiment has been completed. 
This is an expensive hit or miss approach. 

Generalization is achieved most accurately and economically in the Holistic ap¬ 
proach by including all identifiably relevant factors in the original experimental plan. 

The Holistic experimental paradigm was developed by Charles W. Simon over 
the past thirty years, supported primarily by research branches of the United States 
Air Force, Navy, and Army. In the 1970s, seminars were given to military and indus¬ 
trial research groups. To date, no consolidated report is available, only numerous re¬ 
ports of the various techniques, often isolated from one another and not necessarily 
up to date with recent developments. A book is currently in preparation.3 

Chapter Summary 

1. Laboratory experiments, field experiments, and field studies are compared 
and contrasted. 

2. The laboratory experiment has the greatest internal validity, but suffers from 
external validity. 

3. Laboratory experiments generally show variables with a small effect, 
whereas field studies and field experiments show variables with large effects. 

4. Even though field experiments have variables showing a large effect, it is of¬ 
ten masked by other variables and difficult to sort out. 

5. Laboratory experiments are heavily theory-oriented and are designed to test 
a general theory. 

6. Field experiments and field studies are more applied-oriented, attempting to 
answer a specific question on observable phenomena. 

7. Field experiments differ from laboratory experiments, in that field experi¬ 
ments do not have the strict controls found in laboratory research. 

8. Field experiments attempt to conduct a laboratory-type study in a real-world 
environment using real-world participants. There is generally an active in¬ 
dependent variable. 

9. Field studies are nonexperimental studies performed in the real world. 
There is generally no active independent variable. 

10. The goal of field studies is to discover the relations and interactions among a 
number of behavioral and social variables. 

3Dr. Charles W. Simon prepared this description of the Holistic approach. 
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11. A majority of behavioral and social science research is oriented quantita¬ 

tively. A quantitatively oriented field study is usually called a survey or epi¬ 

demiological research. A qualitative-oriented field study is called qualitative 

or naturalistic-ethnographic research. 

12. Qualitative research usually involves unobtrusive-observer or participant- 
observer approaches. 

13. In the unobtrusive-observer approach, the observer blends into the environ¬ 

ment and makes no contact with the participants. The participant-observer 

approach requires that the observer becomes a member of the group being 
studied. 

14. Qualitative methods are well suited for studying little-known or complex 

human experiences. Qualitative research supplements quantitative research 
and does not attempt to supplant it. 

Study Suggestions 

1. Is factorial analysis of variance more likely to be used in laboratory experi¬ 
ments, field experiments, or field studies? Explain. 

2. In Chapter 15, a study of the comparative effects of marijuana and alcohol 

was outlined. Suppose such a study is a laboratory experiment. Does that 

limit its usefulness and generalizability? Would such an experiment differ in 

generalizability from, a laboratory experiment of frustration and aggression? 

3. Following is a list of studies. Some were summarized in earlier chapters, 

others were not. Look up these studies and then classify each as a laboratory 

experiment, a field experiment, or a field study. Explain why you categorize 
each study as you do. 

Henemann, H. G. (1977). Impact of test information and applicant sex on 

applicant evaluation in a selection simulation. Journal of Applied Psychol¬ 
ogy, 62, 524-526. 

Johnson, C. B., Stockdale, M. S., & Saal, F. E. (1991). Persistence of men’s 

misperceptions of friendly cues across a variety of interpersonal encoun¬ 
ters. Psychology of Women Quarterly, 15, 463-475. 

McKay, J. R., Alterman, A. I., McLellan, T., Snider, E. C., & O’Brien, C. P. 

(1995). Effect of random versus nonrandom assignment in a comparison 

of inpatient and day hospital rehabilitation for male alcoholics. Journal 

of Consulting and Clinical Psychology, 63, 70-78 

Reinholtz, R. K„ & Muehlenhard, C. L. (1995). Genital perceptions and sex¬ 

ual activity in a college population. Journal ofSex Research, 32, 155-165 

Wansink, B.. Kent, R. j„ & Hoch, S. J. (1998). An anchoring and adjust- 

ment model of purchase quantity decisions. Journal of Marketing Re- 
search, 71—81. 

Wilson F. L. (1996). Patient education materials nurses use in community 

health. Western Journal of Nursing Research, 18, 195-205. 
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4. “The experiment is one of the great inventions of the last century.” Do you 

agree with this statement? If so, give reasons for your agreement: Why is the 

statement correct (if, indeed, it is correct)? If you do not agree, explain why 

you don’t. Before making snap judgments, read and ponder the references 

given in Study Suggestion 9, below. 

5. Unfortunately, there has been much uninformed criticism of experiments. 

Before pronouncing rational judgments on any complex phenomenon one 

should first know what one’s talking about and, second, one should know the 

nature and purpose of the phenomenon being criticized. To help you reach 

rational conclusions about the experiment and experimentation, the follow¬ 

ing references are offered as background reading. 

Berkowitz L., & Donnerstein, E. (1982). External validity is more than skin 

deep: Some answers to criticisms of experiments. American Psychologist, 

3, 245-257. (A penetrating answer to the criticism of experiments as 

lacking external validity.) 

Kaplan, A. (1964). The conduct of inquiry. San Francisco, CA: Chandler. 

(Chapter IV, called “Experiment” seems to include most controlled ob¬ 

servation.) 

6. Those of you who wish to know more about the Elolistic experimental para¬ 

digm might consult some of Charles W. Simon’s early publications that give 

the philosophy behind the approach. Be aware that since they were written 

the approach has been refined and new techniques added. 

Simon, C. W. (1976). Analysis of human factors engineering experiments: 

Characteristics, results and applications. Westlake Village, CA: Canyon 

Research Group, Inc., Tech. Rep. No. CWS-02-767, 104 pp. (AD 

A038-184). 

Simon, C. W. (1978). New research paradigm for applied experimental psy¬ 

chology: A system approach. Westlake Village, CA: Canyon Research 

Group, Inc, Tech. Rep. No. CWS-04-77A, 123 pp. (AD A056-984). 

Simon, C. W. (1987). Will egg-sucking ever become a science? Human Fac¬ 

tors Society Bulletin, 30, 1 -4. 

Simon, C. W. & Roscoe, S. N. (1984). Application of a multifactor approach 

to transfer of learning research. Human Factors, 26, 591-612. 

Westra, D. P, Simon, C. W, Collyer, S. C. & Chambers, W. S. (1982). 

(Simulator design features for carrier landings: I. Performance experiments. 

NAVTRAEQUIPCEN. (78-C-0060-7): 64 pp. (AD A122-064) 
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Chapter 25 

Survey Research 

m Types of Surveys 

Interviews and Schedules 

Other Types of Survey Research 

■ The Methodology of Survey Research 

Checking Survey Data 

Four Studies 

■ Applications of Survey Research to Education 

■ Advantages and Disadvantages of Survey Research 

■ Meta-analysis 

Survey research studies large and small populations (or universes) by selecting and 

studying samples chosen from the population to discover the relative incidence, 

distribution, and interrelations of sociological and psychological variables. As such, 

survey research can be classified as field studies with a quantitative orientation. Some 

consider it a variation of the correlational research design. This chapter concentrates 

on the use of survey research in scientific research and neglects so-called status 

surveys. Status surveys have a goal different from survey research. Its aim is to learn 

the status quo rather than to study the relations among variables; to examine the 

current status of some population characteristic. Status surveys were used as early as 

the 1830s in Great Britain to study the working conditions of children and adults 

during the Industrial Revolution. The development of survey research in the social 

and behavioral sciences is more modern—it is a twentieth-century development. 

There is no intention of derogating status surveys; they are useful, even indis¬ 

pensable. The intention is to emphasize the importance and usefulness of survey 

research in the scientific study of socially and educationally significant problems. The 

work of public opinion pollsters, such as Gallup and Roper, will not be examined. 

For a good account of polls and other surveys, see Parten (1950) in Chapter 1. 
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(Though dated, this book is still valuable.) A slightly newer book on how polls are 

used to sway public opinion in the United States is by Wheeler (1976). The standard 

text for many years, until it recently went out of print, is by Warwick and Lininger 

(1975); it has the advantage of having been guided by the thinking and practice of the 

Survey Research Center, University of Michigan. It also has the advantage of having 

a cross-cultural emphasis. Orlich (1978) presents the method and procedure of survey 

research in a very straightforward manner. Orlich even explains how to design and 

sequence the items of a survey. A few of the more recent publications on survey re¬ 

search methods are Alreck (1994), Babbie (1990), Suskie (1996), and Weisberg (1996). 

Surveys covered by the above definition are often called sample surveys, probably 

because survey research developed as a separate research activity along with the 

development and improvement of sampling procedures. Survey research is consid¬ 

ered to be a branch of social scientific research, which immediately distinguishes it 

from the status survey. Its procedures and methods have been developed mostly by 

psychologists, sociologists, economists, political scientists, and statisticians (see Camp¬ 

bell and Katona, 1953). These individuals have put a rigorous scientific stamp on sur¬ 

vey research and, in the process, have profoundly influenced the social sciences. 

The definition also links populations and samples. Survey researchers are inter¬ 

ested in the accurate assessment of the characteristics of whole populations of people. 

They want to know, for example, how many persons in the United States voted for a 

Republican candidate and the relation between such voting and variables like sex, 

race, religious preference, and the like. They want to know the relation between 
attitudes toward education and public support of school budgets. 

Only rarely, however, do survey researchers study whole populations; they study 

sampks drawn from populations. From these samples they infer the characteristics of 

the defined population or universe. The study of samples from which inferences 

about populations can be drawn is needed because of the difficulties of studying 

whole populations. Random samples can often furnish the same information as a 

census (an enumeration and study of an entire population) at much less cost, with 
greater efficiency, and sometimes greater accuracy! 

Sample surveys attempt to determine the incidence, distribution, and interrela¬ 

tions among sociological and psychological variables, and, in so doing, usually focus 

°naPu°iPle •the VltaI faCtS of.PeoPle’ and their beliefs, opinions, attitudes, motivations, 
and behavior. The social scientific nature of survey research is revealed by the nature 

of ns variables, which can be classified as sociological facts, opinions, and attitudes. 

Sociological facts are attributes of individuals that spring from their membership in 

social groups: sex, income, political and religious affiliation, socioeconomic status, 

education, age living expenses, occupation, race, and so on. The second type of 

variable is psychological and includes opinions and attitudes on the one hand and 

behavior on the other. Survey researchers are interested not only in relations among 

sociological variables; they are more likely to be interested in what people think and 

o, and the relations between sociological and psychological variables. The study of 

t e quality oi American life done by the Survey Research Center of the University of 

Michigan for instance, reports depressing data on the relation between race and 

ee mgs of trust in people, a sociological and a psychological variable (data are given 
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H TABLE 25.1 Relation between Race and Trust in People (inpercentages) 

(Campbell et al. study).a 

Low Trust High Trust 

African Americans 72 28 

White Americans 38 62 

a N=2070 

in Table 25.1). The relation is substantial. Evidently, African American people feel 

less trustful of people than whites. As Campbell, Converse, and Rodgers (1976) say 

(p. 455), “those people who have been least successful in their encounters with 

society have the least reason to feel trustful of it.” 

Survey researchers, of course, also study the relations among psychological 

variables. But most relations of survey research are those between sociological and 

psychological variables: between education and tolerance, between race and self¬ 

esteem, and between education and sense of political efficacy. 

Types of Surveys 

Surveys can be conveniently classified by the following methods of obtaining infor¬ 

mation: personal interview, mail questionnaire, panel, and telephone. Of these, the 

personal interview far overshadows the others as perhaps the most powerful and 

useful tool of social scientific survey research. These survey types will be described 

here briefly; in later chapters, when reviewing methods of data collection, we will 

study the personal interview in depth. 

Interviews and Schedules 

The best survey research uses the personal interview as the principal method of 

gathering information. This is accomplished in part by the careful and laborious 

construction of a schedule or questionnaire. The term “schedule” will be used. It has 

a clear meaning: the instrument used to gather survey information through personal 

interview. “Questionnaire” has been used to label personal interview instruments and 

attitudinal or personality instruments. The latter are called “scales” in this book. 

Schedule information includes factual information, opinions and attitudes, and 

reasons for behavior, opinions, and attitudes. Interview schedules are difficult to 

construct; they are time consuming and relatively costly; but no other method yields 

the information they do. 
The factual information gathered in surveys includes the so-called sociological 

data mentioned previously: gender, marital status, education, income, political 

preference, religious preference, and the like. Such information is indispensable, 
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since it is used in studying the relations among variables and in checking the 

adequacy of samples. These data, which are entered on a “face sheet,” are called “face 

sheet information.” Such information, at least part of it, is ordinarily obtained at the 

beginning of the interview. Much of it is neutral in character and helps the 

interviewer establish rapport with the respondent. Questions of a more personal 

nature, such as those about income and personal habits, and questions that are 

more difficult to answer, such as the extent of the knowledge or ability of the 

respondent, can be reserved for later questioning, perhaps at the end of the schedule. 

The timing must necessarily be a matter of judgment and experience (see Warwick 
& Lininger, 1975). 

Other kinds of factual information include what respondents know about the 

subject under investigation, what respondents did in the past, are doing now, and 

intend to do in the future. After all, unless we observe directly, all data about re¬ 

spondents’ behavior must come from them or from other people. In this special 

sense, past, present, and future behavior can all be classified under the “fact” of be¬ 

havior, even if the behavior is only an intention. A major point of such factual 

questions is that the respondent presumably knows a good deal about personal ac¬ 

tions and behavior. If the respondent says he or she voted for a school bond issue, 

we can believe the statement is true—unless there is compelling evidence to the 

contrary. Similarly, we can believe the respondent, perhaps with more reservation 

(since the event has not happened yet), if the person voices intention to vote for a 
school bond issue. 

Just as important, maybe even more important from a social scientific stand¬ 

point, are the beliefs, opinions, attitudes, and feelings that respondents have about 

cognitive objects. Cognitive object is an expression indicating the object of an attitude. 

Almost anything can be the object of an attitude, but the term is ordinarily reserved 

for important social objects, for example, groups (religious, racial, and educational) 

and institutions (education, marriage, and political parties). A more general and 

probably better term, though one not in general use, is referent. Many of the cogni¬ 

tive objects of survey research may not be of interest to the researcher: investments, 

certain commercial products, political candidates, and the like. Other cognitive ob¬ 

jects are more interesting: the United Nations, the Supreme Court, educational 

practices, integration, sexual behavior, federal aid to education, college students, and 
the feminist movement. 

The personal interview can be helpful in learning respondents’ reasons for 

doing or believing something. When asked reasons for actions, intentions, or be¬ 

liefs, people may say they have done something, intend to do something, or feel 

certain ways about something. They may say that group affiliations or loyalties or 

certain events have influenced them. Or they may have heard about issues under 

investigation via the media. For example, a male respondent may say that he was 

ormerly opposed to federal aid to education because he and his political party 

have always opposed governmental interference. However, he now supports fed- 

era aid because he has read a great deal about the problem in news-papers and 

magazines and has come to the conclusion that federal aid will benefit American 
education. 
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A respondent’s desires, values, and needs may influence his or her attitudes and 

actions. When saying why one favors federal aid to education the respondent may in¬ 

dicate that his or her own educational aspirations were thwarted and that there has 

always been the yearning for more education. Or this person may indicate that one’s 

own religious group has, as a part of its value structure, a deep commitment to the 

education of children. If the individual under study has accurately sounded his or her 

own desires, values, and needs — and can express them verbally—the personal 

interview can be very valuable. 

Other Types of Survey Research 

The next important type of survey research is the panel. A sample of respondents is 

selected and interviewed, and then reinterviewed and studied at a later time. The 

panel technique enables the researcher to study changes in behaviors and attitudes. 

Panels are used frequently in marketing research. It enables the researcher to see the 

impact of certain advertising changes on consumer purchasing behavior. A book on 

marketing research edited by Robert Ferber (1974) provides some excellent 

examples, procedures, and methods of survey research in marketing and advertising; 

those interested in doing behavioral and social science research in the business envi¬ 

ronment should read this book. 

Telephone surveys have little to recommend them beyond speed and low cost. This 

is especially true when the interviewer is unknown to the respondent. The inter¬ 

viewer then is limited by possible nonresponse, uncooperativeness, and by reluctance 

to answer more than simple, superficial questions. Yet, telephoning can sometimes be 

useful in obtaining information essential to a study. Its principal defect, obviously, is 

the inability to obtain detailed information. 

The mail questionnaire has serious drawbacks unless it is used in conjunction with 

other techniques. Two of these defects are possible lack of response and the inability 

to verify the responses given. These defects, especially the first, are serious enough to 

make the mail questionnaire worse than useless, except in highly sophisticated hands. 

Responses to mail questionnaires are generally poor. Returns of less than 40% are 

common. Higher percentages are rare. At best, the researcher must be content with 

returns as low as 50% or 60%. 
Because mail questionnaires produce low returns, valid generalizations cannot be 

made. Although there are means of securing larger returns and reducing deficien¬ 

cies—follow-up questionnaires, enclosing money, interviewing a random sample of 

nonrespondents, and analyzing nonrespondent data — these methods are costly, 

time-consuming, and often ineffectual. As Parten (1950) says, “Most mail question¬ 

naires bring so few returns, and these from such a highly selected population, that 

the findings of such surveys are almost invariably open to question.” The best advice 

would seem to be not to use mail questionnaires if a better method can possibly be 

used. If mail questionnaires are used, every effort should be made to obtain returns 

of better than 80-90%, and lacking such returns, to learn something of the charac¬ 

teristics of the nonrespondents. Sheatsley (1974) states that some respondents may 
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misinterpret questions or ask other people for the answer. So not only is there a like¬ 

lihood of a poor response rate, there are issues concerning the accuracy of the re¬ 

sponses given by those who do return the survey. Erdos (1974) and Warwick and 

Lininger (1975) provide techniques for increasing the response rate of mail surveys. 

When compared with mail surveys, telephone surveys have the advantage of a 

higher return rate. However, they are limited to who one can obtain by phone and 
the brevity of the interview. 

The Methodology of Survey Research 

Survey research has contributed much to the methodology of the social sciences. 

Its most important contributions, perhaps, have been in rigorous sampling proce¬ 

dures, the overall design and the implementation of the design of studies, the 

unambiguous definition and specification of the research problem, and the analysis 
and interpretation of data. 

In the limited space of a section of one chapter, it is obviously impossible to 

discuss adequately the methodology of survey research. Only those parts of the 

methodology germane to the purposes of this book, therefore, will be outlined: the 

survey or study design, the so-called flow plan or chart of survey researchers, the 

check of the reliability and validity of the sample, and the data-gathering methods. 
(Both sampling and analysis were discussed in earlier chapters.) 

Survey researchers use a flow plan or chart to outline the design and subsequent 

implementation of a survey. The flow plan starts with the objectives of the survey, 

lists each step to be taken, and ends with the final report. First, the general and 

specific problems that are to be solved are as carefully and as completely stated as 

possible. Since, in principle, there is nothing very different here from the discussion 

for problems and hypotheses of Chapter 2, we can omit detailed discussion and give 

one simple hypothetical example. An educational investigator has been commis¬ 

sioned by a board of education to study the attitudes of community members toward 

the school system. On discussing the general problem with the board and the admin¬ 

istrators of the school system, the investigator notes a number of more specific prob¬ 

lems such as: Is the attitude of the members of the community affected by their hav¬ 

ing children in school? Does their educational level affect their attitudes? 

One of the investigator’s most important jobs is to specify and clarify the 

problem. To do this well, the investigator should not expect merely to ask people 

what they think of the schools, although this may be a good way to begin if one does 

not know much about the subject. Specific questions need to be asked that are aimed 

at various facets of the problem. Each of these questions should be built into the 

interview schedule. Some survey researchers design tables for the analysis of the data 

at this point in order to clarify the research problem and to guide the construction of 

interview questions. Since this procedure is recommended, let us design a table to 
show how it can be used to specify survey objectives and questions. 

Take the question: Is attitude related to educational level? This question requires 

t at attitude and educational level” be defined operationally. Positive and negative 
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M Figure 25.1 

Positive Attitude Negative Attitude 

Some College 

High School Graduate 

Non-High School Graduate 

attitudes will be inferred from responses to schedule questions and items. If, in 

response to a broad question like, “In general, what do you think of the school sys¬ 

tem here?” a respondent says, “It is one of the best in this area,” it can be inferred 

that he or she has a positive attitude toward the schools. Naturally, one question will 

not be enough. Related questions should also be used. A definition of “educational 

level” is quite easy to obtain. It is decided to use three levels: (1) Some College, (2) 

High School Graduate, and (3) Non-High School Graduate. The analysis paradigm 

might look like that shown in Figure 25.1. 

The virtue of paradigms like this is that the researcher can immediately tell 

whether the specific problem has been stated clearly and whether the specific 

problem is related to the general problem. It will also give some notion as to how 

many respondents will be needed to fill the table cells adequately, as well as providing 

guidelines for coding and analysis. In addition, as Katz (1953, pp. 80-81) says, 

By actually going through the mechanics of setting out such tables, the investi¬ 

gators are bound to discover complexities of a variable that need more detailed 

measurement and qualifications of hypotheses in relation to special conditions. 

The next step in the flow plan is the sample and the sampling plan. Sampling is much 

too complex to be discussed here in detail, so we outline only the main ideas. See 

Chapter 8 and Chapter 12 in this book, and Chapter 5 of Warwick and Lininger 

(1975) for a more detailed treatment of this topic. Warwick and Lininger’s detailed 

example of multistage area sampling is especially helpful. Area sampling is the type 

most used in survey research. We must first define large areas to be sampled at 

random. This amounts to partitioning of the universe and random sampling of the 

cells of the partition. The partition cells may be areas delineated by grids on maps or 

aerial photographs of counties, school districts, or city blocks. Then further subarea 

samples may be drawn at random from the large areas already drawn. Finally, all 

individuals or families or random samples of individuals and families may be drawn. 

First, the universe to be sampled and studied must be defined. Are all citizens 

living in the community included: community leaders? those citizens paying school 

taxes? those with children of school age? Once the universe is defined, a decision is 

made as to how the sample is to be drawn and how many cases will be drawn. In the 
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best survey research, random samples are used. Quota samples are sometimes used 

instead of random samples, because random samples are high in cost and more 

difficult to execute. In a quota (or quota control) sample, “representativeness” is 

presumably achieved by assigning quotas to interviewers — so many men and women, 

so many white Americans and African Americans, and so on. Although quota 

sampling may achieve representativeness, it lacks the virtues of random sampling— 
and should therefore be avoided. 

The next large step in a survey is the construction of the interview schedule 

and other measuring instruments to be used. This is a laborious and difficult busi¬ 

ness bearing virtually no resemblance to the questionnaires often hastily put to¬ 

gether by neophytes. The main task is to translate the research question into an in¬ 

terview instrument and into any other instruments constructed for the survey. One 

of the problems of the study, for instance, may be: How are permissive and restric¬ 

tive attitudes toward the discipline of children related to perceptions of the local 

school system? Among the questions to assess permissive and restrictive attitudes, 

one might be: How do you believe children should be disciplined? After drafts of 

the interview schedule and other instruments are completed, they are pretested on 

a small representative sample of the universe. They are then revised and put in 
final form. 

The steps outlined above constitute the first large part of any survey. After the 

researcher has developed the survey instrument and determined which population is 

to be measured, the researcher also needs to decide whether the data will be collected 

using a cross-sectional design or a longitudinal design. The longitudinal design 

involves administering the survey many different times to the same group of partici¬ 

pants. Surveys conducted in this way are able to assess the actual changes experienced 

by participants over time. Essentially these participants are tracked over time and 

measured periodically with the same measurement instrument. With the longitudinal 

design, the researcher can determine the impact that certain events will have on the 

person and future behavior. The attrition rate with a longitudinal study can be large, 

depending on the length of time over which the study is conducted. Also, it is depen¬ 

dent upon how willing the participants are to be available for each measurement. 

The cross-sectional design seems to have the advantage when it comes to participant 

attrition. Here, one group of people at different ages are all measured at the same 

time. Comparisons can be made between age groups as to the difference in responses 

given on the survey instrument. Although this sounds good, the cross-sectional 

method has its own problems. It is often difficult to assess developmental changes by 

comparing groups. For example, when comparing 10-year-olds with 15-year-olds 

one needs to realize that the 15-year-old may have had an entirely different experi¬ 
ence at ten than the typical 10-year-old of today. 

Data collection is the second large part of survey research. Interviewers are 

oriented, trained, and sent out with complete instructions as to whom to interview 

and how the interview is to be handled. In the best surveys, interviewers are allowed 

no atitude as to whom to interview. They must interview those individuals and 

only those individuals designated, generally by random devices. Some latitude may 

be allowed in the actual interviewing and use of the schedule, but not much. 
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The work of interviewers is also systematically checked in some manner. For exam¬ 

ple, every tenth interview may be checked by sending another interviewer to the 

same respondent. Interview schedules are also studied for signs of spurious answering 
and reporting. 

The third large part of the flow plan is analytical. The responses to questions are 

coded and tabulated. Coding is the term used to describe the translation of question 

responses and respondent information to specific categories for purposes of analysis. 

Take the example of Figure 25.1. All respondents must be assigned to one of the 

three educational level categories and a number (or other symbol) assigned to each 

level. Then each person must also be assigned to a “positive attitude” or “negative 

attitude” category. To aid in the coding, content analysis may be used. Content analysis 

is an objective and quantitative method for assigning types of verbal and other data 

to categories. Some marketing research companies have a specific department whose 

task is to do content analysis of responses to open-ended questions on a survey. 

Coding can also mean the analysis of factual response data and the subsequent as¬ 

signment of individuals to classes or categories, or the assigning of categories to indi¬ 

viduals; especially if one is preparing data entry for computer analysis. Such data en¬ 

try consists of a large number of columns with a number of cells in each column. 

The fifth column may be assigned, say, to gender, with the numbers 0 and 1 used to 

designate female and male. Babbie (1995) gives instructions on developing code 

categories, codebook construction, and computer data-entry operations. 

Tabulation is the recording of the numbers of types of responses in the appropri¬ 

ate categories, after which statistical analysis follows: percentages, averages, relational 

indices, and appropriate tests of significance. The analyses of the data are studied, 

collated, assimilated, and interpreted. Finally, the results of this interpretative process 
are reported. 

ecking Survey Data 

Survey research has a unique advantage among social scientific methods: it is often 

possible to check the validity of survey data. Some of the respondents can be inter¬ 

viewed again, and the results of both interviews checked against each other. It has 

been found that the reliability of personal factual items, like age and income, is high. 

The reliability of attitude responses is harder to determine because a changed 

response can mean a changed attitude. The reliability of average responses is higher 

than the reliability of individual responses. Fortunately, the researcher is usually 

more interested in averages, or group measures, than in individual responses. 

One way of checking the validity of a measuring instrument is to use an outside 

criterion. One compares the results to some outside, presumably valid, criterion. For 

instance, a respondent claims to have voted in the last election of school board mem¬ 

bers. We can find out whether this is true or not by checking the registration and 

voting records. Ordinarily, individual behavior is not checked because information 

about individuals is difficult to obtain, but group information is often available. This 

information can be used to test to some extent the validity of the survey sample and 

the responses. 
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A good example of an outside check on survey data is the use of information 

from the last census. This is particularly useful in large-scale surveys, but may also 

help in smaller ones. Proportions of men and women, races, educational levels, age, 

and so on, in the sample and in the U.S. Census are compared. In the Verba and Nie 

(1972) study of political participation, for example, the authors report a number of 

such comparisons. Their sample estimates are accurate: only one of them, Age 

20-34, deviates from the census estimates by more than 2%, which is reassuring evi¬ 

dence of the adequacy of the sample. To be sure, the sample was large (> 2,500), but 

smaller samples have also been found to be quite accurate. In one study of Detroit 

done by the University of Michigan in 1952, the sample was only 735, but the sample 

estimates were close to those of the 1950 census. Campbell and Katona (1953) dis¬ 

cuss methods of checking sample validity and reliability. Warwick and Lininger 

(1975) give tables of sampling errors, with an explanation of their statistical meaning 

and use. We learn, for instance, that reported percentages between 20 and 80 from a 

sample of 700 have a standard error of 4. To reduce the standard error to 2 requires a 
sample of 3,000! 

AIDS researchers Dr. Vickie Mays and Dr. Susan Cochran at the University of 

California, Los Angeles, have an ingenious way of checldng some of the responses on 

their surveys. They put items in the questionnaires that are specific for certain 

groups of people. For example, they would include some questions that pertain only 

to gay men and other questions that pertain only to straight men. Later, after the 

data are collected, coded, and put into computer readable form, a statistical computer 

software program is used to perform a series of cross-tabulations of questions with 

the sexual preference variable. Those gay men who have answered straight-men-only 

questions or those straight men who have answered gay-men questions are flagged as 

data that were either miscoded or entered incorrectly into the computer. The actual 

response form can then be retrieved from the files, reexamined, and the data corrected. 

Since conducting a meaningful survey is expensive, each questionnaire from partici¬ 

pants is important. Unlike some other areas of research where some would recommend 

dropping participants data, survey research cannot do this and still expect to get the 
most accurate information. 

Three Studies 

Many surveys have been done, both good and bad. Most would probably not interest 

the student because they are little more than refined attempts to obtain simple infor¬ 

mation: studies of presidential voting, industrial plants, and so on. There are, how¬ 

ever, surveys of considerable — even great—interest and significance to behavioral 
scientists. We have summarized three of these studies here. 

Verba and Nie: Political Participation in America 

Verba and Nie (1972) asked, among other things, how the political participation of 

citizens of a democracy influences governmental processes. They interviewed more 

than 2,500 residents of the United States in 200 locales in 1967, selected by an area 
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probability sampling procedure. (Their census-sample comparisons showed gener- 

ally high agreement.) The main finding was that citizen participation does indeed in¬ 

fluence political leaders, but it is the more affluent, better-educated, and generally 

higher status citizens whose participation is influential. The authors point out that 

although Americans are not noted for class-based ideology, social status does relate 

to participation. The study was especially characterized by sophisticated measure¬ 

ment and analytical methodology, and by a major disconcerting finding. We will re¬ 
turn to it and its methodology in later chapters. 

Docter and Prince: A Survey of Male Cross-Dressers 

Docter and Prince (1997) reports that one of the last major published survey of 

male-to-female transvestites occurred in 1972. The study by Docter and Prince 

(1997) used the same survey instrument as the one used in 1972 to measure cross¬ 

dressers in 1992. These researchers added some additional questions concerning 

cross-dressing and sexual excitement. One of the goals was to assess if any changes 

have taken place since the 1972 survey. The reason why these researchers felt that 

there may have been some changes centers around the decriminalization of cross¬ 

dressing in some areas of the United States, the larger media exposure that transves¬ 

tites and transsexuals have been receiving, and the growth of support groups and na¬ 

tional organizations. Docter and Prince compared the two samples surveyed on at 

least six dimensions: (1) demographic, childhood and family factors, (2) sexual orien¬ 

tation and sexual behavior, (3) cross-gender identity, (4) cross-gender role behavior, 

(5) future plans to live entirely as a woman, and (6) reliance on counseling or mental 

health services. Docter and Prince use the terms “transvestite” and “cross-dresser” 

interchangeably; defined as biological males who occasionally dress in women’s 

clothes. They, however, do not seek sexual reassignment. A transgenderist is one who 

lives continuously in the gender role opposite of his or her biological sex without 

sexual reassignment procedures; a transsexual is one who has had sexual reassign¬ 

ment. Docter and Prince surveyed 1,032 self-defined periodic cross-dressers, age 

20-80. All were biological males. The sample population were volunteers from all 

over the United States who responded to the request for research participants at club 

meetings, conventions, and in publications for cross-dressers. The 1992 sample rep¬ 

resented a much broader base of cross-dressers than the 1972 sample: The 1972 sam¬ 

ple consisted of mostly readers of one transvestite publication; the 1992 sample was 

composed of readers of a number of different publications and members of cross¬ 

dressing clubs. The comparison between the two samples showed that there were 

some changes between the cross-dressers in 1972 and those in 1992. In particular, 

there were more in 1992 sample that were interested in living full-time as a woman. 

There were more in the 1992 sample who had a preferred gender identity that was 

equally male and female than in the 1972 sample. Docter and Prince (1997) docu¬ 

ment the differences in the sampling method between the two samples and note the 

shortcomings of the more recent sample when compared to the earlier sample. This 

is the nature of survey research. Certain things change over time that make it diffi¬ 

cult to obtain the exact same research environment from one time period to another. 
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Sue, Fujino, Flu, Takeuchi, and Zane-. Community Health Services for Ethnic Minorities 

This study (1991) may not exactly fit what some would term as survey research. 

These researchers did not design the survey for the study, neither did they collect 

the data for the study. Instead, they used the data supplied from the Automated 

Information System (AIS) maintained by the Los Angeles County Department of 

Mental Health. These data were used by the government agency for the purpose 

of system management, revenue collection, clinical management, and research. 

The clients were all outpatient service recipients. This study qualifies as survey re¬ 

search because the study was a field study—quantitative and epidemiological — 

which gathered information that described the relations between variables within 

the dataset. This type of survey research is based on the search of records (Isaac & 

Michael 1987). Sue et al. used the data to answer some questions concerning men¬ 

tal health services for four ethnic groups: African Americans, Asian Americans, 

Latino Americans, and white Americans. The AIS sample consisted of 7,136 Asian 

Americans, 47,220 African Americans, 58,844 Latino Americans, and 99,036 white 

Americans. The original dataset covered a 15-year period. Sue, et al. used only the 

latest five-year period. In a personal communication, Sue informed the second au¬ 

thor (HBL) that he and his staff spent a great deal of time, effort, and money in 

reorganizing the data so that it would be amenable to their research. The hypoth¬ 

esis that these researchers tested was that those clients who were matched both 

ethnically and by gender with a therapist would show greater mental health im¬ 

provement. The measure of mental health was the Global Assessment Scale 

(GAS). The dependent variables for this study were dropout from treatment, 

mean number of treatment sessions, and treatment outcomes. The results of the 

study showed for all groups, except African Americans, lower odds of dropping 

out of treatment when clients were matched in ethnicity with the therapist. When 

matched on gender, only Asian Americans and white Americans showed a lower 

chance of dropping out of treatment. This finding points to an important 

ingredient in preventing client dropout at public mental health facilities. Sue et al. 

found in analyzing the AIS data that only one-third of the ethnic clients were 

treated by same-ethnicity therapists, whereas 75% of the white Americans were 

treated by white therapists. For the mean number of treatment sessions, all groups 

with an ethnic client—therapist match produced a higher number of mean treat¬ 

ment sessions. However, on the gender match variable, only Mexican Americans 

and white Americans showed a higher number of treatment sessions. The GAS 

was used to measure treatment outcome. There was no gender match effect. With 

ethnic match, only Mexican Americans showed higher GAS scores at the time of 
treatment termination. 

Hall, Kaplan, and Lee (1994), using the same database but looking only at chil¬ 

dren clients, found similar patterns. They found that younger children showed 

greatest improvement when matched with similar therapists in the areas of ethnic¬ 

ity and language. This could be attributed to the fact that language in younger 

bilingual children is not as well developed, resulting in the need for a therapist who 

can meet their language or cultural needs. Another study based on this important 
database is Russell, Fujino, Sue, Cheung, and Snowden (1996). 



Chapter 25 m Survey Research 611 

Applications of Survey Research to Education 

These studies clearly show the applicability of survey research and its methodology 

in sociology, social psychology, social work, clinical psychology, and political science. 

Survey research’s strong emphases on representative samples, overall design, plan of 

research, and expert interviewing using carefully and competently constructed inter¬ 

view schedules have had, and will continue to have, beneficial influence on behavioral 

research. Despite its evident potential value in all behavioral research fields, survey 

research has not been used to as great an extent where it would seem to have large 

theoretical and practical value: in education. Its distinctive usefulness in education 

and educational research seems to have been slower in realization. However, a review 

of the current literature shows that this may be changing. This section is therefore 

devoted to application of survey research to education and educational problems. 

Obviously, survey research is a useful fact-finding tool for education. An admin¬ 

istrator, board of education, or staff of teachers can learn a great deal about a school 

system or a community without contacting every child, every teacher, and every citi¬ 

zen. In short, the sampling methods developed in survey research can be very useful. 

It is unsatisfactory to depend on relatively hit-or-miss, so-called representative sam¬ 

ples based on “expert” judgments. Neither is it necessary to gather data on whole 
populations; samples are sufficient for many purposes. 

Most research in education is conducted using relatively small nonrandom 

samples. If hypotheses are supported, they can later be tested with random samples 

of populations and, if again supported, the results can be generalized to populations 

of schools, children, and laypeople. In other words, survey research can be used to 

test hypotheses already tested in more limited situations, with the result that external 
validity is increased. 

Survey research seems ideally suited to some of the large controversial issues of 

education. For example, its ability to handle “difficult” problems like integration and 

school closings through careful and circumspect interviewing puts it high on the list 

of research approaches to such problems. Interviews of random samples of citizens 

and teachers of school districts just starting a gifted or special education program or 

experiencing the probable closure of certain elementary schools because of declining 

enrollment, can provide valuable information on the concerns and fears of citizens, so 

that appropriate measures can be taken to inform them and lessen their fears. The ef¬ 

fect of these measures can, of course, also be studied. 

Survey research is probably best adapted to obtaining personal and social facts, 

beliefs, and attitudes. It is significant that, although hundreds of thousands of words 

are spoken and written about education and about what people presumably think 

about education, there is little dependable information on the subject. We simply do 

not know what people’s attitudes toward education are. We have to depend on 

feature writers and so-called experts for this information. Boards of education 

frequently depend on administrators and local leaders to tell them what the people 

think. Some of the questions that can be asked, and possibly answered, using survey 

research are: Will the community support an expanded budget next year? What will 

they think about dividing school districts? How will parents react to bussing children 
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to achieve desegregation? What is the current curriculum? What is the attrition rate 

of graduate students? To what extent do medical students cheat in medical school? 

Do children from different cultural backgrounds who live in Israel differ in their 

fears? An early outstanding example of survey research in education is by Gross, Ma¬ 

son, and McEachern (1958). This study should be read by educational administrators 

and board of education members. 
It is encouraging that in the past twelve years more studies are being done on the 

educational environment. Take, for example, the study by Stile, Kitano, Kelley, and 

Lecrone (1993). These researchers did a national survey of what is happening in 

preschool and kindergarten programs for gifted children. Their survey examined 

schools in all 50 states, five U.S. territories, and the District of Columbia. They re¬ 

ported that only 29 out of the 50 states (58%) and one territory had programs for 

gifted children. These programs totaled over 2,655 school districts. Only 16 states 

show that they have programs at the kindergarten level for gifted children that come 

from disadvantaged families. Although the Stile et al. study seems somewhat like a 

status survey, it does point out what the “big picture” looks like for gifted education 

programs in the United States and its territories. It also points out the type of fund¬ 

ing used for gifted programs. 

The study by Cooke, Sims, and Peyrefitte (1995) provides information not 

previously published on graduate student dropout. Much is known about undergrad¬ 

uate student dropout rates, but little is known about graduate students. Generally, 

sampling of graduate students is not as plentiful as it is for undergraduate students. 

In this study, the researchers gathered data from 230 graduate students enrolled in 

business, engineering, public administration, and education programs. These 

programs were chosen because of the higher numbers of ethnic minority students 

enrolled. The survey instrument was mailed to participants in early 1992, and a 

follow-up survey was mailed 18 months later. The two surveys were used to deter¬ 

mine whether attrition could be predicted after 18 months. The results showed that 

ethnic minorities had a higher intention of quitting graduate school and were less 

satisfied with graduate school than non ethnic minorities. However, even though 

these difference, existed, they were not found to be related to attrition. Attrition was 

more closely related to the variables—need for achievement, affective commitment, 

and whether or not the graduate program met one’s expectations. 

Little and Lee (1995) conducted a survey of all graduate school psychology pro¬ 

grams across the United States. Their purpose was to determine the amount of train- 

ing graduate students were receiving in the areas of statistics and research methods. 

Among their numerous comparisons was the comparison of programs that awarded 

doctorates to those that did not. Little and Lee were not only interested in the quan¬ 

tity of courses, but also in the content of the courses and in the use of computer 

statistical software. A total of 181 surveys were mailed out to National Association of 

School Psychologists (NASP) and American Psychological Association (APA) certi¬ 

fied programs as well as those listed in Petersen's Guide to Graduate Education. Of 

these, 101 usable surveys were obtained. The results showed no significant differ¬ 

ences within subdoctoral and doctoral programs in the quantity of statistics and 
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research design courses. However, differences were found when comparing subdoc- 

toral programs to doctoral programs. Doctoral programs generally required twice as 

many statistics and research design courses than subdoctoral programs. Little and 

Lee provide valuable information that can be used by existing and new graduate pro¬ 
grams in school psychology to adjust or develop their curriculum. 

Baldwin, Daugherty, Rowley, and Schwarz (1996) sent a survey to 3,975 second- 

year medical students attending 31 medical schools; 2,459 (62%) completed the 

survey questionnaire. The survey was conducted to determine the extent of cheating 

behavior and attitude. Thirty-nine percent of the respondents stated that they had 

seen at least one incident of cheating. Nearly two-thirds of the sample claim that 

they have heard of other students cheating. Cheating was divided into categories: 

(1) obtaining prior information about the test, (2) copying another student’s answers 

during the test, and (3) exchanging answers during the test. Eighty-two percent of 

the students who claimed they had cheated in medical school also stated that they 

had cheated in school prior to entering medical school. Nearly 5 % of the students 

reported they had cheated sometime during the first two years of medical school. 
More men than women stated that they had cheated on exams. 

Advantages and Disadvantages of Survey Research 

Survey research has the advantage of wide scope: a great deal of information can 

be obtained from a large population. A large population or a large school system 

can be studied with much less expense than that incurred by a census. While surveys 

tend to be more expensive than laboratory and field experiments and field studies, 

for the amount and quality of information they yield, they are economical. 

Further, existing educational facilities and personnel can be used to reduce the costs 
of the research. 

Survey research information is accurate—within sampling error, of course. The 

accuracy of properly drawn samples is frequently surprising, even to experts in the 

field. A sample of 600 to 700 individuals or families can give a remarkably accurate 

portrait of a community—its values, attitudes, and beliefs. 

Coupled with these advantages are the inevitable weaknesses and disadvantages. 

A first disadvantage is that survey information does not ordinarily penetrate very 

deeply below the surface. The scope of the information sought is usually emphasized 

at the expense of depth. This seems to be a weakness, however, that is not necessarily 

inherent in the method. The Verba and Nie (1972), and Smith and Garner (1976; see 

also Garner & Smith, 1977) studies show that it is possible to go considerably below 

surface opinions. Smith and Garner designed a procedure to accompany a well- 

designed questionnaire that allowed them to tap into the homosexual behavior of 

college athletes. Instead of giving a survey instrument once, they gave it at least three 

times to check the consistency of responses. They also developed other means of 

checking the responses of athletes on a very sensitive subject and took extra 
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nonthreatening means of collecting their data. By doing so, Smith and Garner were 

able to obtain useful information on a highly emotional topic. Despite these 

examples of the depth of information from survey research, the survey seems best 

adapted to extensive rather than intensive research. Other types of research are 

perhaps better adapted to deeper exploration of relations. 
A second disadvantage is a practical one. Survey research is demanding of time, 

energy, and money. In a large survey, it may be months before a single hypothesis can 

be tested. Sampling and the development of good schedules are major operations. 

Interviews require skill, time, and money. Surveys on a smaller scale can avoid these 

problems to some extent. 
Any research that uses sampling is naturally subject to sampling error. While it is 

true that survey information has been found to be relatively accurate, there is always 

that one chance in 20 or 100 that an error—more serious than might be caused by 

minor fluctuations of chance—may occur. The probability of such an error can be 

diminished by building safety checks into a study—by including comparison with 

census data or other outside information and by independent sampling of the same 

population. 

A potential, rather than an actual, weakness of this method is that the survey 

interview can temporarily lift the respondent out of his or her own social context, 

which may make the results of the survey invalid. The interview is a special event in 

the ordinary life of the respondent. This apartness may make the respondent talk and 

interact with the interviewer in an unnatural manner. For example, a mother, when 

queried about her child-rearing practices, may give answers that reveal methods she 

would like to use, rather than those she actually uses. It is possible for interviewers to 

limit the effects of lifting respondents out of social context by skilled handling, espe¬ 

cially by one’s manner and by careful phrasing and asking of questions (see Cannell 
and Kahn, 1968). 

Survey research also requires a good deal of research knowledge and sophistica¬ 

tion. The competent survey investigator must know sampling, question and schedule 

construction, interviewing, the analysis of data, and other technical aspects of the 

survey. Such knowledge is difficult to come by. Few investigators get this kind and 

amount of experience. As the value of survey research, both large- and small-scale, 

becomes appreciated, it can be anticipated that such knowledge and experience will 

be considered, at least in a minimal way, to be necessary for researchers. 

Meta-Analysis 

At the time of this writing, the number of reported research studies using meta¬ 

analysis is on the rise. The student perusing through the literature is bound to come 

across a study that uses meta-analysis. What is meta-analysis and why is it covered un¬ 

der survey research? Well, many writers of research textbooks have had a difficult 

time in placing this method within specific topic chapters. Robert Rosenthal, one 

of the leading authorities on this subject, placed the topic of meta-analysis in 
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the appendix of his book with Ralph Rosnow on behavioral research 

(Rosnow & Rosenthal, 1996). Some authors have integrated it within chapters on 

statistics. We are no different. We perceive this method as one that belongs under 

survey research. Although no questionnaire is designed and no sample is planned, it 

does involve looking at previously collected data. These data come from the research 

literature itself. One might say that it is a kind of a survey of the literature. Meta¬ 

analysis is quantitative and nonexperimental in nature. Some, such as Mann (1990), 

have referred to it as a natural experiment. The purpose of meta-analysis is to look 

through the literature on a specific topic that contains a large number of studies. 

Some of these studies may agree with one another in some way. If they do, they pro¬ 

duce a convergence of knowledge and that knowledge, is useful in making decisions. 

For example, if there is an effect of coaching on the Scholastic Aptitude Test (SAT), 

all studies conducted on this topic should have similar basic findings. Meta-analysis 

involves taking all of these studies collectively to determine if a similar finding is 

found again and again under differing situations. The goal is to be able to state some 

kind of general behavioral law. Unlike “regular” research studies that have the indi¬ 

vidual participant or groups of participants as the unit of measurement, meta-analysis 

uses the individual studies themselves as the unit of measurement. The results of 

these individual research studies are summarized using measures of effect size similar 

to the ETA-squared (172) or omega-squared (co2) discussed in an earlier chapter, used 

for individual research studies. In meta-analysis, the effect size is measured using a d- 

statistic. Much of the meta-analytic research done today reports in tabular form the 

various studies, the sample size, and the effect size. Table 25.2 shows a table adapted 

from Scogin and McElreath’s (1994) study on the effectiveness of psychosocial inter¬ 
vention on depression for older adults. 

To determine the overall effect for the phenomenon under study, Rosenthal 

(1978) gives a statistical procedure for computing the combined effect size. 

fsl Table 25.2 Meta-Analytic Table of Sample Size and Effect 

Size (from Scogin <fr McElreath) 

Study Sample Size Effect Size 

31 .41 

36 .00 

84 .97 

61 .70 

28 .82 

20 .28 6 
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Rosenthal essentially takes the p-values1 for each study, finds the standard score for 

each p-value and uses it in the formula: 

2z, 
y i~l 

overall 

The probability for this Z-value is then determined through the use of a normal 

distribution table (see Appendix B). This will tell the researcher whether or not 

the overall combined effect of the studies is statistically significant. Hence, in a meta¬ 

analysis, the researcher can find a large number of studies for a particular 

phenomenon that were not statistically significant. However, when they are com¬ 

bined, statistical significance can be achieved; for example, if a researcher found four 

studies that had the following p-values: .25, .32, .04, .19 for a one-tailed test. Their 

corresponding Z-values are .69, .47, 1.75, and .50 respectively. Note that 

only one of these studies was statistically significant. The overall Z-value for this 
example would be 

Joverall 

0.69 + 0.47 + 1.75 + 0.50 

V4 
3.41 

= 1.72 

This overall Z-value is significant at the 0.0427 level. Rosenthal (1978) shows nine 

ways of pooling results from studies to create an overall statistic. 

Meta-analysis should not be confused with two other similar approaches: replica¬ 

tion and analysis with different models or methods. With replication, the same 

methodology and same data collected are used from a different sample. The goal of 

replication studies is to establish the reliability of the results in the same situation. 

With the different methods approach, the same data are collected from a different 

sample, or the original data are used; however, with this approach, different methods 

are used. The objective here is to find out how robust the original findings were. 

Effort is taken to find the best-fitting model for prediction or decision-making. 

This might be construed as a form of “data mining,” or multiple methods research. 

Meta-analysis essentially combines these two, looking at different methods 

and different data. The objective with meta-analysis is to generalize the results to 
new situations. 

The development of meta-analysis is credited to Glass (1976). Smith and Glass 

(1977) demonstrated meta-analysis by searching the psychological literature in an ef¬ 

fort to determine the effectiveness of psychotherapy. They found nearly 400 studies 

giving information on psychotherapy relevant to their goal. Smith and Glass were 

/-value is another way of expressing the probability of a type I error. Generally, studies report 
the results as either p < .05 (statistically significant) or p > .05 (not statistically significant). How¬ 
ever, in recent years, with the availability of high-speed computers and computer programs, the p- 
value is directly computed. 
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able to synthesize the results from each of these studies to state a general conclusion 

about the effectiveness of psychotherapy. In addition, they were able to compare the 

relative effectiveness of several different methods of treatment within psychotherapy 

Hence, meta-analysis is able to answer a number of research and practical questions 

that individual research studies cannot. For example, Blumenthal (1998) uses a meta¬ 

analysis to answer questions surrounding gender differences in the perception of sex¬ 

ual harassment. This study has great significance in the area of court and legislative 

cases or legal policies. Most studies on sexual harassment have involved participants 

who are presented with one or two brief scenarios on an incident and then asked a 

series of questions concerning the situation. While most studies present results that 

men and women differ in perception of sexual harassment, the magnitude of the 

findings have varied. There are even some studies that have found no significant dif¬ 

ferences. BlumenthaPs study examines the literature on this topic and determines in 

a systematic way what the general picture is like on this topic. Blumenthal’s study 

utilizes computer searches for studies with keywords such as “sexual harassment,” 

“perception,” and “gender differences.” The advent of computerized searches has fa¬ 

cilitated the growth of meta-analytic studies. 

Prior to the development of meta-analysis, researchers relied on articles that 

appeared in review publications such as Psychological Review, American Psychologist, 

Psychological Bulletin, Harvard Educational Review, and the Annual Review of Psychology 

for summaries of research that had been done in a certain area. Writers of reviews 

were generally chosen because they were considered experts in that area. Although 

these reviewers made great efforts to present the data objectively, some level of sub¬ 

jectivity was unavoidable. Mann (1990) presents a few examples of subjective reviews 

done with the traditional approach in medical science. Mann states that there is al¬ 

ways the likelihood that certain important elements may be overlooked when doing 

one of these traditional reviews. Meta-analysis provides a methodology that supple¬ 

ments these reviews and fills a critical need in science. That need is the resolution of 

conflicting research findings. Simon (1987) feels that meta-analysis will not be able 

to completely resolve the conflict. He bases his argument on the premise that meta- 

analytic studies do not consider enough independent variables. In considering the 

problem posed by Adelson and Williams reported in Simon (1987), meta-analysis 

would not be able to answer the question as to which of 34 possible independent 

variables have the greatest effect on pilot performance. 

To illustrate some of the areas addressable by meta-analysis, we will cite some 

of the studies that have been done. Scogin and McElreath (1994) did a meta-analysis 

of 17 studies concerned with the efficacy of psychosocial treatments for depression 

of older adults. These 17 studies met their criterion of studies that had a control 

condition. These researchers searched the literature for articles that pertained to the 

topic from the years 1975 to 1990. The average effect size found by these researchers 

was statistically significant and indicated that those who received psychosocial 

treatment were healthier than those who did not receive the treatment. Verhaeghan 

and DeMeersman (1998) did a meta-analysis of studies that compared younger and 

older adults on the Stroop interference effect. We mentioned the Stroop effect in an 

earlier chapter. Research participants were found to name the color of the ink 

the word was printed in, rather than the word itself. That is, with the word yellow 
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printed in green-colored ink, participants tended to say “green” when asked to read 

the word. Verhaeghan and DeMeersman were able to find 20 such studies in a com¬ 

puter search of the literature. Verhaeghan and DeMeersman’s finding showed that 

the Stroop effect was unaffected by age. Heilman (1997) used a meta-analysis to 

study the relation between job satisfaction and intent to leave the job. Heilman iden¬ 

tified 38 studies within a 13-year period search of the literature. The relation be¬ 

tween these two variables were consistently found to be statistically significant and in 

the negative direction. That is, the higher the satisfaction the less likely to leave, or 

the lower the satisfaction the higher the intent to leave. 

Meta-analysis is a method that can summarize the results of many studies con¬ 

ducted on the same or similar topic area. It does not require that studies be exactly 

replicated. Additionally, it has the support of at least one quantitative index—average 

effect size—to help in the evaluation. Plus, effect size indices can also be compared 

to each other statistically. There is, however, at least one problem that has been asso¬ 

ciated with meta-analysis — the “file drawer problem.” It arises from the fact that 

journal editors generally do not accept for publication articles that have “nonsignifi¬ 

cant” results. That is, studies where the null hypothesis is not rejected, or studies that 

are not statistically significant at the mystical a — .05 level. Barber (1976) calls it the 

“negative effect.” Such studies are deemed “unpublishable.” So meta-analysis, which 

is usually done by surveying the research literature for published articles in the area 

of interest, will contain only the analyses and conclusions drawn from studies that are 

“statistically significant.” Meanwhile, researchers may have stored in their “file draw¬ 

ers” research studies that failed to yield a significant result. If such a file drawer exists 

with a large number of nonsignificant findings, the meta-analysis reported by re¬ 

searchers may be overly optimistic. To counteract this problem, a number of re¬ 

searchers have developed tables and methods to give the researcher some idea as to 

the amount of tolerance or distortion that may be present (see Bradley & Gupta, 

1997; Sharpe, 1997). However, Rosenthal and Rubin (1978) have developed a statisti¬ 

cal formula to determine how many negative studies would be needed to overturn 

the conclusion drawn from using the positive studies in a meta-analysis. Rosenthal 

and Rubin have shown that for 345 published studies, 65,123 unpublished studies 

showing a negative effect would be needed. However, as Light and Pillemer (1984) 

have pointed out, there is a major difference between 50 unpublished no-effect stud¬ 

ies and 50,000 unpublished no-effect studies, even though both are below the 65,123 
stated by Rosenthal and Rubin. 

The statistical analysis of meta-analysis can be quite complex. We mentioned 

briefly about computing effect sizes. However, the analysis goes beyond this. A 

number of computer programs are available to handle the computations (see 
Johnson, 1993; Mullen, 1993). 

Chapter Summary 

1. Survey research is a type of quantitative field study. 

2. Survey research attempts to find relations between sociological and psycho¬ 
logical variables. 
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3. Survey research is a development of the twentieth century. 

4. The general focus of survey research is on people. 

5. Interviews, schedules, panels, telephone and mail surveys are different types 
of surveys. 6. The type of survey that yields the best information is the interview. Mail 

surveys contain the greatest amounts of problems. 

7. Survey research can obtain a wide range of information, but cannot provide 

in-depth information. It is more extensive than intensive. 

8. The methodology of survey research includes a “flow plan.” This plan out¬ 

lines the design and implementation of a survey. 

9. The construction of the questionnaire or survey is one of the important 

parts of the plan. Another part is the sampling plan (i.e., who to sample and 

how will the sampling be done?). 

10. Data collection can be a laborious task. If interviews are used, then inter¬ 
viewers need to be trained properly. 

11. Getting the data into machine-readable form is another big task in survey 

research. This would also include the analysis of the data. 

12. Survey research can be expensive in terms of time, money, and labor. In a 

large survey, findings are not quickly accessible before the end of the study. 

13. Meta-analysis is a form of survey research. Experimental research usually 

uses an individual participant as a unit of measurement. In meta-analysis, the 

individual studies are themselves the unit of measurement. 

14. Meta-analysis involves collecting a number of studies on a similar topic and 

summarizing the findings. The goal is to define some general law of behavior. 

Study Suggestions 

1. Following are several good examples of survey research; some are books and 

others are articles. Choose one of them. If you choose a book, read the first 

chapter to learn the problem of the study. Then go to the technical section (if 

one exists) to see how the sampling and interviewing was done. (Most pub¬ 

lished survey research studies contain such a section.) Try to determine the 

main variables and their relations. Overviews of content are included 

in brackets. 

Cai, D., & You, M. (1998). An ergonomic approach to public squatting-type 

toilet design. Applied Ergonomics, 29, 147-153. [A study on the public 

squatting type toilet design.] 

Clock, C., & Stark, R. (1966). Christian beliefs and anti-Semitism. New York: 

Harper & Row. [Religion and prejudice.] 

Lortie, D. (1975). Schoolteacher: A sociological study. Chicago: University of 

Chicago Press. [A valuable and insightful study of teachers.] 

MacDonald, S., Wells, S., & Lothian, S. (1998). Comparison of lifestyle and 

substance use factors related to accidental injuries at work, home, and 

recreational events. Accident Analysis and Prevention, 30, 21-27. 
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Miller, W., & Levitin, T (1976). Leadership and change: The new politics and the 
American electorate. Cambridge, MA.: Winthrop. [The “New Left” and 
the “Silent Minority.” Based on Survey Research Center data of 25 years.] 

Murray, A. (1998). The home and school background of young drivers 
involved in traffic accidents. Accident Analysis and Prevention, 30, 169-182. 
[Investigates the relation between home and school backgrounds and ac¬ 
cident data of over 4,000 male and female drivers, age 16-22.] 

Oates, G. L. (1997). Self-esteem enhancement through fertility? Socioeco¬ 
nomic prospects, gender, and mutual influence. American Sociological 
Review, 62, 965-973. [Determines whether or not having children influ¬ 
ences one’s self-esteem.] 

2. Rensis Likert was an outstanding social scientist, a methodological pioneer of 
survey research, and the founder of the Institute for Social Research of the 
University of Michigan (of which the Survey Research Center is a part). Two 
of his colleagues, Seashore and Katz (1982) wrote an obituary in which they 
described Likert’s contributions. It is suggested that students read the obitu¬ 
ary, which is virtually an account of the birth and growth of important 
methodological aspects of survey research, as well as an interesting descrip¬ 
tion of the contributions of this creative and competent individual. 

3. Read one the following references on the method of meta-analysis. 

Light, R. J., & Pillemer, D. B. (1984). Summing up: The science of reviewing re¬ 
search. Cambridge, MA: Harvard University Press. 

Farley, J. U., & Lehmann, D. R. (1986). Meta-analysis in marketing: General¬ 
ization of response models. Lexington, MA: Lexington Books. 

Plucker, J. A. (1997). Debunking the myth of the “highly significant” result: 
Effect sizes in gifted education research. Roeper Review, 20, 122-126. 

Rosenthal, R. (1984). Meta-analytic procedures for social research. Thousand 
Oaks, CA: Sage. 

Sharpe, D. (1997). Of apples and oranges, file drawers and garbage: Why va¬ 
lidity issues in meta-analysis will not go away. Clinical Psychology Review, 
17, 881-901. 

4. Ever have a headache? You may find the following article of interest. 

McCrory, D. C., & Hasselblad, V (1997). Cranial electrostimulation 
for headache: Meta-analysis. Journal of Nervous and Mental Disease, 
185, 766-767. 
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Chapter 26 

Foundations of Measurement 

■ Definition of Measurement 

■ Measurement and "Reality" Isomorphism 

■ Properties, Constructs, and Indicants of Objects 

■ Levels of Measurement and Scaling 

■ Classification and Enumeration 

Nominal Measurement 

Ordinal Measurement 

Interval Measurement (Scales) 

Ratio Measurement (Scales) 

■ Comparison of Scales: Practical Considerations and Statistics 

Measurement is one of the key building blocks for research. Any quantification of 

events, objects, places, and things involves measurement. Janda (1998) puts it aptly in 

the preface of his book that measurement is critical to all areas of psychology and the 

social sciences. All of the statistical procedures described in this book depend on 

measurement. Most data collection methods that eventually require some kind of 

quantification rely on measurement. Stevens (1951, 1968) states, “In its broadest 

sense, measurement is the assignment of numerals to objects or events according to 

rules.” Stevens’s definition succinctly expresses the basic nature of measurement. To 

understand it, however, requires the definition and explanation of each important 

term — a task to which this chapter is devoted. 

Suppose we ask a judge to stand seven feet away from a group of students, to 

look at the students, and then to estimate the degree to which each of them possess 

five attributes: niceness, strength of character, personality, musical ability, and intelli¬ 

gence. The estimates are to be given numerically with a scale of numbers from 1 to 
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5, 1 indicating a very small amount of the characteristic in question and 5 indicating 

a great deal. In other words, the judge, just by looking at the students, is to assess 

how “nice” they are, how “strong” their characters are, and so on, using the numbers 

1, 2, 3, 4, and 5 to indicate the amounts of each characteristic they possess. 

This example may seem a little ridiculous, but most of us go through much the 

same procedure all our lives. We often judge how “nice,” how “strong,” how “intelli¬ 

gent” people are simply by looking at them and talking to them. It only seems silly 

when it is given as a serious example of measurement. Silly or serious, it is an exam¬ 

ple of measurement, since it satisfies the definition. The judge assigned numerals to 

“objects” according to rules. The objects, the numerals, and the rules for the assign¬ 

ment of the numerals to the objects were all specified. The numerals were 1, 2, 3, 4, 

and 5; the objects were the students; the rules for the assignment of the numerals to 

the objects were contained in the instructions to the judge. The end product of the 

work—the numerals—might then be used to calculate measures of relation, analyses 
of variance, and the like. 

The definition of measurement includes no statement about the quality of 

the measurement procedure. It simply says that, somehow, numerals are assigned to 

objects or to events. The “somehow” is naturally important—but not to the defini¬ 

tion. Measurement is a game we play with objects and numerals. Games have rules. It 

is, of course, important for other reasons that the rules be “good” rules, but whether 

the rules are “good” or “bad,” the procedure is still measurement. Why this empha¬ 

sis on the definition of measurement and on its “rule” quality? There are three 
reasons. 

First, measurement, especially psychological and educational measurement, is 

misunderstood. It is not difficult to understand certain measurements used in the 

natural sciences length, weight, and volume, for example. Even measures more re¬ 

moved from common sense can be understood without wrenching elementary intu¬ 

itive notions too much. But to understand that the measurement of characteristics of 

individuals and groups, such as intelligence, aggressiveness, cohesiveness, and anxi¬ 
ety, involves basically and essentially the same thinking and general procedure is more 

difficult. Indeed, many say it cannot be done. Knowing and understanding that mea¬ 

surement is the assignment of numerals to objects or events by rule, then, helps to 

erase erroneous and misleading conceptions of psychological and educational 
measurement. 

Second, the definition tells us that, if rules can be set up on some rational or em¬ 

pirical basis,, measurement of anything is theoretically possible. This greatly widens 

the scientists measurement horizons. The scientist will not reject the possibility of 

measuring some property because the property is complex and elusive. It is under¬ 

stood that measurement is a game that may or may not be playable with this or that 

property at a given time. Playing the game of measurement is never rejected even 
though the scientist understands the difficulties involved with it. 

Third, the definition alerts us to the essential neutral core of measurement and 

measurement procedures and to the necessity for setting up “good” rules; rules 

w ose virtue can be empirically tested. A measurement procedure is no better than 

its rules. The rules given in the example above were poor. The procedure was a 
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measurement procedure; the definition was satisfied. But it was a poor procedure for 

reasons that should become apparent later. 

Definition of Measurement 

To repeat our definition, “measurement is the assignment of numerals to objects or 

events according to rules.” A numeral is a symbol in the form: 1, 2, 3, . . . , or I, II, 

III. It has no quantitative meaning unless we give it such a meaning; it is simply a 

symbol of a special kind. It can be used to label objects, such as baseball players, bil¬ 

liard balls, or individuals, drawn in a sample from a universe. We could just as well 

use the word symbol in the definition. It is quite possible, even necessary, to assign 

symbols to objects or sets of objects according to rules. Numeral is used because mea¬ 

surement ordinarily uses numerals, which, after being assigned quantitative meaning, 

become numbers. A number, then, is a numeral that has been assigned quantitative 

meaning. 

The term “assigned” in the definition means mapping. Recall that earlier we 

talked about mapping the objects of one set onto the objects of another set. A func¬ 

tion, f is a rule of correspondence. It is a rule that assigns to each member of one set 

some one member of another set. The members of the two sets can consist of any 

objects. In mathematics, the members are generally numbers and algebraic symbols. 

In research, the members of one set can be individuals, or symbols representing the 

individuals, and the members of the other set can be numerals or numbers. In most 

psychological and educational measurement, numerals and numbers are mapped 

onto, or assigned to, individuals. Usually, in mapping, the members of the domain 

are said to be mapped onto members of the range. In order to preserve consistency 

with the definition of measurement given above and to be able to always conceive of 

the measurement procedure as a function, the mapping has been turned around. 

This conception of mapping is also consistent with the earlier definition of a function 

as a rule that assigns to each member of the domain of a set some one member of the 

range. The rule describes how the pairs are to be ordered. 

The most interesting—and difficult—work of measurement is the rule. A rule is 

a guide, a method, a command that tells us what to do. A mathematical rule is / a 

function;/is a rule for assigning the objects of one set to the objects of another set. 

In measurement a rule might say: “Assign the numerals 1 through 5 to individuals 

according to how nice they are. If an individual is very, very nice, let the number 5 be 

assigned to him or her. If an individual is not at all nice, let the number 1 be as¬ 

signed. Assign to individuals between these limits numbers between the limits.” An¬ 

other rule is one we have already met a number of times: “If an individual is male, as¬ 

sign him a 0. If an individual is female, assign her a 1.” Of course, we would have to 

have a prior rule or set of rules defining male and female. 

Assume that we have a set, A, of five persons, three women and two men: au a3, 

and aA are women; a2 and as are men. We wish to measure the variable, Sex. Assum¬ 

ing we have a prior rule that allows us unambiguously to determine sex, we use 

the rule given in the preceding paragraph: “If a person is a woman, assign 0; if a man, 
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M Figure 26.1 

assign 1.” Let 0 and 1 be a set. Call it B. Then B — {0, 1}. The measurement diagram 
is shown in Figure 26.1. 

This procedure is the same as the one we used in Chapter 5 when discussing re¬ 

lations and functions. Evidently, measurement is a relation. Since to each member of 

A, the domain, one and only one object of B, the range, is assigned, the relation is a 

function. Does this mean then, that all measurement procedures are functions? Yes, 

they are, provided the objects being measured are considered the domain and the nu¬ 
merals being assigned to, or mapped onto them, are considered the range. 

Here is another way to bring set, relation, function, and measurement ideas to¬ 

gether. Recall that a relation is a set of ordered pairs. So is a function. Any measure¬ 

ment procedure, then, sets up a set of ordered pairs, the first member of each pair 

being the object measured, and the second member the numeral assigned to the ob¬ 

ject according to the measurement rule, whatever it is. We can thus write a general 
equation for any measurement procedure: 

f= {(x, y); x — any object, andy = a numeral} 

This is read: The function,/ or the rule of correspondence, is equal to the set of or¬ 

dered pairs (x, y) such that x is an object and each corresponding y is a numeral.” 
This is a general rule and will fit any case of measurement. 

Let us cite another example to make this discussion more concrete. The events 

to be measured, the xs, are five children. The numerals are the ranks 1, 2, 3, 4, and 5. 

a mIe that instructs a teacher as follows: “Give the rank 1* to the 
child who has the greatest motivation to do schoolwork. Give the rank 2 to the child 

who has the next greatest motivation to do schoolwork, and so on to the rank 5, 

w 1C you should give to the child with the least motivation to do schoolwork.” The 
measurement or the function is shown in Figure 26.2. 

Note that / the rule of correspondence, might have been: “If a child has high 

motivation for schoolwork, give him or her a 1, but if a child has low motivation for 

schoolwork give him or her a 0.” Then the range becomes {0,1}. This simply means 
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U Figure 26.2 

Domain Range 

(children) (ranks) 

that the set of five children has been partitioned into two subsets. Each of which will 

be assigned, by means of f the numerals 0 and 1. A diagram of this resembles Figure 

26.1 with the set A being the domain and the set B the range. 

Returning to the rules, here is where evaluation comes into the picture. Rules 

may be “good” or “bad.” With “good” rules we have “good,” or sound, measure¬ 

ment, other things being equal. With “bad” rules we have “bad,” or poor measure¬ 

ment. Many things are easy to measure because the rules are easy to draw up and fol¬ 

low. To measure sex is easy, for example, since several simple and fairly clear criteria 

can be used to determine sex and to tell the investigator when to assign 1 and when 

to assign 0. It is also easy to measure certain other human characteristics: hair color, 

eye color, height, weight. Unfortunately, most human characteristics are far more 

difficult to measure, mainly because it is difficult to devise clear rules that are “good.” 

Notwithstanding, we must always have rules of some kind in order to measure 

anything. 

Measurement and "Reality" Isomorphism 

Measurement can be a meaningless business, as we have seen. How can this be 

avoided? The definition of sets of objects being measured, the definition of the nu¬ 

merical sets from which we assign numerals to the objects being measured, and the 

rules of assignment or correspondence have to be tied to “reality.” When the hard¬ 

ness of objects is measured, there is little difficulty. If a substance a can scratch b (and 

not vice versa), then a is harder than b. Similarly, if a can scratch b, and b can scratch 

c, then (probably) a can scratch c. These are empirical matters that are easily tested, 

so that we can find a rank order of hardness. A set of objects can be measured for its 

hardness by a few scratch tests, and numerals can be assigned to indicate degrees of 

hardness. It is said that the measurement procedure and the number system are 

isomorphic to reality. 
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Isomorphism means identity or similarity of form. The questions asked are: Is this 

set of objects isomorphic to that set of objects? Are the two sets the same or similar 

in some formal aspect? Do the measurement procedures being used have some ratio¬ 

nal and empirical correspondence with “reality”? 

To show the nature of isomorphism, we can again use the idea of the correspon¬ 

dence of sets of objects. We may wish to measure the persistence of seven individuals. 

Suppose, also, that there is an omniscient being. This being knows the exact amount 

of persistence each individual possesses; that is, it knows the “true” persistence values 

of each individual. (Assume that persistence has been adequately defined.) Butyoz/, the 

measurer, do not know these “true” values. It is necessary for you to assess the persis¬ 

tence of the individuals in some fallible way, and you think you have found such a 

way. For instance, you might assess persistence by giving the individuals tasks to per¬ 

form and noting the total time each individual requires to complete a task, or you 

might note the total number of times he or she tries to do a task before turning to 

some other activity (Feather, 1962). You use your method and measure the persis¬ 

tence of the individuals. You come out with, say, the seven values 6, 6, 4, 3, 3, 2, 1. 

Now the omniscient being knows the “true” values. They are 8, 5, 2, 4, 3, 3, 1. This 

set of values is “reality.” The correspondence of your set to “reality” is shown in 
Figure 26.3. 

In two cases, you have assessed the “true” values exactly. You have “missed” all 

the others. Only one of these “misses,” however, is serious, and there is a fair corre¬ 

spondence between the two rank orders of values. Note, too, that the omniscient be¬ 

ing knew that the “true” values of persistence run from 0 through 8, whereas your 
measurement system only encompasses 1 through 7. 

While this example is a bit fanciful, it does show in a crude way the nature of the 

isomorphism problem. The ultimate question to be asked of any measurement pro¬ 

cedure is: “Is the measurement procedure isomorphic to reality?” You were not too 

far off in measuring persistence. The only trouble is that we rarely discover as simply 

as this the degree of correspondence to “reality” of our measurements. In fact, we 

often do not even know whether we are measuring what we are trying to measure! 

Despite this difficulty, scientists must test, in some manner, the isomorphism with 
“reality” of the measurement numbers games they play. 

d Figure 26.3 

“Reality” 

Measurement 

0 1 2 3 4 5 6 7 8 
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Properties, Constructs, and Indicants of Objects 

We say we measure objects, but this is not quite true. We measure the properties, or 

the characteristics, of these objects. Even this qualification is not quite true, however. 

We actually measure indicants of the properties of objects, so that when we say we 

measure objects we are really saying that we measure indicants of the properties of 

objects. This is generally true of all science, though the properties of some natural 

objects are much closer to direct observation than others. For instance, the property 

of sex associated with animal objects is closely tied to direct observation. As soon as 

relatively simple physical properties are left behind for more complex and elusive 

properties—which are of much greater interest to social scientists and educators— 

direct observation of properties is impossible. Hostility cannot be directly observed, 

neither can morale, anxiety, intelligence, creativeness, and talent. We must always 

infer these properties or characteristics from observation of presumed indicants of 

the properties. 

Indicant is merely a convenient word used to mean something that points to 

something else. If a boy continually strikes other boys, we may say his behavior is an 

indicant of his underlying hostility. If someone’s hands sweat excessively, we may say 

that the person is anxious. A female child plays a Schubert impromptu beautifully; we 

say she has “talent.” If a male child marks a certain number of objective-type items in 

an achievement test correctly, we say he has a certain level of achievement. In each of 

these cases, some identifiable behavior is an indicant of an underlying property. Ob¬ 

viously, we are on much shakier ground when drawing such inferences from observed 

behavior than when directly observing properties like hair color, size, and sex. To 

measure a child’s cooperativeness, dependency, and imaginativeness is very different 

from measuring that child’s height, weight, or wrist-bone development. The funda¬ 

mental process of measurement is the same, but the rules are far more difficult to 

prescribe. Moreover, the observations of the psychological properties are much 

further removed from the actual properties than are those of the physical properties. 

This is perhaps the single greatest difficulty of psychological and educational 

measurement. 
The indicants from which properties are inferred are specified by operational 

definitions, definitions that specify the activities or “operations” necessary to measure 

variables or constructs. A construct is an invented name for a property. Many con¬ 

structs have been used in previous chapters: authoritarianism, achievement, social 

class, intelligence, persistence, and so on. The concepts or constructs under discus¬ 

sion are also called “latent variables.” This is an important expression that is being 

fruitfully used in what has been called analysis of covariance structures, or so-called 

causal analysis. A latent variable is a construct, an unobserved variable, that is pre¬ 

sumed to underlie varied behaviors, and that is used to “explain” these behaviors. 

“Verbal ability,” “conservatism,” and “anxiety,” for example, are latent variables. 

Their use will be explained later in the book when we study factor analysis and 

analysis of covariance structures. 
Constructs, commonly and somewhat inaccurately called variables, are defined 

in two general ways in science: by other constructs, and by experimental and 
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measurement procedures. These were earlier called constitutive and operational defini¬ 

tions. An operational definition is necessary in order to measure a property or a con¬ 

struct. This is done by specifying the observations of the behavioral indicants of the 

properties. 

Numerals are assigned to the behavioral indicants of properties. Then, after 

making observations of the indicants, the numbers (numerals) are substituted for the 

indicants and analyzed statistically. As an example, consider investigators who are 

working on the relation between intelligence and honesty. They define intelligence 

operationally as scores on an intelligence test. Honesty is defined operationally as ob¬ 

servations in a contrived situation permitting pupils to cheat or not to cheat. The in¬ 

telligence numerals assigned to pupils can be the total number of items correct on 

the test, or some other form of score. The honesty numerals assigned to pupils are 

the number of times they did not cheat when they could have cheated. The two sets 

of numbers may be correlated or otherwise analyzed. The coefficient of correlation, 

say, is .55, significant at the .01 level. All this is fairly straightforward and quite famil¬ 

iar. What is not so straightforward and familiar is this: If the investigators draw the 

conclusion that there is a significant positive relation between intelligence and hon¬ 

esty, they are taking a large inferential leap from behavior indicants in the form of 

marks on paper and observations of “cheating” behavior to psychological properties. 
That they may be mistaken should be quite obvious. 

Levels of Measurement and Scaling 

Levels of measurement, the scales associated with the levels, and the statistics appro¬ 

priate to the levels are complex, even controversial, problems. The difficulties arise 

mainly from disagreement over the statistics that can be used legitimately at the dif¬ 

ferent levels of measurement. The Stevens’s position and definition of measurement 

cited earlier is a broad view that, with liberal relaxation, is followed in this text. A 

more restrictive yet defensible position requires that differences between mea¬ 

sures be interpretable as quantitative differences in the property measured. “Quantita¬ 

tive,” in the view of some experts, means that a difference in magnitude between two 

attribute values represents a corresponding quantitative difference in the attributes 

(see Jones, 1971, pp. 335-355). This view, strictly speaking, rules out, as measure¬ 

ment, nominal and ordinal scales, which we will define in the next section of this 

chapter. We believe that actual measurement experience in the behavioral sciences 

and education justifies a more relaxed position. Again, it does not matter terribly, 

provided the student understands the general ideas being presented. We recommend 

that the more advanced student read chapters 1 and 2 of Torgerson (1958) and Chap- 

^ Nunnally (1978). Both references give fine presentations. Comrey (1950, 

976) and Michell (1990) heavily influenced the second author’s orientation to this 

chapter. Comrey (1976) presents an insightful essay on the fundamental measure¬ 

ment problem in the social and behavioral sciences. An older, outstanding treatise 

that has strongly influenced this text is by Guilford (1954). The curious student will 

enjoy the collection of articles on the controversy published in Chapter 2 of a book 
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edited by Kirk (1972). Readers who intend doing research and who will always be 

faced with measurement problems should carefully and repeatedly read Nunnally’s 

(1978) or Nunnally and Bernstein’s (1994) excellent presentations of the problems 

and their solution. 
In the ensuing discussion, we first consider the fundamental scientific and 

measurement problem of classification and enumeration. 

Classification and Enumeration 

The first and most elementary step in any measurement procedure is to define the 

objects of the universe of discourse. Suppose 17, the universal set, is defined as all 

tenth-grade pupils in a certain high school. Next, the properties of the objects of U 

must be defined. All measurement requires that U be broken down into at least two 

subsets. The most elementary form of measurement would be to classify or catego¬ 

rize all the objects as possessing or not possessing some characteristic. Say this 

characteristic is maleness. We break U down into males and nonmales, or males and 

females. These are, of course, two subsets of U, or a partitioning of U. (Recall that 

partitioning a set consists of breaking it down into subsets that are mutually exclusive 

and exhaustive. That is, each set object must be assigned to one subset and one subset 

only, and all set objects in U must be so assigned.) 
What we have done is to classify the objects of interest to us. We have put them 

into categories—we have partitioned them. The obvious simplicity of this procedure 

seems to cause difficulty for students. People spend much of their lives categorizing 

things, events, and people. Life could not go on without such categorizing, yet to as¬ 

sociate the process with measurement seems difficult. 
After a method of classification has been found, we have in effect a rule for 

telling which objects of U go into which classes or subsets or partitions. This rule is 

used and the set objects are put into the subsets. Here are the boys; here are the girls. 

Easy. Here are the middle-class children; here are the working-class children. Not as 

easy, but not too hard. Here are the delinquents; here are the nondelinquents. 

Harder. Here are the bright ones; here are the average ones; here are the dull ones. 

Much harder. Here are the creative ones: here are the noncreative ones. Very much 

harder. 
After the objects of the universe have been classified into designated subsets, the 

members of the sets can be counted. In the dichotomous case, the rule for counting 

was given in Chapter 4. If a member of U has the characteristic in question, say male¬ 

ness, then assign a 1. If the member does not have the characteristic, then assign a 0 

(see Figure 26.1). When set members are counted in this fashion, all objects of a sub¬ 

set are considered to be equal to each other and unequal to the members of other 

subsets. 

There are four general levels of measurement: nominal, ordinal, interval, and ratio. 

These four levels lead to four kinds of scales. Some writers on the subject admit only 

ordinal, interval, and ratio measurement, whereas others say that all four belong to 

the measurement family. Comrey and Lee (1995) feel that the nominal scale is 
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measurement. However, it is not so much quantitative as it is in ordinal, interval, and 

ratio. That is, the numbers used in nominal measurement are just numeral labels 

attached to predefined categories. We need not be too fussy about this as long as we 

understand the characteristics of the different scales and levels. 

Nominal Measurement 

The rules used to assign numerals to objects define the kind of scale and the level of 

measurement. The lowest level of measurement is nominal measurement (see earlier 

discussion of categorization). The numbers assigned to objects are numerical without 

having a number meaning; they cannot be ordered or added. They are labels much 

like the letters used to label sets. If individuals or groups are assigned 1, 2, 3, these 

numerals are merely names. For example, baseball and football players are assigned 

such numbers. Telephones are assigned such numbers. Groups may be given the la¬ 

bels I, II, and III, or Au A2, and A3. We use nominal measurement in our everyday 

thinking and living. We identify others as “men,” “women,” “Protestants,” “Aus¬ 

tralians,” and so on. At any rate, the symbols assigned to objects, or rather, to the sets 

of objects, constitute nominal scales. Some experts do not believe that this is mea¬ 

surement, as indicated previously. But, such exclusion of nominal measurement 

would prevent much social scientific research procedure from being called measure¬ 

ment. Since the definition of measurement is satisfied, and since the members of 

labeled sets can be counted and compared, it would appear that nominal procedures 
are measurement. 

The requirements of nominal measurement are simple. All the members of a set 
are assigned the same numeral, and no two sets are assigned the same numeral. 

Nominal measurement—at least in one simple form—was expressed in Figure 26.1, 

where the objects of the range, {0, 1}, were mapped onto the as, the objects of U, the 

five people, by the rule: “If x is male, assign 0; if x is female, assign 1.” This is how 

nominal measurement is quantified when only a dichotomy is involved. When the 

partition contains more than two categories, some other method must be used. Basi- 

ca y, nominal measurement quantification amounts to counting the objects in the 
cells of the subsets or partitions. 

Ordinal Measurement 

Ordinal measurement requires that the objects of a set can be rank ordered on an 

operationally defined characteristic or property. The so-called transitivity postulate 
must be satisfied: If* is greater than b, and b is greater than c, then a is greater than c. 

Other symbols or words can be substituted for “greater than,” for example, “less 

than, precedes, dominates,” and so on. Most measurement in behavioral research 

depends on this postulate. It must be possible to assert ordinal or rank order 

s a ements like the one just used. That is, suppose we have three objects, a, b, and c, 

ffreater^hlrT^t-h ^ • 1S g.reater than c If we can also justifiably say that a is 
g than c, then the mam condition for ordinal measurement is satisfied. Be wary, 

owever. A relation may seem to satisfy the transitivity postulate but may not actualfy 
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do so. For example, can we always say a dominates b, and b dominates c; therefore a 

dominates c? Think of husband, wife, and child. Think, too, of the relations 

“loves,” “likes,” “is friendly to,” or “accepts.” In such cases, the researcher should 

demonstrate transitivity. The procedure can be generalized in three ways. 

First, any number of objects of any kind can be measured ordinally simply by ex¬ 

tension to a, b, c, . . . , n. (Even though two objects may sometimes be equal, ordinal 

measurement is still possible.) We simply need to be able to say a> b > c > . . . > n 

on some property. 
The second extension consists of using combined properties or combined crite¬ 

ria. Instead of using only one property, we can use two or more. For example, instead 

of ranking a group of college students on academic achievement by grade-point aver¬ 

ages, we may wish to rank them on the combined criteria of grade-point average and 

test scores. (Grade-point averages, too, are composite scores.) 
The third extension is accomplished by using criteria other than “greater than.” 

“Less than” occurs to us immediately. “Precedes,” “is above,” and “is superior to” 

may be useful criteria. In fact, we might substitute symbols other than “>” or “<.” 

One such symbol is “0.” It can be used to mean any operation, such as those just 

named, in which the transitivity postulate is satisfied: a 0 b might mean “a precedes 

b,” or “a is subordinate to b” and a Ob 0 c might mean “a is superior to b, b is supe¬ 

rior to c, and a is superior to c. ” 
The numerals assigned to ranked objects are called rank values. Let R equal 

the set of ranked objects: R = {a > b > . . . > n). Let R* equal the set of rank values: 

R*={ 1, 2, ..., n}. We assign the objects of R* to the objects of R as follows: the 

largest object is assigned 1, the next in size 2, and so on to the smallest object which 

is assigned the last numeral in the particular series. If this procedure is used, the rank 

values assigned are in the reverse order. If, for instance, there are five objects, with a 

the largest, b the next, through e, the smallest, then: 

Objects R R* 

a 1 5 

b 2 4 

c 3 3 

d 4 2 

e 5 1 

Of course, one step can be skipped by assigning R* directly: by assigning 5 to a, 4 to 

b, through 1 to e. 
Ordinal numbers indicate rank order and nothing more. The numbers neither 

indicate absolute quantities, nor do they indicate that the intervals between the num¬ 

bers are equal. For instance, it cannot be assumed that because the numerals are 

equally spaced the underlying properties they represent are also equally spaced. If 
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two participants have the ranks 8 and 5 and two other participants the ranks 6 and 3, 

we cannot say that the differences between the first and second pairs are equal. 

There is also no way to know that any individual has none of the property being 

measured. Rank order scales are not equal interval scales, neither do they have ab¬ 
solute zero points. 

Interval Measurement (Scales) 

Interval or equal interval scales possess the characteristics of nominal and ordinal 

scales, especially the rank order characteristic. In addition, numerically equal dis¬ 

tances on interval scales represent equal distances in the property being measured. 

Thus, suppose we had measured four objects on an interval scale and gotten the val¬ 

ues 8, 6, 5, and 3. We can then legitimately say that the difference between the first 

and third objects in the property measured, 8-5=3, is equal to the difference 

between the second and fourth objects, 6-3=3. Another way to express the equal 

interval idea is to say that the intervals can be added and subtracted. An interval scale 
is assumed as follows: 

a b c d e 

1 2 3 4 5 

The interval from a to c is 3 — 1 — 2. The interval from c to i is 4 — 3 = 1. We 

can add these two intervals (3 - 1) + (4 - 3) = 2 + 1 = 3. Now note that the interval 

from a to d is 4 - 1 = 3, or expressed in an equation, (d - a) = (c - a) + (d - c). If 

these intervals were five pupils measured on an interval scale of achievement, then 

the differences in achievement between pupils a and c and between b and d would be 

equal. We could not say, however, that the achievement of d was twice as great as that 

of pupil b. (Such a statement would require one higher level of measurement) Note 

that it is not quantities or amounts that are added and subtracted; it is intervals or 
distances. 

One of the best-known examples of the interval scale is the centigrade or Celsius 

temperature scale. This scale has an arbitrary zero point where water freezes and ar¬ 

bitrary number of 100 where water boils. The points in between can be divided 

equally using the expansion of mercury in a thermometer. Equal units along the scale 

represent equal amounts of expansion of mercury. Since we do not have an absolute 

zero point, we are unable to make the statement that 100° centigrade is twice as hot 

tlS , ^entlgrade- We can say, however, that the difference or distance between 100° 
and is the same as the difference between 50° and 25° 

, (i; h Comrey (1^76) mentioned, the social and behavioral sciences have a more 

' “T™ pr°™g u|"lts of measurement than the physical or natural sci- 

cut as leA, “ mT “T SOcial and behavioral sciences are not quite as clear 
* dj Pr°V,dfd W‘th temperature. What the social and behavioral sciences 

shaned” mA°btam measurements that follow a normal distribution'(“bell- 
shaped curve). If the measuring instrument can do this, it is considered a good one 



CHAPTER 26 ■ Foundations of Measurement 635 

from a measurement (scaling) point of view. The conversion of these measurements 

to standard or Z-scores will result in units that may be considered quantitatively 

equal. Scaling methods that use the normal curve to obtain measurements on the in¬ 

terval scale can at best be treated as approximations with unknown accuracy. Comrey 

and Lee (1995) present such a method in Chapter 5 of their book. 

Ratio Measurement (Scales) 

The highest level of measurement is ratio measurement, and the measurement ideal 

of the scientist is the ratio scale. A ratio scale, in addition to possessing the character¬ 

istics of nominal, ordinal, and interval scales, has an absolute or natural zero that has 

empirical meaning. If a measurement is zero on a ratio scale, then there is a basis for 

saying that some object has none of the property being measured. Since there is an 

absolute or natural zero, all arithmetic operations are possible, including multiplica¬ 

tion and division. Numbers on the scale indicate the actual amounts of the property 

being measured. If a ratio scale of Achievement existed, then it would be possible to 

say that a pupil with a scale score of 8 has an Achievement twice as great as a pupil 

with a scale score of 4. 
One of the major problems in the behavioral and social sciences is that the oper¬ 

ation of addition cannot be defined (Comrey, 1950). Also, there are no really satisfac¬ 

tory substitutes for the addition operator in the social and behavioral sciences that 

will enable the researcher to obtain a ratio scale of measurement. There have been 

some scaling procedures that are complex and partially successful, but in general, the 

data that behavioral and social scientists work with are not even approximately ratio 

scale data. 

Comparisons of Scales: Practical 

Considerations and Statistics 

The basic characteristics of the four types of measurement and their accompanying 

scales have been discussed. What kinds of scales are used in behavioral and 

educational research? Mostly nominal and ordinal are used, though the probability is 

high that many scales and tests used in psychological and educational measurement 

approximate interval measurement well enough for practical purposes, as we 

shall see. 
First, consider nominal measurement. When objects are partitioned into two, 

three, or more categories on the basis of group membership — sex, ethnic identifica¬ 

tion, married-single, Protestant-Catholic-Jew, and so forth —measurement is 

nominal. When continuous variables are converted to attributes, as when objects are 

divided into high-low and old-young, we have what can be called quasi-nominal 

measurement: although capable of at least rank order, the values are in effect 

collapsed to 1 and 0. 
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It is instructive to study the numerical operations that are, in a strict sense, legit¬ 

imate with each type of measurement. With nominal measurement the counting of 

numbers of cases in each category and subcategory is, of course, permissible. Fre¬ 

quency statistics like y2 percentages, and certain coefficients of correlation (contin¬ 

gency coefficients) can be used. This sounds thin. Actually, it is a good deal. A good 

principle to remember is this: If one cannot use any other method, one can almost al¬ 

ways partition or cross partition participants. If we are studying the relation between 

two variables and do not have any way to measure them in an ordinal or interval 

fashion adequately, some way can probably be found to divide the objects of study 

into at least two groups. For example, in studying the relation between the motiva¬ 

tion of board of education members to become board members and their religion, as 

Gross, Mason, and McEachern (1958) did, we may be able to have knowledgeable 

judges divide the sample of board members into those with “good” motivation and 

those with “poor” motivation. Then we can cross partition religion with the 
motivation dichotomy and thus study the relation. 

Intelligence, aptitude, and personality test scores are, basically and strictly speaking, 

ordinal. They indicate with more or less accuracy not the amounts of intelligence, ap¬ 

titude, and personality traits of individuals, but rather the rank order positions of the 

individuals. To see this, we must realize that ordinal scales do not possess the desir¬ 

able characteristics of equal intervals or absolute zeroes. Intelligence test scores are 

examples. An individual with a zero score on an intelligence measure does not neces¬ 

sarily have no intelligence, because there is no absolute zero on an intelligence test 

scale. The zero is arbitrary, and without an absolute zero, addition of amounts of in¬ 

telligence has little meaning, since arbitrary zero points can lead to different sums. 

Adding two people together where each has an intelligence score of 70 is not equiva¬ 

lent to one person with an IQ of 140. On a scale with an arbitrary zero point the fol¬ 

lowing addition is performed: 2 + 3 = 5. Then the sum is 5 scale units above zero. 

But if the arbitrary zero point is inaccurate and the “real” zero point is at the scale 

position 4 scale points lower than the arbitrary zero position, then the former 2 and 
3 should really be 6 and 7, and 6 + 7 = 13! 

The lack of a real zero in ordinal scales is not as serious as the lack of equal 

intervals. Even without a real zero, distances within a scale can be added, provided 

that these distances are equal (empirically). The situation might be somewhat as indi¬ 

cated in Figure 26.4. The scale on the top (“true” scale) indicates the “true” values of 

a variable. The bottom scale (ordinal scale) indicates the rank order scale used by an 

investigator. In other words, an investigator has rank ordered seven persons quite 

well, but his ordinal numerals, which look equal in interval, are not “true,” although 
they may be fairly accurate representations of the empirical facts. 

Strictly speaking, the statistics that can be used with ordinal scales include rank 

order measures such as the rank order coefficient of correlation, r, Kendall’s W and 

rank order analysis of variance, medians, and percentiles. If only these statistics’(and 

others like them) are legitimate, how can statistics like r, t, and F be used with what 

are in effect ordinal measures? And they are so used, without a qualm by most re¬ 

searchers. One of the exceptions is Cliff (1996), who feels that social and behavioral 
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[H Figure 26.4 

science data are ordinal at best, and as such only ordinal methods of data analysis 

should be used. 

Although this is a moot point to some, the situation is not as difficult as it seems. 

As Torgerson (1958) points out, some types of natural origin have been devised for 

certain types of measurement. In measuring preferences and attitudes, for example, 

the neutral points (on either side of which are degrees of positive and negative favor¬ 

ing, approving, liking, and preferring) can be considered natural origins. Besides, ra¬ 

tio scales, while desirable, are not absolutely necessary because most of what we need 

to do in psychological measurement can be done with equal interval scales. 

The lack of equal intervals is more serious since distances within a scale cannot 

theoretically be added without interval equality. Yet, though most psychological 

scales are basically ordinal, we can with considerable assurance often assume equality 

of interval. The argument is evidential. If we have, say, two or three measures of the 

same variable, and these measures are all substantially and linearly related, then equal 

intervals can be assumed. This assumption is valid because the more nearly a relation 

approaches linearity, the more nearly equal are the intervals of the scales. This also 

applies, at least to some extent, to certain psychological measures like intelligence, 

achievement, and attitude tests and scales. 
A related argument is that many of the methods of analysis we use work quite 

well with most psychological scales. That is, the results we get from using scales and 

assuming equal intervals are quite satisfactory. The point of view adopted in this 

book is, then, a pragmatic one: that the assumption of interval equality works. Still, 

we are faced with a dilemma: If we use ordinal measures as though they were interval 

or ratio measures, we can err in interpreting data and the relations inferred from 

data, though the danger is probably not as grave as it has been made out to be. There 

is no trouble with the numbers, as numbers. They do not know the difference be¬ 

tween p and r or between parametric and nonparametric statistics, neither do they 

know the assumptions behind their use. But we do, or should, know the differences 

and the consequences of ignoring the differences. On the other hand, if we abide 

strictly by the rules, we cut off powerful modes of measurement and analyses and are 

left with tools inadequate to cope with the problems we want to solve (see Nunnally, 

1978; Comrey & Lee, 1995). 
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What is the answer, the resolution of the conflict? Part of the answer was given 

above: it is probable that most psychological and educational scales approximate 

interval equality fairly well. In those situations in which there is serious doubt as to 

interval equality, there are technical means for coping with some of the problems. 

The competent research worker should know something of scaling methods and cer¬ 

tain transformations that change ordinal scales into interval scales (see Barlett, 1947; 

Guilford, 1954, chap. 8; and Li, 1957). The subject of transformations and their pur¬ 

poses and uses is an important one, but has not been given the attention it deserves 

by social and behavioral scientists. Most of the recent references on transformations 

have come from applied statisticians: Mosteller and Tukey (1977); Box, Hunter, and 

Hunter (1978); Draper and Smith (1981); Box and Draper (1987); and Jennrich 

(1995). Among the behavioral sciences, the following references cover this topic: 
Cohen and Cohen (1983), Gorsuch (1983), and Howell (1997). 

In the state of measurement at present, we cannot be sure that our measurement 

instruments have equal intervals. It is important to ask the question: How serious are 

the distortions and errors introduced by treating ordinal measurements as though 

they were interval measurements? With care in the construction of measuring instru¬ 

ments, and especially with care in the interpretation of the results, the consequences 

are evidently not serious. The more powerful statistical methods are less dependent 

on the underlying scale of measurement than on the distributional properties of the 
data. 

The best procedure would seem to be to treat ordinal measurements as though 

they were interval measurements, but to be constantly alert to the possibility of gross 

inequality of intervals. As much as possible about the characteristics of the measuring 

tools should be learned. Through the appropriate refinement of measurement meth¬ 

ods and scaling procedures, data that are approximately normal in shape can be ob¬ 

tained. With such data, the more powerful parametric methods of statistical analysis 

can be used. 4 he researcher needs to be aware that it is still incorrect to ignore the 

scaling properties of data. For example, it would be inappropriate for a researcher to 

interpret a group with a mean of 50 to be twice as big as a group that had a mean of 

25. Much usefbl information has been obtained by treating ordinal data as interval, 

with resulting scientific advances in psychology, sociology, and education. In short, it 

is unlikely that researchers will be led seriously astray by heeding this advice, if they 

are careful in applying it. For a useful review of the literature on the problem of 

scales of measurement and statistics, read Gardner (1975) or Michell (1990). 

Chapter Summary 

1. Measurement is an important component of research. 

2. Without measurement or quantification of information, many methods of sta¬ 
tistical analysis cannot be used. 

3. Stevens defines measurement as the process of assigning numbers to objects 
and events according to some rule. 

4. Stevens defines four sets of rules: nominal, ordinal, interval, and ratio. 



CHAPTER 26 m Foundations of Measurement 639 

5. Most behavioral and social science data are ordinal. However, through certain 

scaling methods and assumptions, it can be considered as interval scaled data. 

6. Comrey states that an important consideration is that behavioral science data 

can be considered as interval if the measurement process produces data that 
follow a normal distribution. 

7. Measurement involves an isomorphism between numbers and reality. 

8. The argument continues as to which is the better way to handle social and be¬ 
havioral science data. 

Study Suggestions 

1. What is the first step in measurement? 

2. According to Stevens, what are the rules that are a part of the measurement 

process? 

3. Give an example from science or everyday life that illustrates ordinal mea¬ 
surement. 

4. An interesting paper written many years ago by Prokasy (1962) is still relevant 

with today’s argument about using parametric methods on ordinal data. Read 

Prokasy’s article and then read Cliff’s (1996) Chapter 1. 

5. Read F. M. Lord’s article on the statistical treatment of football numbers (in 

Kirk, 1972). This article humorously describes how some people view and use 

numbers. Can numbers from a nominal scale be added together? 



' 
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Reliability 

■ Definitions of Reliability 

s Theory of Reliability 

Two Computational Examples 

■ The Interpretation of the Reliability Coefficient 

■ The Standard Error of the Mean and the Standard Error of 

Measurement 

■ The Improvement of Reliability 

■ The Value of Reliability 

After assigning numerals to objects or events according to rules, we must face two 

major problems of measurement: reliability and validity. We have devised a measure¬ 

ment system and have administered the measuring instruments to a group of partici¬ 

pants. We must now ask and answer the questions: What is the reliability of the 

measuring instrument? What is its validity? 

If one does not know the reliability and validity of one’s data, little faith can be 

put in the results obtained and the conclusions drawn from the results. These are two 

key psychometric properties that must be satisfied in order to answer the many criti¬ 

cisms leveled at social and behavioral science data and measuring methods. The data 

of the social sciences and education, derived from human behavior and human prod¬ 

ucts, are, as we saw in Chapter 26, some steps removed from the properties of scien¬ 

tific interest. Thus their validity can be questioned. Concern for reliability comes 

from the necessity for dependability in measurement. The data of all psychological 

and educational measurement instruments contain errors of measurement. To the 

extent that they do so, the data they yield will not be dependable. 

641 
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Definitions of Reliability 

Synonyms for reliability are dependability, stability, consistency, reproducibility, pre¬ 

dictability and lack of distortion. Reliable people, for instance, are those whose behavior 

is consistent, dependable, predictable—what they do tomorrow and next week will 

be consistent with what they do today and what they have done last week. They are 

stable, we say. Unreliable people, on the other hand, are those whose behavior is 

much more variable. They are unpredictably variable. Sometimes they do this, some¬ 

times that. They lack stability. We say they are inconsistent. 

So it is with psychological and educational measurements: they are more or less 

variable from occasion to occasion. They are stable and relatively predictable or they 

are unstable and relatively unpredictable; they are consistent or not consistent. If 

they are reliable, we can depend on them. If they are unreliable, we cannot depend 
on them. 

It is possible to approach the definition of reliability in three ways. One ap¬ 

proach is epitomized by the question: If we measure the same set of objects again and 

again with the same or comparable measuring instrument, will we get the same or 

similar results? This question implies a definition of reliability in stability, dependabil¬ 

ity, and predictability terms. It is the definition most often given in elementary 
discussions of the subject. 

A second approach is epitomized by the question: Are the measures obtained 

from a measuring instrument the “true” measures of the property measured? This 

is a lack of distortion definition. Compared to the first definition, it is further re¬ 

moved from common sense and intuition, but it is also more fundamental. These 

two approaches or definitions can be summarized in the words stability and lack-of- 

distortion. As we will see later, however, the lack of distortion definition implies the 

stability definition. By reliability we mean the degree to which the measurement 

agrees with itself. In Chapter 28 we will be dealing with validity. The terms “reliabil¬ 

ity and validity are often confused, but there is a clear distinction between them. 

Reliability has nothing to do with the truthfulness of the measurement. Some au¬ 

thors have referred to reliability as accuracy (see Magnusson, 1967; Tuckman, 1975). 

This is true, but it is often confused with what is meant as accuracy in terms of valid¬ 

ity. Validity also deals with accuracy but in a way that differs from reliability. Reliabil¬ 

ity is concerned with the accuracy with which a measuring instrument measures 

whatever it measures. The keyword here is “whatever.” If we have a test that we feel 

measures math ability, we really don’t know if the test really measures math ability. If 

the test is highly reliable, we only know that it is measuring “something” accurately. 

To be sure that the math ability test actually measures math ability, we would be 
dealing with validity issues. 

There is a third approach to the definition of reliability, an approach that not 

only helps us better define and solve both theoretical and practical problems, but also 

implies other approaches and definitions. We can inquire how much error of measure¬ 

ment there is in a measuring instrument. Recall that there are two general types of 

variance: systematic and random. Systematic variance leans in one direction—scores 

tend to be all positive or all negative or all high or all low. Error in this case is 
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constant or biased. Random or error variance is self-compensating—scores tend now 

to lean this way, now that way. Errors of measurement are random errors. They are 

the sum of a number of causes. Among the causes are the ordinary random or chance 

elements present in all measures due to unknown causes, temporary or momentary 

fatigue, fortuitous conditions at a particular time that temporarily affect the object 

measured or the measuring instrument, fluctuations of memory or mood, and other 

factors that are temporary and shifting. To the extent that errors of measurement are 

present in a measuring instrument, the instrument is unreliable. In other words, reli¬ 

ability can be defined as the relative absence of errors of measurement in a measuring 

instrument. 

Reliability is the lack of distortion or precision of a measuring instrument. Remem¬ 

ber, a highly reliable measure only tells us that it is measuring something precisely or 

consistently. It may not be measuring what we think it is measuring. An example to 

illustrate this is the weight scale we have in our homes. Let’s say this weight scale al¬ 

ways overestimates a person’s weight by 10 pounds. If you got on this scale 50 times 

over a period of 1 hour, you will find very little fluctuation in the weight registered 

on the scale. This weight scale is precise in the sense that it consistently gives you the 

same weight. However, it is inaccurate in that it always gives the wrong weight by 10 

pounds. This weight scale would be deemed reliable but not valid. 

Suppose a sportsman wishes to compare the precision of two guns. One is an old 

piece made a century ago but still in good condition. The other is a modern weapon 

made by an expert gunsmith. Both pieces are solidly fixed in granite bases and aimed 

and zeroed in by a sharpshooter. Equal numbers of rounds are fired with each gun. In 

Figure 27.1, the hypothetical pattern of shots on a target for each gun is shown. The 

target on the left represents the pattern of shots produced by the older gun. Observe 

that the shots are considerably scattered. Now observe that the pattern of shots on 

the target on the right is more closely packed. The shots are closely clustered around 

the bull’s-eye. 

Let us assume that numbers have been assigned to the circles of the targets: 3 to 

the bull’s-eye, 2 to the next circle, 1 to the outside circle, and 0 to any shot outside 

the target. It is obvious that if we calculated measures of variability, say a standard 

deviation, from the two shot patterns, the old rifle would have a much larger 

measure of variability than the newer rifle. These measures can be considered 

reliability indices. The smaller variability measure of the new rifle indicates much 

less error, and thus much greater accuracy. The new rifle is reliable; the old rifle is 

less reliable. 

Now, consider Figure 27.2. Here we have the same pattern of shots from both 

rifles but they are not centered on the target as in Figure 27.1. The new rifle would 

still be considered more reliable than the old rifle. But since both are off target the 

aim is not accurate. Here, the precision of the rifles’ shot patterns measures reliabil¬ 

ity while the accuracy of the aim of the rifles measures validity. Figure 27.1 is a crude 

way of demonstrating reliability with validity; Figure 27.2 demonstrates reliability 

with low or no validity. It is possible to have reliability without validity, but not the 

other way around. Reliability by itself is of little use in evaluating most measure¬ 

ments. As seen above, a measurement can be consistently wrong. It is no guarantee 
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M Figure 27.1 

Old Rifle 

that the measurement instrument is any good. However, the absence of high 

reliability does indicate the measurement instrument is a poor one. 

Similarly, psychological and educational measurements have greater and lesser 

reliabilities. A measuring instrument, say an arithmetic achievement test, is given to a 

group of children—usually only once. Our goal, of course, is a multiple one: we seek 

to hit the “true” score of each child. To the extent that we miss the “true” scores, our 

measuring instrument, our test, is unreliable. The “true,” the “real,” arithmetic 

scores of five children, say, are 35, 31, 29, 22, 14. Another researcher does not know 

these “true” scores. The obtained results are 37, 30, 26, 24, 15. While not a single 

case hit the “true” score, they all have the same rank order. This researcher’s 

reliability and precision are surprisingly high. 

[H Figure 27.2 

Old Rifle New Rifle 
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[Ml Table 27.1 “True,” Reliable, and Unreliable Obtained Test Scores and 
Rank Orders of Five Children 

(1) “True” 
Scores (Rank) 

(2) Scores from 
Reliable Test (Rank) 

(3) Scores from 
Unreliable Test (Rank) 

35 (1) 37 (1) 24 (4) 

31 (2) 30 (2) 37 (1) 

29 (3) 26 (3) 26 (3) 

22 (4) 24 (4) 15 (5) 

14 (5) 15 (5) 30 (2) 

Suppose that the five scores had been 24, 37, 26, 15, 30. These are the same five 
scores, but they have a very different rank order. In this case, the test would be unre¬ 
liable because of its lack of precision. To demonstrate this more compactly, the three 
sets of scores, with their rank orders, have been set beside each other in Table 27.1. 
The rank orders of the first and second columns covary exactly. The rank order coef¬ 
ficient of correlation is 1.00. Even though the test scores of the second column are 
not the exact scores, they are in the same rank order. On this basis, using a rank 
order coefficient of correlation, the test is reliable. The rank order coefficient of 
correlation between the ranks of the first and third columns, however, is zero, so that 
the latter test is completely unreliable. 

Theory of Reliability 

The example given in Table 27.1 epitomizes what we need to know about reliability. 
The treatment of reliability in this chapter is based on classical test theory. There is a 
much more advanced treatment of reliability by Cronbach, Gleser, Nanda, and 
Rajaratnam (1972) called generalizability theory. In this chapter we will deal with the 
more traditional approach to reliability. To do this, it is necessary to formalize the 
intuitive notions and to outline a theory of reliability. This theory is not only concep¬ 
tually elegant, it is also practically powerful. It helps to unify measurement ideas and 
supplies a foundation for understanding various analytic techniques. The theory also 
ties in nicely with the variance approach emphasized in earlier discussions. 

Any set of measures has a total variance; that is, after administering an instru¬ 
ment to a set of objects and obtaining a set of numbers (scores), we can calculate a 
mean, a standard deviation, and a variance. Let us be concerned here only with the 
variance. The variance, as seen earlier, is a total obtained variance, since it includes 
variances due to several causes. In general, any total obtained variance (or sum of 
squares) includes systematic and error variances. 
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Each person has an obtained score, Xt. (The “f” represents “total.”) Some 

authors would refer to this as the observed score. It is sometimes just written as “0” 

or X0. This would be the measurement we take on an object, person, thing, or event. 

This observed score has two components: a “true” component, and an error compo¬ 

nent. We assume that each person has a “true” score, Xx. (The “°°” is the infinity 

sign, and is used to signify “true.”) An alternative symbol that the reader may see in 

the literature is T or XT. This score would be known only to an omniscient being 

because the measurement system is imperfect. Also note what was stated previously. 

The true score may include properties other than the property we want to measure. 

The problem of measuring that property is one of validity. The other component is 

the error score, Xe or E; error, in this case, does not mean a mistake has been made. 

Rather, the error score is some increment or decrement resulting from several of the 

factors responsible for not being able to measure the true score. For example, a stu¬ 

dent may have an obtained score less than the “true” score because that person was ill 

the day of the examination. Hence, one can state that the difference between the true 

and obtained score is error. Some errors are accountable, others are not. 

This reasoning leads to a simple equation basic to the theory: 

Xt = X„ +x. 
or 

or 

0=T+E 

This states, succinctly, that any obtained score is made of two components: a “true” 

component, and an error component. The only part of this definition that gives any 

real trouble is Xx, which can be conceived to be the score an individual would obtain 

if all internal and external conditions were “perfect” and the measuring instrument 

was “perfect.” A bit more realistically, it can be considered to be the mean of a large 

number of administrations of the test to the same person. Symbolically, X00=(X1 + 

X2 + ... +X7)/n. Lord and Novick (1968) call the “true” score the expected value 

of an observed score, which can be interpreted as the average score an individual 

would obtain if an infinite number of independent repeated measurements are taken 

on an individual. Consider the following. If we wanted to know our height, we can 

measure ourselves one time. Will this give us our “true” height? Unlikely, since the 

measurement device is fallible. Hence we would be better off if we took multiple 

measurements of our height and then computed the mean of the heights. This mean 

would be closer to our true height than any of the measurements taken alone. If the 

number of measurements approach infinity, the mean will get closer and closer to the 
true height. 

With a little simple algebra, Equation 27.1 can be extended to yield a more use¬ 
ful equation in variance terms: 

VT— Vx+ VE (27.2) 
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or 

V0=VT+Ve 

Equation 27.2 shows that the total obtained variance of a test is made up of two vari¬ 

ance components: a “true” component, and an “error” component. If, for example, it 

were possible to administer the same instrument to the same group 4,367,929 times, 

and then to calculate the means of each person’s 4,367,929 scores, we would have a 

set of “nearly true” measures of the group. In other words, these means are the Xxs 

of the group. We could then calculate the variance of the Xxs yielding Vx. This value 

must always be less than Vt or V0, the variance calculated from the obtained set of 

original scores, (the Xp or Os), because the original scores contain error. However, 

the “true,” or “nearly true,” scores have no error, the error having been washed out 

by the averaging process. Put differently, if there were no errors of measurement in 

the XfS or Os, then Vt= Vx or V0= VT. But, there are always errors of measurement, 

and we assume that if we knew the error scores and subtracted them from the 

obtained scores we would obtain the “true” scores. 

We never know the “true” scores, neither do we really ever know the error 

scores. Nevertheless, it is possible to estimate the error variance. By so doing, we 

can, in effect, substitute in Equation 27.2 and solve the equation. This is the essence 

of the idea, even though certain assumptions and steps have been omitted from the 

discussion. A diagram may show the ideas more clearly. Let the total variances of two 

tests be represented by two bars. One test is highly reliable; the other test only mod¬ 

erately so, as shown in Figure 27.3. Tests A and B have the same total variance, but 

90% of Test A is “true” variance and 10% is error variance. Only 60% of Test B is 

“true” variance and 40% is error variance. Test A is thus much more reliable than 

Test B. 

M Figure 27.3 

Test A 

Test B 

60% 40% 
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Reliability is defined, so to speak, through error: the more error, the greater the 

unreliability; the less error, the greater the reliability. Practically speaking, this means 

that if we can estimate the error variance of a measure we can also estimate the 

measure’s reliability. This brings us to two equivalent definitions of reliability: 

1. Reliability is the proportion of the “true” variance to the total obtained 

variance of the data yielded by a measuring instrument. 

2. Reliability is the proportion of error variance to the total variance yielded by a 

measuring instrument subtracted from 1.00, the index 1.00 indicating perfect 

reliability. 

It is easier to write these definitions in equation form: 

Voo VT 

V, Vn 

= 1 
K 

V. 
= 1 - 

K_ 
K 

(27.3) 

(27.4) 

where rtt is the reliability coefficient and the other symbols are as defined before. 

Equation 27.3 is theoretical and cannot be used for calculation. Equation 27.4 is both 

theoretical and practical. It can be used both to conceptualize the idea of reliability 

and to estimate the reliability of an instrument. An alternate equation to (27.4) is: 

Vf-Ve 
Vt 

K-K 
v0 

(27.5) 

This alternate definition of reliability will be useful in helping us to understand what 
reliability is. 

Two Computational Examples 

To show the nature of reliability, two examples are given in Table 27.2. One, labeled 

I in the table, is an example of high reliability; the other, labeled II, is an example of 

low reliability. Note carefully that exactly the same numbers are used in both cases. 

The only difference is that they are arranged differently. The situation in both cases 

is this: five individuals have been administered a test of four items. (This is unrealis¬ 

tic, of course, but will do to illustrate several points.) The data of the five individuals 

are given in the rows; the sums of the individuals are given to the right of the rows 

(Xt). The sums of the items are given at the bottom of each table (Stt). In addition 

the sums of the individuals on the odd items &J) and the sums of the individuals on 

the even items (2roe) are given on the extreme right of each subtable. The calcula¬ 

tions necessary for two-way analyses of variance are given below the data tables. 

To make the examples more realistic, imagine that the data are scores on a 6- 

point scale, say attitudes toward school. A high score means a high favorable attitude, 
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a low score a low favorable (or unfavorable) attitude. (It makes no difference, 

however, what the scores are. They can even be Is and Os resulting from marking 

items of an achievement test: right equals 1, and wrong equals 0.) In I, Individual 1 

has a high favorable attitude toward school, whereas Individual 5 has a low favorable 

attitude toward school. These are readily indicated by the sums of the individuals (or 

the means): 21 and 5. These sums (St) are the usual scores yielded by tests. For in¬ 

stance, if we wanted to know the mean of the group, we would calculate it as (21 + 

18 + 14 + 10 + 5)/5 = 13.60. 

The variance of these sums provides one of the terms of equations 27.4 and 27.5, 

but not the other: Vt, but not Ve. By using the analysis of variance it is possible 

to calculate both Vt and Ve. The analyses of variance of I and II show how this is 

done. These calculations need not occupy us long, since they are subsidiary to the 

main issue. 

The analysis of variance yields the variances: Between Items, Between Individu¬ 

als, and Residual or Error. The F-ratios for Items are not significant in I or II. (Note 

that both mean squares are 2.27. Obviously they must be equal, since they are calcu¬ 

lated from the same sums at the bottoms of the two subtables.) Actually, we are not 

interested in these variances—we only want to remove the variance due to items 

from the total variance. Our interest lies in the Individual variances and in the Error 

variances, which are circled in the subtables. The total variance of equations 27.3, 

27.4, and 27.5 is interesting because it is an index of differences between individuals. 

It is a measure of individual differences. Instead of writing Vt, then, let us write Vind, 

meaning the variance resulting from individual differences. By using either (27.4) or 

(27.5), we obtain reliability coefficients of .92 for the data of I, and .45 for the data of 

II. The hypothetical data of I are reliable; those of II are not as reliable. 

By Equation 27.4: 

= 1 
V. 

v; = i - 

.81 

ind 10.08 
= .92 = 1 

2.60 

4.70 
- .45 

By Equation 27.5: 

Vind - Ve 10.08 - 0.81 4.70 - 2.60 

Vmd 10.08 ' " 4.70 

Odd-Even: 

rtt= ■ 91 A*=-32 

Perhaps the best way to understand this is to return to Equation 27.3. Now we 

write rtt = Va>/Vind. If we had a direct way to calculate Vm, we could quickly calculate 

rtt, but as we saw before, we do not have a direct way. There is a way to estimate it, 

however. If we can find a way to estimate Ve the error variance, the problem is solved 
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Table 27.2 Demonstration of Reliability and Computation of Reliability Coefficients 

(hypothetical examples) 

I: rtt = .92 II: rtt = .45 

Individuals a 
Items 

b c d X, ^ odd 
V 
^eve Individuals a 

Items 

b c d X, ^ odd 
V ̂

 eve 

1 6 6 5 4 21 11 10 1 6 4 5 1 16 li 5 

2 4 6 5 3 18 9 9 2 4 1 5 4 14 9 5 

3 4 4 4 2 14 8 6 3 4 6 4 2 16 8 8 

4 3 1 4 2 10 7 3 4 3 6 4 3 16 7 9 

5 1 2 1 1 5 2 3 5 1 2 1 2 6 2 4 

X* 18 19 19 12 XX, = 68 x„ 18 19 19 12 xxr = 68 

(XX)2— 4624 

XX,2 = 288 

(XX,)2 = 4624 

XX2= 288 

C = 
(68)2 

20 
- 231.20 C = 

(68)2 
231.20 

Total = 288 - 231.20 = 56.80 

1190 
Between Items 

Between Individuals = 

231.20 = 6.80 

1086 

4 

= 40.30 

- 231.2 

20 

Total = 56.80 

Between Items = 6.80 

D T j • ■ j , 1000 
Between Individuals =-231.20 

4 

= 18.80 

Source df ss ms 

Items 3 6.80 2.27 

Individual 4 40.30 (Kf08) 

Residual 12 9.70 (081) 

Total 19 56.80 

Source df ss ms 

2.80 (n.s.) Items 

12.44 (.001) Individua 

Residual 

Total 

3 6.80 2.27 1 (n.s.) 

4 18.80 (4J0) 1.81 (n.s.) 

12 31.20 (T60) 

19 56.80 

because Ve can be subtracted from Vind to yield an estimate of Vm. Obviously, we can 

ignore V and subtract the proportion VJVmi from 1 and get rtt. This is a perfectly 

acceptable way to calculate rtt and to conceptualize reliability. Reasoning from 

Vmd - Ve is perhaps more fruitful and ties in nicely with our earlier discussion of 
components of variance. 
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We stated in Chapter 13 that each statistical problem has a total amount of 

variance and each variance source contributes to this total variance. We translate the 

reasoning of Chapter 13 to the present problem. In random samples of the same 

population, Ve and Vw should be statistically equal. But, if Vb, the between-groups 

variance, is significantly greater than Vw, the within-groups (error) variance, then 

there is something in Ve over and above chance. That is, Ve includes the variance of 

Vw and, in addition, some systematic variance. 

Similarly, we can say that if Vtnd is significantly greater than Ve, then there is 

something in Vind over and above error variance. This excess of variance would seem 

to be due to individual differences in whatever is being measured. Measurement aims 

at the “true” scores of individuals. When we say that reliability is the precision of a 

measuring instrument, we mean that a reliable instrument more or less measures the 

“true” scores of individuals, the “more or less” depending on the reliability of the 

instrument. That “true” scores are measured can be inferred only from the “true” 

differences between individuals, although neither of these can of course, be directly 

measured. What we do is to infer the “true” differences from the fallible, empirical, 

measured differences, which are always to some extent corrupted by errors of 

measurement. 
Now, if there is some way to remove from Vmd the effect of errors of measure¬ 

ment, some way to free Vind of error, we can solve the problem easily. We simply sub¬ 

tract Ve from Vind to get an estimate of V„. Then the proportion of the “pure” vari¬ 

ance to all the variance, “pure” and “impure,” is the estimate of the reliability of the 

measuring instrument. To summarize symbolically: 

v„ _ vM - Ve Ve 
7 tt v V V 

v ind r ind * ind 

The actual calculations are given at the bottom of Table 27.2. 

Returning to the data of Table 27.2, let us see if we can “see” the reliability of I 

and the unreliability of II. Look first at the columns where the totals of the individu¬ 

als are recorded (£f). Note that the sums of I have a greater range than those of II: 

21 - 5 = 16 and 16 - 6 = 10. Given the same individuals, the more reliable a mea¬ 

sure the greater the range of the sums of the individuals. Think of the extreme: A 

completely unreliable instrument would yield sums that are like the sums yielded by 

random numbers and, of course, the reliability of random numbers is approximately 

zero. (The nonsignificant F-ratio for Individuals, 1.81, in II indicates that rtt = .45 is 

not statistically significant.) 
Now examine the rank orders of the values under the items, a, b, c, and d. In I, all 

four rank orders are about the same. Apparently, each item of the attitude scale is 

measuring the same thing. To the extent that the individual items yield the same rank 

orders of individuals, the test is reliable. The items hang together, so to speak. They 

are internally consistent. Also, note that the rank orders of the items of I are about 

the same as the rank order of the sums. 
The rank orders of the item values of II are quite different. The rank orders of a 

and c agree very well; they are the same as those of I. The rank orders of a and b, a 
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and d, b and d, and c and d, however, do not agree very well. Either the items are 

measuring different things, or they are not measuring very consistently. This lack of 

congruence of rank orders is reflected in the totals of the individuals. Although the 

rank order of these totals is similar to the rank order of the totals of I, the range or 

variance is considerably less, and there is lack of spread between the sums (for 

example, the three 16s). 

We conclude our consideration of these two examples by considering certain 

figures in Table 27.2 not considered before. On the right-hand side of both I and II 

the sums of the odd items (Xodd) and the sums of the even items Qbeve) are given. 

Simply add the values of odd items across the rows: a+c: 6 + 5 = 11,4 + 5 = 9, 4 + 

4 = 8, and so forth, in I. Then also add the values of the even items in I: b + d: 6 + 

4 = 10, 6 + 3 = 9, and so forth. If there were more items, for example, a, b, c, d, e,f 

g, then we would add: a + c + e + g for the odd sums, and b + d + f for the even 

sums. To calculate the reliability coefficient, calculate the product-moment correla¬ 

tion between the odd sums and the even sums, and then correct the resulting coeffi¬ 

cient with the Spearman-Brown formula. The sums of both the odd and the even 

items are, of course, the sums of only half the items in a test. They are therefore less 

reliable than the sums of all the items. The Spearman-Brown formula corrects the 

odd-even coefficient (and other part coefficients) for the lesser number of items 

used in calculating the coefficient. (More on this in a latter section of this chapter. 

One can also consult a number of good test and measurement books such as Anastasi 

& Urbina, 1997; Brown, 1983; Friedenberg, 1995; or Sax, 1997). The odd-even r„s 

for I and II are .91 and .32, respectively; fairly close to the analysis of variance results 

of .92 and .45. (With more participants and more items, the estimates will ordinarily 
be close.) 

This simple operation may seem mystifying. To see that this is a variation of the 

same variance and rank order theme, let us first note the rank order of the sums of 

the two examples. The rank orders of %odd and are almost the same in I, but quite 

different in II. The reasoning is the same as before. Evidently, the items are measur¬ 

ing the same thing in I, but in II the two sets of items are not consistent. To recon¬ 

struct the variance argument, remember that by adding the sum of the odd items to 

the sum of the even items for each person the total sum, or 2,odd + = 2t, is 
obtained. 

The Interpretation of the Reliability Coefficient 

If r, the coefficient of correlation, is squared, it becomes a coefficient of determina- 

tion. It gives us the proportion or percentage of the variance shared by two variables. 

If r - .90, then the two variables share (,90)2 = 81% of the total variance of the two 

variables in common. The reliability coefficient is also a coefficient of determination. 

• ((eore^lca y>te s ow tnuch variance of the total variance of a measured variable 
is true variance. If we had the “true” scores and could correlate them with the 

scores of the measured variable, and square the resulting coefficient of correlation, 
we would obtain the reliability coefficient. 
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Symbolic representation may make this clear. Let r^ be the coefficient of 

correlation between the obtained scores and the “true” scores, Xx. The reliability 

coefficient is defined: 

r,t = (rt00)2 (27.6) 

Although it is not possible to calculate rt00 directly, it is helpful to understand the 

rationale of the reliability coefficient in these theoretical terms. The correlation of 

the true score with the observed score is often referred to as the index of reliability. 

Since a true score is something that exists but cannot be measured, obviously the 

index of reliability cannot be computed directly. As a result, the reliability coefficient 

cannot be obtained directly, at least through this approach. However, there are sev¬ 

eral ways that the reliability of measurements can be computed. Magnusson (1967) 

refers to these as practical methods for estimating reliability. The first of these in¬ 

volves administering the same measurement instrument to the same group of people 

on two different occasions. The time spread between occasions depends on the type 

of measurement and the purpose of the measurements. Usually, the time interval be¬ 

tween occasions is chosen so that sufficient decay of memory for the responses oc¬ 

curs. The proper execution of this procedure leads to two measurements per person. 

These measurements, which occur in pairs, are used in a formula to compute the 

correlation. This correlation between scores on occasion 1 and occasion 2 is called 

the test-retest reliability. Its use is to measure the stability over time. This is not a 

good way of computing the reliability coefficient if attrition is high or the organisms 

being measured will be going through a dramatic developmental change between 

time period 1 and time period 2. If the measuring instrument is a vocabulary test, 

test-retest reliability may not be fruitful if the test is given to children on two or 

more occasions that are exposed to an educational environment where their 

vocabulary grows rapidly. Another theoretical interpretation is to conceive that each 

Xx can be the mean of a large number of Xfi derived from administering the test to 

an individual a large number of times, other things being equal. The idea behind this 

notion has been explained before. The first administration of the test yields, say, a 

certain rank order of individuals. If the second, third, and further measurings all tend 

to yield approximately the same rank order, then the test is reliable. This is a stability 

or test-retest interpretation of reliability. 
Another method one can use to compute the reliability coefficient is to develop 

two equivalent ox parallel forms of the measurement instrument. In testing, this would 

be creating two forms of the test. These two forms would be equivalent but not 

identical. They would be composed of similar items possibly from the same pool of 

items. Each person would be subjected to measurements by both instruments. As a 

result, each person would then have two scores and, again, the pairs of scores would 

be used in a correlation formula to compute the correlation. This correlation would 

be referred to as a parallel or equivalent form of reliability. This method has the 

advantage of minimizing attrition. Also, we won’t have to worry too much about 

whether the people being measured will remember their responses. However, paral¬ 

lel forms do have some problems. For one it requires the researcher to create two 
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forms of the test. These two tests would need to have mean and standard deviation 

scores that are statistically equivalent. Also, the desired procedure would require that 

the people being measured would have to be subjected to measurements for a longer 

period of time and as such could suffer from fatigue and boredom. If so, this would 

affect their performance on the later items and could contribute to lowering the 

reliability coefficient. 
The third category for computing the reliability coefficient is called internal 

consistency. There are several approaches to internal consistency. Each approach de¬ 

pends on certain assumptions that can be made about the measurements. The first is 

called split-half reliability; the second is called coefficient alpha, and the third is called 

the Kuder-Richardson formulas 20 and 21 (KR-20, KR-21). Although we will use the 

word test in the following discussion to designate the measurement instrument, it 

doesn’t necessarily have to be a test per se. As we briefly mentioned and demon¬ 

strated earlier, the split-half reliability involves dividing the test into two halves. The 

goal is to obtain two equal or equivalent halves. This can be accomplished by either 

summing together all the responses on the items in the first half or summing all the 

item responses in the second half. If the items are all homogeneous, the two halves 

would be equal. If our test starts with easier items and progresses to more difficult 

ones, then the method previously mentioned will not be effective in producing equal 

halves. The recommended method here would be to sum all of the responses for the 

odd-numbered items to create one total, and then to sum all of the responses for the 

even-numbered items for the other total. In either case above, each person will have 

two half-sum scores. These scores are correlated using our standard formula. The 

resulting correlation would be termed “split-half reliability.” As demonstrated in 

Magnusson (1967), Allen and Yen (1979), and the classical work by Gullikson (1950) 

with homogeneous items, the longer the test (more items) the higher the reliability; 

the shorter the test (fewer items) the lower the reliability. With the split-half reliabil¬ 

ity method, we are no longer talking about a full-length test reliability: the split-half 

reliability will underestimate the true reliability since it is now the correlation of two 

halves of the test. When using the split-half reliability, we need to use one of three 

formulas to estimate the full-length reliability of the test based on half-length values. 

One such formula is the Spearman-Brown Prophecy formula. The 

Spearman-Brown Prophecy formula has other uses besides split-half. Using this 

formula along with the assumption that the halves are equal, an estimate of the full- 

length reliability can be computed. The formula for the Spearman-Brown is 

1 + (n - 1 )r„ 

For the split-half, n is set equal to 2. The rtt is the split-half reliability and r' is the 
estimated full-length reliability. 

The other two formulas are different in appearance but both have the same goal. 

Before describing them, let us reiterate that the Spearman-Brown formula can be 

applied to other reliability situations (see Anastasi & Urbina, 1997). Also, it could be 
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used when the researcher is relatively sure that the two halves are equal. If there is 

any doubt about the homogeneity of the halves, Spearman-Brown should not 

be used since it will overestimate the full-length reliability. Instead, one should 

either use the Rulon formula or the Guttman formula (Magnusson, 1967). Both of 

these take into account the differences between the halves. Both the Rulon and 

Guttman formulas estimate the full-length reliability without the use of the split-half 

reliability. 

The Rulon formula is 

rtt = 

and the Guttman formula is 

where a is for the first half-total scores and b is the second half-total scores. Vd is the 

variance of the difference scores (d = a- b), Vt is the variance of the total scores 

(t = a + b). Va is the variance of one of the half-total scores and Vb is the variance of 

the other half-total scores. 
To summarize, the test items are considered homogeneous. This interpretation 

in effect boils down to the same idea as other interpretations: precision. Take any 

random sample of items from the test, and any other random and different sample of 

items for the test. Treat each sample as a separate subtest. Each individual will then 

have two scores: one Xt for one subsample and another X, for the other subsample. 

Correlate the two sets, continuing the process indefinitely. The average intercorrela¬ 

tion of the subsamples (corrected by the Spearman-Brown formula) shows the test’s 

internal consistency. But this really means that each subsample—if the test is 

reliable — succeeds in producing approximately the same rank order of individuals. If 

it does not, the test is not reliable. 
The split-half reliability is based on two halves that are usually considered as 

equivalent or parallel. If we develop this concept further by considering each item as 

a separate parallel test, we can derive some of the measures of reliability that are 

commonly found in the psychological and educational research literature. In 1937, 

Kuder and Richardson developed this idea, which resulted in two of the most often 

used reliability formulas for internal consistency: KR-20 and KR-21. They are num¬ 

bered as such because the KR-20 was the twentieth equation in their paper and the 

KR-21 was the twenty-first equation. Both equations assume that every item has the 

same mean and variance. The Kuder-Richardson formulas are applicable to measur¬ 

ing instruments (e.g., tests) with a dichotomous or binary or answering scoring sys¬ 

tem. An example of dichotomous scoring is items that are scored as either correct (1) 

or incorrect (0). Tests with true-false responses are also considered a dichotomous 

scoring system. If we let pi stand for the proportion of test takers who answer item i 

l _ ^ i _ V(a-b) 

V, Vt 

(V„ + V,,) 
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correctly (or answer item as “true”) then q, is the proportion that answer item i 

incorrectly (or answered “false”), k is the number of items on the test. With this 

information, the KR-20 formula looks like: 

If we assume that every item has the same pt and qj then the Xp,q, can be replaced 
by kpjqj. In doing this we arrive at KR-21. 

which can be further simplified to: 

where k is the number of items and M is the mean of the total scores. Essentially, 

KR-21 is a special case of KR-20 where the ptqj (also known as item difficulties or 

endorsement) are equal. If a researcher wants to obtain the most conservative 

estimate of reliability for an instrument with items using binary scoring this formula 

is recommended. Note that this coefficient will underestimate KR-20 if the item 
difficulties or endorsement have a wide range. 

As a reminder, the KR-20 and KR-21 formulas are applicable where items within 

the measuring instrument (e.g., test) have binary scoring or the response scale is 

dichotomous. If the scoring or answering format is not binary this formula cannot be 

used. From the time period between the Kuder-Richardson development in 1937 

until Cronbachs development of coefficient alpha in 1951, many psychological tests 

were developed with a binary response system. With Cronbach’s (1951) creation, 

researchers were able to assess the internal consistency reliability of their instrument 

that had different scoring and response scales. In fact, through a mathematical proof, 

it can be demonstrated that the Kuder-Richardson formulas are special cases of 

Cronbach’s coefficient alpha or Cronbach’s alpha. Of this class of reliability coeffi¬ 

cients, coefficient alpha is the most general. With coefficient alpha, it is now possible 

for a researcher to find the reliability of the instrument that used Likert scales. 
Cronbach’s alpha formula looks like: 

An alternative method of writing coefficient alpha using the intercorrelations be¬ 
tween items is 

1 + (» “ IK 
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where fti is the mean of the interitem correlations. What this essentially says is that 

if we correlated each item with every other item in the instrument, found the mean 

of those correlations, and then plugged into the Spearman-Brown formula the mean 

of the interitem correlations, we would come up with coefficient alpha or the 

Kuder- Richardson formula. 
Let us also point out that our computational example done earlier in this chapter 

is an example where we can use the analysis of variance to determine the reliability 

coefficient, and should be equivalent to coefficient alpha. 

The Stanadard Error of the Mean and 
the Standard Error of Measurement 

Two important aspects of reliability are the reliability of means and the reliability of 

individual measures. These are tied to the standard error of the mean and the stan¬ 

dard error of measurement. In research studies, ordinarily, the standard error of the 

mean and related statistics—like the standard error of the differences between means 

and the standard error of a correlation coefficient—is the more important of these. 

Since the standard error of the mean was discussed in considerable detail in an earlier 

chapter, it is only necessary to say here that the reliability of specific statistics is an¬ 

other aspect of the general problem of reliability. The standard error of measure¬ 

ment, or its square, the standard variance of measurement, needs to be defined and 

identified, if only briefly. This will be done through use of a simple example. 
An investigator measures the attitudes of five individuals and obtains the scores 

given under the column labeled Xt in Table 27.3. Assume, further, that the “true” 

attitude scores of the five individuals are those given under the column labeled Xx. 

(Remember, however, that in reality we can never know these scores.) It can be seen 

that the instrument is reliable. While only one of the five obtained scores is exactly 

the same as its companion “true” score, the differences, between those obtained 

scores that are not the same and the “true” scores, are all small. These differences are 

shown under the column labeled “Xethey are “error scores.” The instrument is 

evidently fairly accurate. The calculation of rtt confirms this impression: .71. 

A rather direct measure of the reliability of the instrument can be obtained by 

calculating the variance or the standard deviation of the error scores (Xe). The vari¬ 

ance of the error scores and the variances of the Xt and Xx scores have been calcu¬ 

lated and entered in Table 27.3. The variance of the error scores we now label, justi¬ 

fiably, the standard variance of measurement, which might more accurately be called 

“the standard variance of errors of measurement.” The square root of this statistic is 

called the standard error of measurement. The standard variance of measurement is 

defined: 

SVmcas = Vt (1 - ru) (27-7) 

This statistic can only be calculated, obviously, if we know the reliability coeffi¬ 

cient. Note that if there is some way to estimate SVmeas, then it is possible to calculate 

the reliability coefficient. This bears further investigation. 
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d Table 27.3 Reliablility and Standard Error of Measurement 

(hypothetical examplej 

xt X, 

2 1 1 

1 2 -1 

3 3 0 

3 4 -1 

6 5 1 

2: 15 15 0 

M: 3 3 0 

V: 2.8 2.0 .80 

V V 
rtt — l - — = 1 vf t 

2.00 

V0 

= 0.71 

= 1 - 

.80 

2.80 
= 0.71 

w Vt 2.80 

SVmeas = Vt(l - r„) = 2.80(1 - 0.71) = 0.81 

= 0.845 

r„ = rl = (,845)2 = 0.71 

SEmeas = 873,Vl = 'ISV^Jo.8l = 0.90 

We start with the definition of reliability given earlier: rtt = Vx / Vt = 1 — VJ Vt. A 

slight algebraic manipulation yields the standard variance of measurement: 

rttVt=Vt-Ve 

Ve = Vt-rttVt 

Ve = Vt(l - rtt) 

The right side of the equation is the same as the right side of Equation 27.7. 

Therefore V = SVmeas, or the error variance used earlier in the analysis of variance, is 

t e standard variance of measurement. The standard variance of measurement and 

tTe St^dard error of measurement of the example have been calculated in Table 
27.3. They are .81 and .90, respectively. As textbooks of measurement (e.g., Anastasi 
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& Urbina, 1997) show, they can be used to interpret individual test scores. Such 

interpretation will not be discussed here; these statistics have been included only 

to show the connection between the original theory and ways of determining 

reliability. 
One more calculation in Table 27.3 needs explanation. If we correlate the Xt, and 

the Xoc scores, we obtain a coefficient of correlation of .845. Now we obtain this coef¬ 

ficient, rjoo, directly, and square it to obtain the reliability coefficient (see Equation 

27.6). The latter, of course, is the same as before: .71. 

The Improvement of Reliability 

The principle behind the improvement of reliability is the one previously called the 

maxmincon principle—in a slightly different form: “Maximize the variance of the 

individual differences and minimize the error variance.” Equation 27.4 clearly 

indicates this principle. The general procedure follows. 
First, write the items of psychological and educational measuring instruments 

unambiguously. An ambiguous event can be interpreted in more than one way. An 

ambiguous item permits error variance to creep in because individuals can interpret 

the item differently. Such interpretations tend to be random and hence increase error 

variance and decrease reliability. 
Second, if an instrument is not reliable enough, add more items of equal kind 

and quality. This will usually, though not necessarily, increase reliability by a pre¬ 

dictable amount. Adding more items increases the probability that any individual’s Xt 

is close to his or her Xx. This is a matter of the sampling of the property or the item 

space. With few items, a chance error looms large. With more items, it looms less 

large. The probability of its being balanced by another random error the other way is 

greater when there are more items. Summarily, more items increase the probability 

of accurate measurement. (Remember that each Xt is the sum of the item values for 

an individual.) 
Third, clear and standard instructions tend to reduce errors of measurement. 

Great care must always be taken when writing the instructions, to state them clearly. 

Ambiguous instructions increase error variance. Further, measuring instruments 

should always be administered under standard, well-controlled, and similar condi¬ 

tions. If the situations of administration differ, error variance can again intrude. In 

the psychological and education fields, a test that has uniformity in administration 

and scoring is called a standardized test. Hence, standardized tests are those that have 

been subjected to the rigor of error variance reduction. 
So how do we know that we have written ambiguous or unambiguous items? 

How do we know that the items we have added in an attempt to increase reliability 

are of the equal kind and quality? There exists a set of statistical procedures called 

item analysis, which helps us answer these questions. Item analysis is used to increase 

both the reliability and validity of a test. It does this by evaluating each item sepa¬ 

rately to determine if the item is good or poor. Whether the item measures what we 

want it to measure is a validity issue. Validity is discussed in Chapter 28. In tests 
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where answers are evaluated as either being correct or incorrect (such as cognitive 

tests), items can be evaluated in terms of their level of difficulty. For tests where 

there are no right or wrong answers (such as those found in affective tests), the index 

of endorsement would be used instead of difficulty. The difficulty index is a simple 

ratio of the number of people answering the item correctly and the total number of 

people who took the test. The index of endorsement is computed as the ratio of the 

number of people selecting an answer to the total number of people who responded 

to the test. So essentially the difficulty index and endorsement index is similar com¬ 
putationally. 

number of people answering item correctly 
Item Difficulty =------- 

total number of people taking test 

number of people selecting answer 
Index of Endorsement = ------- 

total number of people taking test 

For the difficulty index, the larger the value the easier the item. This says more 

people are getting the item correct. Items with indices of 0.0 or 1.00 contribute very 

little to the test in terms of informing us about the differences among people. When 

every student gets almost all the items correct on an easy math test, this tells us very 

little about the difference between people in math ability. On the other hand, a test 

consisting of overly difficult items also cannot tell us how individuals differ. No mat¬ 

ter what their abilities are, everyone will get those items incorrect. As a rule, most 

test creators agree that the best items in terms of difficulty and endorsement are 

those with values between .5 and .7. Some recommend combining items of different 
levels of difficulty but with an overall index between .5 and .7. 

After difficulty or endorsement, the next index for item analysis is the item dis¬ 

crimination index. It is this statistic that will (on cognitive tests) tell the researcher 

how effectively the item was able to discriminate between high scorers and low scor¬ 

ers. A good item is thought of as one where the high scorers get the item correct and 

all low scorers answer it incorrectly. When this occurs, the item will have the maxi¬ 

mum discriminability. The item discrimination index is best suited for cognitive 

tests. These are tests that have right and wrong answers. For tests such as affective 

tests (e.g., personality) where there are no right or wrong answers, the item-to-total- 

score correlation is used. The item-to-total-score correlation can also be used for 
cognitive tests. 

With the item discrimination index, the researcher would first determine the 

top-scoring group and the bottom-scoring group. The total scores are used to do 

this. It is highly recommended that the two groups are equal in terms of the number 

of people in each. The number in each group varies depending on the number of 

people who took the test. 1 hen the number of people within each group who got the 

item correct are counted. A difference score is computed between the number in the 

top-scoring group who got the item correct and the number in the low-scoring 

group who got the same item correct. The item discrimination index is the ratio of 
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the difference and the number of people in the top-scoring group. We could have 

used in the denominator of this computation the number of people in the low- 

scoring group, but the number should be the same: 

Pj ~~ Pb 
Discrimination index for item i — —— -:—;——- 

# of people in 1 op group 

where PT is the number of people in the Top group that got the item correct and PB 

is the number of people in the Bottom group that got the item correct. 

Values of 0.0, 1.0, and -1.0 are rare. If the index is negative the item has reverse 

discrimination. This would tell the researcher that there is definitely something 

wrong with this item. Good items are expected to have positive values. The higher 

the value, the greater the discrimination. 
In the case of the item-to-total score correlation, the researcher would essen¬ 

tially correlate each item score or response to the total score. The idea here is that if 

the item is part of a whole — a whole that measures something we want—it should 

have a high correlational value with the total. Remember, since we expect the items 

to be homogeneous, the correlation of each item with the total score should be high. 

An item that correlates low with the total is interpreted as an item that is measuring 

something that differs from what the other items are measuring. The item is not 

homogenous with the other items. With the high-speed computer and available 

statistical software, a researcher can get these correlations very easily. Friedenberg 

(1995) gives a very good presentation on how to compute these indices. 
Item analysis using these more traditional approaches works relatively well. 

However, there is a new development which features clear improvements over the 

traditional approaches. This “new-kid-on-the block” in item analysis is called Item 

Response Theory or IRT. IRT involves a lot more mathematics than the traditional ap¬ 

proach. Its major goal is to scale the difficulty or endorsement of the items. Due to 

its mathematical complexity, it is best done via computer programs. A company 

named Assessment Systems Corporation distributes several of these programs 

through Lawrence Erlbaum Associates. This method essentially involves the use of 

the item-characteristic curve with latent-trait theory. In latent-trait theory one assumes 

that test performance can be accounted for by the test taker’s position on a hypothet¬ 

ical and unobservable characteristic (i.e., trait). There is no implication that the trait 

causes behavior nor does it imply that such a trait exists physically or physiologically. 

Latent traits are merely statistical constructs created from empirical data. The basic 

measurement used in IRT is a probability. It is the probability that a person with a 

specified ability or latent trait answers an item correctly with a specified difficulty 

level. With items that are not scored correct or incorrect, IRT can still produce a 

probability that a person of a certain characteristic will give a specific answer based 

on the endorsements of that item. 
The item-characteristic curve is a graph of the relation between the test taker’s 

test score and the performance on a particular item. The test score, of course, 

measures how much of the attribute or trait the test taker has. Performance on a 
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particular item is usually in the form of a probability or proportion. The better items 

will tend to exhibit a pattern where high scorers tend to get the item correct while 

low scores tend to get the item incorrect. The steeper the curve going from low 

scores to high scores (positive slope), the better the discrimination power of that 

item. Items with negative discrimination have a negative slope. These items have a 

problem that requires further analysis. The item-characteristic curve can also give a 

measure of item difficulty. By taking the .50 level of probability or proportion and 

finding the corresponding total test score for that level, this total score can be used as 

a measure of difficulty. This total tests score would correspond to that point where 

50% of the test takers got the item correct. This differs slightly from that the item 

difficulty index discussed earlier, but, it is just as useful. Through the use of mathe¬ 

matical and statistical curve fitting, a researcher can obtain indices of discrimination 

and difficulty from the item-characteristic curves. The nonlinear curve fitting used in 

these procedures is beyond the scope of this book. The reader is referred to several 

good references that treat this topic: Allen and Yen (1979), Baker (1992), Crocker 
and Algina (1986), and Wright and Stone (1979). 

The Value of Reliability 

To be interpretable, a test must be reliable. Unless one can depend on the results of 

the measurement of one’s variables, one cannot with any confidence determine the 

relations between the variables. Since unreliable measurement is measurement over¬ 

loaded with error, the determination of relations becomes a difficult and tenuous 

task. Is an obtained coefficient of correlation between two variables low because one 

or both measures are unreliable? Is an analysis of variance F-ratio not significant 

because the hypothesized relation does not exist, or because the measure of the 
dependent variable is unreliable? 

Reliability, while not the most important facet of measurement, is still extremely 

important. In a way, this is like the money problem: the lack of it is the real problem. 

High reliability is no guarantee of good scientific results, but there can be no good 

scientific results without reliability. In brief, reliability is a necessary but not 

sufficient condition of the value of research results and their interpretation. 

At this point, we need to ask the question: How high a reliability coefficient do 

we need? There is no hard and fast answer to this question. For some reason, a num¬ 

ber of researchers have declared .7 as the cutoff for acceptable and unacceptable reli¬ 

abilities. There is no evidence to support this arbitrary rule. In fact, most authors of 

measurement textbooks do not set such a value. Anastasi and Urbina (1997), for ex¬ 

ample make no mention of such a rule. Nunnally (1978) states that a satisfactory 

level of reliability is dependent upon how the measure is used. In some cases a relia¬ 

bility value of .5 or .6 is acceptable, whereas in others a value of .9 is barely accept- 

able A low reliability value may be acceptable if the measuring instrument has high 

validity. Gronlund (1985) states that most teacher-made tests have reliabilities 

between .60 and .85, and yet they are useful in instructional decisions. Gronlund also 
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gives the considerations that should go into deciding whether a reliability value is 

acceptable. The considerations all center on what type of decision is made using the 

test or measuring instrument. If the decision made by the test is important, final, 

irreversible, unconfirmable, concerned with individuals, and/or has lasting conse¬ 

quences, a high level of reliability is necessary. If the decision is of minor importance, 

made at an early stage, is reversible, confirmable by other data, concerns groups, 

and/or has temporary effects, a low value of reliability is acceptable. 

Chapter Summary  

1. This chapter primarily examines the classical theory of reliability. It also 

looks at some of the “newer” developments in this area. 
2. Reliability is defined as the consistency or stability of the measuring instru¬ 

ment. 
3. Classical test theory composed the equation: Xt = + Xe where Xt is the 

observed score, Xx is the true score, and Xe is the error score. 

4. Reliability and validity are often confused because both deal with the 

accuracy of measurements. However, reliability is less concerned with 

whether or not the instrument actually measures what we want it to 

measure. Its accuracy issue concerns measurement of the “true” score. 

5. A measurement can be both reliable and invalid at the same time. The mea¬ 

surement instrument can measure something inaccurately all the time. 

6. Of interest is the index of reliability; it is the correlation between true scores 

and observed scores. However, true scores are unobservable. 

7. The reliability coefficient is the square of the index of reliability. 

8. Practical methods of obtaining the reliability coefficient is through 

test-retest, parallel forms, internal consistency 

9. Internal consistency can be obtained through one of the following 

methods: split-half, Kuder-Richardson formulas 20 and 21, coefficient 

alpha 

10. The standard error of measurement tells us how much error is in our relia¬ 

bility coefficient. 
11. To improve reliability, we can write better items, add more similar items, 

and standardize the administration and scoring of the measuring instrument 

and responses. 
12. Item analysis gives us information on how good or how poor our items are 

within the measuring instrument. 
13. How high the reliability coefficient has to be in order to be acceptable de¬ 

pends on the type of decision to be made and the conditions under which 

the coefficient was determined. 
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Study Suggestions 

1. How does generalizability theory differ from classical test theory? 

2. Of the following, which do you think is more useful for researchers: 

(a) validity, or (b) reliability? Justify your choice. 

3. Outline some of the problems with (a) test-retest reliability, and (b) parallel 

forms reliability. Give an example where you would and would not use each of 
these. 

4. Given the following situations listed below, indicate which reliability coeffi¬ 
cient would be the most appropriate? 

a. A typing test given to a word-processing class 

b. A psychological problem checklist used by therapists 
c. A cognitive achievement test 

d. A spelling test on four-letter words 

e. The number of “aggressive” acts by a male monkey in a zoo during the 
same 10-minute time period each day 

f. After a group of students completed a test, the test was divided into two 

parts and separate scores were computed for each student; the correlation 
of the two scores was .79 

5. How many different components can you arrive at that would be part of the 
error term in the classical test theory equation: Xt = Xx + Xe7 

6. Give an explanation as to why a “true” score or measurement can never be at¬ 
tained. 

7. A split-half reliability is .7. What is the estimated full-length reliability? 

8. If a test—retest reliability of a 50-item test is .65, what would be the estimated 

reliability if an additional 50 similar items were added to the test? 

\ 
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Validity 

■ Types of Validity 
Content Validity and Content Validation 

Criterion-Related Validity and Validation 

Decision Aspects of Validity 

Multiple Predictors and Criteria 

Construct Validity and Construct Validation 

Convergence and Discriminability 

A Hypothetical Example of Construct Validation 

The Multitrait-Multimethod Method 

Research Examples of Criterion-Related Validation 

Research Examples of Construct Validation 

Other Methods of Construct Validation 

■ A Variance Definition of Validity: The Variance Relation of 
Probability and Validity 

Statistical Relation between Reliability and Validity 

■ The Validity and Reliability of Psychological and Educational 
Measurement Instruments 

The subject of validity is complex, controversial, and peculiarly important in 

behavioral research. Here, perhaps more than anywhere else, the nature of reality is 

questioned. It is possible to study reliability without inquiring into the meaning of 

variables. It is not possible to study validity, however, without sooner or later inquir¬ 

ing into the nature and meaning of one’s variables. 
When measuring certain physical properties and relatively simple attributes of 

persons, validity is no great problem. There is often rather direct and close congru¬ 

ence between the nature of the object measured and the measuring instrument. The 

length of an object, for example, can be measured by laying sticks marked in a 
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standard numbering system (feet or meters) on the object. Weight is more indirect, 

but not difficult: An object placed in a container displaces the container downward. 

The downward movement of the container is registered on a calibrated index 

(pounds or ounces). With some physical attributes, then, there is little doubt of what 

is being measured. 

On the other hand, suppose an educational scientist wishes to study the relation 

between intelligence and school achievement or the relation between authoritarian¬ 

ism and teaching style. Now there are no rulers to use, no scales with which to weigh 

the degree of authoritarianism, no clear-cut physical or behavioral attributes that 

point unmistakably to teaching style. In such cases it is necessary to invent indirect 

means to measure psychological and educational properties. These means are often 

so indirect that the validity of the measurement and its products is doubtful. 

Types of Validity 

The most common definition of validity is epitomized by the question: Are we mea¬ 

suring what we think we are measuring? The emphasis in this question is on what is 

being measured. For example, a teacher has constructed a test to measure understand¬ 

ing of scientific procedures and has included in the test only factual items about scien¬ 

tific procedures. The test is not valid because, while it may reliably measure the 

pupils 'factual knowledge of scientific procedures, it does not measure their understand¬ 

ing of such procedures. In other words, it may measure what it measures quite well, 
but it does not measure what the teacher intended it to measure. 

Although the most common definition of validity was given above, it must im¬ 

mediately be emphasized that there is no one validity. A test or scale is valid for the 

scientific or practical purpose of its user. Educators may be interested in the nature of 

high school pupils achievement in mathematics. They would then be interested in 

what a mathematics achievement or aptitude test measures. They might, for example, 

want to know the factors that enter into mathematics test performance and their rel¬ 

ative contributions to this performance. On the other hand, they may be primarily 

interested in knowing the pupils who will probably be successful, and those who will 

probably be unsuccessful in high school mathematics. They may have little interest 

in what a mathematics aptitude test measures. They are interested mainly in success¬ 

ful prediction. Implied by these two uses of tests are different kinds of validity. We 

now examine an extremely important development in test theory: the analysis and 

study of different kinds of validity. Although there are different types, the researcher 

should design the validation study with only one type in mind. Some researchers 

compute all validity coefficients only to discover that each gives a different value. 

The most important classification of types of validity is that prepared by a joint 

committee of the American Psychological Association, the American Educational 

Research Association, and the National Council on Measurements used in 

ducation. Three types of validity are discussed: content, criterion-related, and 

construct. Each of these will be examined briefly, though we put the greatest emphasis 
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on construct validity, since it is probably the most important form of validity from 

the scientific research point of view. 

Content Validity and Content Validation 

A university psychology professor has given a course to seniors in which she has em¬ 

phasized the understanding of principles of human development. She prepares an 

objective-type test. Wanting to know something of its validity, she critically examines 

each of the test’s items for its relevance to understanding principles of human devel¬ 

opment. She also asks two colleagues to evaluate the content of the test. Naturally, 

she tells the colleagues what it is she is trying to measure. She is investigating the 

content validity of the test. 
Content validity is the representativeness or sampling adequacy of the content—the 

substance, the matter, the topic—of a measuring instrument. Content validation is 

guided by the question: Is the substance or content of this measure representative of 

the content or the universe of content of the property being measured? Any psycho¬ 

logical or educational property has a theoretical universe of content consisting of all 

the things that can possibly be said or observed about the property. The members of 

this universe, U, can be called “items.” The property might be “arithmetic achieve¬ 

ment,” to take a relatively easy example. U has an infinite number of members: all 

possible items using numbers, arithmetic operations, and concepts. A test high in 

content validity would theoretically be a representative sample of U. If it was possible 

to draw items from U at random in sufficient numbers, then any such sample of 

items would presumably form a test high in content validity. If U consists of subsets 

A, B, and C, which are arithmetic operations, arithmetic concepts, and number ma¬ 

nipulations, respectively, then any sufficiently large sample of U would represent A, 

B, and C approximately equally. The test’s content validity would be satisfactory. 

Ordinarily, and unfortunately, it is not possible to draw random samples of items 

from a universe of content. Such universes exist only theoretically. True, it is possible 

and desirable to assemble large collections of items, especially in the achievement 

area, and to draw random samples from the collections for testing purposes. But the 

content validity of such collections, no matter how large and how “good” the items, 

is always in question. 
If it is not possible to satisfy the definition of content validity, how can a reason¬ 

able degree of content validity be achieved? Content validation consists essentially in 

judgment. Alone or with others, one judges the representativeness of the items. One 

may ask: Does this item measure Property M? To express it more fully, one might 

ask: Is this item representative of the universe of content ofM? If U has subsets, such 

as those indicated above, then one has to ask additional questions; for example: Is this 

item a member of the subset My or the subset M2? 
Some universes of content are more obvious and much easier to judge than 

others; the content of many achievement tests, for instance, would seem to be 

obvious. The content validity of these tests, it is said, can be assumed. While this 

statement seems reasonable, and while the content of most achievement tests is self- 

validated” in the sense that the individual writing the test, to a degree, defines the 
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property being measured (for example, a teacher writing a classroom test of spelling 

or arithmetic), it is dangerous to assume the adequacy of content validity without 

systematic efforts to check the assumption. For example, an educational investigator, 

testing hypotheses about the relations between social studies achievement and other 

variables, may assume the content validity of a social studies test. The theory from 

which the hypotheses were derived, however, may require understanding and 

application of social studies ideas, whereas the test used may be almost purely factual 

in content. The test lacks content validity for the purpose. In fact, the investigator is 

not really testing the stated hypotheses. 

Content validation, then, is basically judgmental. The items of a test must be 

studied, each item being weighed for its presumed representativeness of the universe. 

This means that each item must be judged for its presumed relevance to the property 

being measured, which is no easy task. Usually other “competent” judges should 

judge the content of the items. The universe of content must, if possible, be clearly 

defined; that is, the judges must be furnished with specific directions for making 

judgments, as well as with specification of what they are judging. Then, some 

method for pooling independent judgments can be used. An excellent guide to the 

content validity of achievement tests is Bloom (1956). This is a comprehensive 

attempt to outline and discuss educational goals in relation to measurement. Bloom’s 
work has been termed “Bloom’s Taxonomy.” 

There is another type of validity that is very similar to content validity. It 

is called face validity. Face validity is not validity in the technical sense. It refers 

to what the test appears to measure. Trained or untrained individuals would look at 

the test and decide whether or not the test measures what it was supposed to 

measure. There is no quantification of the judgment or any index of agreement that 

is computed between judges. Content validity is quantifiable through the use 

of agreement indices of judges’ evaluations. One such index is Cohen’s Kappa 
(Cohen, 1960). 

Criterion-Related Validity and Validation 

As the unfortunately clumsy name indicates, criterion-related validity is studied by 

comparing test or scale scores with one or more external variables, or criteria, known 

or believed to measure the attribute under study. One type of criterion-related valid¬ 

ity is called predictive validity. The other type is called concurrent validity, which differs 

from predictive validity in the time dimension. Predictive validity involves the use of 

future performance of the criterion, whereas concurrent validity measures the crite¬ 

rion at about the same time. In this sense, the test serves to assess the present status 
of individuals. 

Concurrent validity is often used to validate a new test. At least two concurrent 

measures are taken on each examinee. One of these would be the new test and the 

other would be some existing test or measure. Concurrent validity would be found 

y correlating the two sets of scores. In the intelligence testing area, the new tests, 

and even revisions of older tests, generally use the Stanford-Binet or the Wechsler 
test as the concurrent criterion. 
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When one predicts success or failure of students from academic aptitude 

measures, one is concerned with predictive criterion-related validity. How well does 

the test (or tests) predict graduation or grade-point average? One does not focus so 

much on what the test measures, but rather on its predictive ability. In fact, in 

criterion-related validation, which is often practical and applied research, the basic 

interest is usually more in the criterion, some practical outcome, than in the 

predictors. (In basic research this is not so.) The higher the correlation between a 

measure or measures of academic aptitude and the criterion, say grade point average, 

the better the validity. In short and again, the emphasis is on the criterion and its 

prediction. Thorndike (1996) gives a discussion of what constitutes a good criterion. 

The word prediction is usually associated with the future. This is unfortunate 

because, in science, prediction does not necessarily mean forecast. One “predicts” 

from an independent variable to a dependent variable. One “predicts” the existence 

or nonexistence of a relation; one even “predicts” something that happened in the 

past! This broad meaning of prediction is the one intended here. In any case, 

criterion-related validity is characterized by prediction to an outside criterion and by 

checking a measuring instrument, either now or in the future, against some outcome 

or measure. In a sense, all tests are predictive; they “predict” a certain kind of 

outcome, some present or future state of affairs. Aptitude tests predict future 

achievement; achievement tests predict present and future achievement and 

competence; and intelligence tests predict present and future ability to learn and to 

solve problems. Even if we measure self-concept, we predict that if the self-concept 

score is so-and-so, then the individual will be such-and-such now or in the future. 

The single greatest difficulty of criterion-related validation is the criterion. 

Obtaining criteria may even be difficult. Which criterion can be used to validate a 

measure of teacher effectiveness? Who is to judge teacher effectiveness? Which 

criterion can be used to test the predictive validity of a musical aptitude test? 

Decision Aspects of Validity 

Criterion-related validity, as indicated earlier, is ordinarily associated with practical 

problems and outcomes. Interest is not so much in what is behind test performance 

as it is in helping to solve practical problems and to make decisions. Tests are used by 

the hundreds for the predictive purposes of screening and selecting potentially 

successful candidates in education, business, and other occupations. Does a test, or a 

set of tests, materially aid in deciding on the assignment of individuals to jobs, 

classes, schools, and the like? Any decision is a choice among treatments, 

assignments, or programs. Cronbach (1971) points out that to make a decision, one 

predicts the person’s success under each treatment and then use, some rule to 

translate the prediction into an assignment. A test high in criterion-related validity is 

one that helps investigators make successful decisions in assigning people to 

treatments, conceiving treatments broadly. An admissions committee or administrator 

decides to admit or not admit an applicant to college on the basis of a test of 

academic aptitude. Obviously, such use of tests is highly important, and the tests’ 
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predictive validity is also highly important. The reader is referred to Cronbach’s 
essay for a good exposition of the decision aspects of tests and validity. 

A major contribution in this area is by Taylor and Russell (1939). These 
researchers demonstrated that tests with low validity can still be effectively used for 
decision purposes. They developed the Taylor-Russell Table, which utilizes three 
pieces of information: validity coefficient, selection ratio, and base rate. The selection 
ratio pertains to the number of people (applicants) who will be selected out of the 
total number of people. If there were only 10 positions and 100 people applying, the 
selection ratio would be 0.10 or 10%. The base rate is that proportion of people in 
the population with a certain characteristic. This figure is generally reported in the 
press. The base rate for women, for example, is .52 or 52% of the population in the 
United States. Without using a test, if we gathered randomly 100 persons in a room, 
52 of them would be women. Any of these three components can be varied and in so 
doing has an effect on the accuracy of selection. That is, it can help make a better 
decision. Anastasi and Urbina (1997) give a good account of how this method works. 
The interested reader would need to consult the original Taylor and Russell article to 
see the complete range of tables. Essentially better prediction can be made using a low 
validity test if the selection ratio is small. Since 1939, there have been a few modifica¬ 
tion, and additions to this method. These include Abrahams, Alf, and Wolfe (1971); 
Pritchard and Kazar (1979); and Thomas, Owen, and Gunst (1977). 

Multiple Predictors and Criteria 

Both multiple predictors and multiple criteria can be and are used. Later, when we 
study multiple regression, we will focus on multiple predictors and how to handle 
them statistically. Multiple criteria can be handled separately or together, though it is 
not easy to do the latter. In practical research, a decision must usually be made. If 
there is more than one criterion, how can we best combine them for decision-mak- 
ing? The relative importance of the criteria, of course, must be considered. Do we 
want an administrator high in problem-solving ability, high in public-relations abil¬ 
ity, or both? Which is more important in the particular job? It is highly likely that 
the use of both multiple predictors and multiple criteria will become common, as 
multivariate methods become better understood and the computer is used routinely 
in prediction research. 

Construct Validity and Construct Validation 

Construct validity is one of the most significant scientific advances of modern 
measurement theory and practice. It is a significant advance because it links 
psychometric notions and practices to theoretical notions. The classic work in this 
area is Cronbach and Meehl (1955). Measurement experts, when they inquire into 
the construct validity of tests, usually want to know which psychological or other 
property or properties can “explain” the variance of tests. They wish to know the 
meaning of tests. If a test is an intelligence test, they want to know which factors 
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lie behind test performance. They ask: Which factors or constructs account for 

variance in test performance? Does this test measure verbal ability and abstract 

reasoning ability? Does it also “measure” social class membership? They ask, for 

example, what proportion of the total test variance is accounted for by each of the 

constructs—verbal ability, abstract reasoning ability, and social class membership. In 

short, they seek to explain individual differences in test scores. Their interest is 

usually more in the properties being measured, than in the tests used to accomplish 

the measurement. 

Researchers generally start with the constructs or variables entering into rela¬ 

tions. Suppose that a researcher has discovered a positive correlation between two 

measures, one a measure of educational traditionalism and the other a measure of the 

perception of the characteristics associated with a “good” teacher. Individuals high 

on the traditionalism measure see the “good” teacher as efficient, moral, thorough, 

industrious, conscientious, and reliable. Individuals low on the traditionalism mea¬ 

sure may see the “good” teacher in a different way. The researcher now wants to 

know why this relation exists, what is behind it. To accomplish this, the meaning of 

the constructs entering the relation, “perception of the ‘good’ teacher” and “tradi¬ 

tionalism” must be studied. How to study these meanings is a construct validity 

problem. This example was extracted from Kerlinger and Pedhazur (1968). 

One can see that construct validation and empirical scientific inquiry are closely 

allied. It is not simply a question of validating a test. One must try to validate the 

theory behind the test. Cronbach (1990) says that there are three parts to construct 

validation: suggesting which constructs possibly account for test performance, deriv¬ 

ing hypotheses from the theory involving the construct, and testing the hypotheses 

empirically. This formulation is but a precis of the general scientific approach dis¬ 

cussed in earlier chapters. 
The significant point about construct validity that sets it apart from other types 

of validity, is its preoccupation with theory, theoretical constructs, and scientific em¬ 

pirical inquiry, involving the testing of hypothesized relations. Construct validation 

in measurement contrasts sharply with approaches that define the validity of a mea¬ 

sure, primarily by its success in predicting a criterion. For example, a purely empiri¬ 

cal tester might say that a test is valid if it efficiently distinguishes individuals high 

and low in a trait. Why the test succeeds in separating the subsets of a group is of no 

great concern. It is enough that it does. 

nvergence and Discriminability 

Note that the testing of alternative hypotheses is particularly important in construct 

validation, because both convergence and discriminability are required. Convergence 

means that evidence from different sources gathered in different ways all indicate the 

same or similar meaning of the construct. Different methods of measurement should 

converge on the construct. The evidence yielded by administering the measuring 

instrument to different groups in different places should yield similar meanings or, if 

not, should account for differences. A measure of the self-concept of children, for in¬ 

stance, should be capable of similar interpretation in different parts of the country. If 
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it is not capable of such interpretation in some locality, the theory should be able to 

explain why—indeed, it should predict such a difference. 
Discriminability means that one can empirically differentiate the construct from 

other constructs that may be similar, and that one can point out what is unrelated to 

the construct. We point out, in other words, what other variables are correlated with 

the construct and how they are so correlated. But we also indicate which variables 

should be uncorrelated with the construct. We point out, for example, that a scale to 

measure Conservatism should and does correlate substantially with measures of Au¬ 

thoritarianism and Rigidity—the theory predicts this — but not with measures of 

Social Desirability (see Kerlinger, 1970). Let us illustrate these ideas. 

A Hypothetical Example of Construct Validation 

Let us assume that an investigator is interested in the determinants of creativity and 

the relation of creativity to school achievement. The investigator notes that the most 

sociable persons, who exhibit affection for others, also seem to be less creative than 

those who are less sociable and affectionate. The goal is to test the implied relation 

in a controlled fashion. One of the first tasks is to obtain or construct a measure of 

the sociable-affectionate characteristic. The investigator, surmising that this com¬ 

bination of traits may be a reflection of a deeper concern of love for others, 

calls it amorism. An assumption is made about individual differences in amorism; that 

is, some people have a great deal of it, others a moderate amount, and still others 
very little. 

The first step is to construct an instrument to measure amorism. The literature 

gives little help, since scientific psychologists have rarely investigated the fundamen¬ 

tal nature of love. Sociability, however, has been measured. The investigator must 

construct a new instrument, basing its content on intuitive and reasoned notions of 

what amorism is. The reliability of the test, tried out with large groups, runs between 
.75 and .85. 

The question now is whether or not the test is valid. The investigator correlates 

the instrument, calling it the ^d-scale, with independent measures of sociability. The 

correlations are moderately substantial, but additional evidence is needed to claim 

that the test has construct validity. Certain relations are deduced that should and 

should not exist between amorism and other variables. If amorism is a general ten¬ 

dency to love others, then it should correlate with characteristics like cooperativeness 

and friendliness. Persons high in amorism will approach problems in an ego-oriented 

manner as contrasted to persons low in amorism, who will approach problems in a 
task-oriented manner. 

Acting on this reasoning, the investigator administers the A-scale and a scale to 

measure subjectivity to a number of tenth-grade students. To measure cooperative¬ 

ness, an observation of the classroom behavior of the same group of students is made. 

The correlations between the three measures are positive and significant. Note that 

we would not expect high correlation between the measures. If the correlations were 

too high, we would then suspect the validity of the A-scale. It would be measuring, 
perhaps, subjectivity or cooperativeness, but not amorism. 
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Knowing the pitfalls of psychological measurement, the investigator is not 

satisfied. These positive correlations may be due to a factor common to all three 

tests, but irrelevant to amorism; for example, the tendency to give “right” answers. 

(This would probably be ruled out, however, because the observation measure of 

cooperativeness correlates positively with amorism and subjectivity.) So, taking a new 

group of participants, the investigator administers the amorism and subjectivity 

scales, has the participants’ behavior rated for cooperativeness, and, in addition, 

administers a creativity test that has been found in other research to be reliable. 

The investigator states the relation between amorism and creativity in hypothe¬ 

sis form: The relation between the A-scale and the creativity measure will be 

negative and significant. The correlations between amorism and cooperativeness and 

between amorism and subjectivity will be positive and significant. “Check” hypothe¬ 

ses are also formulated: The correlation between cooperativeness and creativity will 

not be significant, it will be near zero; but the correlation between subjectivity and 

creativity will be positive and significant. This last relation is predicted on the basis 

of previous research findings. The six correlation coefficients are given in the 

correlation matrix of Table 28.1. The four measures are labeled as follows: A, 

amorism; B, cooperativeness; C, subjectivity; and D, creativity. 

The evidence for the construct validity of the ^d-scale is good. All the rs are as 

predicted; especially important are the rs between D (creativity) and the other 

variables. Note that there are three different kinds of prediction: positive, negative, 

and zero. All three kinds are as predicted. This illustrates what might be called differ¬ 

ential prediction or differential validity—or discriminability. It is not enough to predict, 

for instance, that the measure presumably reflecting the target property be positively 

correlated with one theoretically relevant variable. One should, through deduction 

from the theory, predict more than one such positive relation. In addition, one 

should predict zero relations between the principal variable and variables “irrelevant” 

to the theory. In the example above, although cooperativeness was expected to 

correlate with amorism, there was no theoretical reason to expect it to correlate at all 

with creativity. 
An example of a different kind is the investigator who deliberately introduces a 

measure that would, if it correlates with the variable whose validity is under study, 

fa] TABLE 28.1 Intercorrelations of Four Hypothetical Measures 

(N = 90/ 

B C D 

A .50 .60 -.30 

B .40 .05 

C .50 

a A = Amorism; B = Cooperativeness; C = Subjectivity; D = Creativity. Corre¬ 
lation coefficients .25 or greater are significant at the .01 level. 
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invalidate other positive relations. One bugaboo of personality and attitude scales is 

the social desirability phenomenon mentioned earlier. The correlation between the 

target variable and a theoretically related variable may be due to both instruments 

measuring social desirability, rather than the variables they were designed to mea¬ 

sure. One can partly check against this tendency by including a measure of social de¬ 

sirability along with the other measures. 

Despite all the evidence leading the investigator to believe that the A-scale has 

construct validity, there may still be doubt. So a study is developed in which pupils 

who are high and low in amorism solve problems. The prediction is that pupils low in 

amorism will solve problems more successfully than those high in amorism. If the data 

support the prediction, this is further evidence of the construct validity of the amor¬ 

ism measure. It is, of course, a significant finding in and of itself. Such a procedure, 

however, is probably more appropriate with achievement and attitude measures. One 

can manipulate communications, for example, in order to change attitudes. If attitude 

scores change according to theoretical prediction, this would be evidence of the con¬ 

struct validity of the attitude measure, since the scores would probably not change ac¬ 

cording to prediction if the measure were not measuring the construct. 

The Multitrait-Multimethod Matrix Method 

A significant and influential contribution to testing validity is Campbell and Fiske’s 

(1959) use of the ideas of convergence and discriminability and correlation matrices 

to bring evidence to bear on validity. To explain the method, we use some data from 

a study of social attitudes by Kerlinger (1967, 1984). It has been found that there are 

two basic dimensions of social attitudes, which correspond to philosophical, socio¬ 

logical, and political descriptions of liberalism and conservatism. Two different kinds 

of scales were administered to graduate students of education and groups outside the 

universities in New York, Texas, and North Carolina. One instrument, Social Atti¬ 

tudes Scale, had the usual attitude statements, 13 liberal and 13 conservative items. 

The second instrument, Referents-I, or REF-I, used attitude referents (single words 

and short phrases: private property, religion, and civil rights, for example) as items, 25 

liberal referents and 25 conservative referents. The samples, the scales, and some of 

the results are described in Kerlinger (1972). The data reported in Table 28.2 were 
obtained from a Texas sample, N = 227 graduate students. 

We have, then, two completely different kinds of attitude instruments, one with 

referent items and the other with statement items, or Method 1 and Method 2. The 

two basic dimensions being measured were liberalism (L) and conservatism (C). Do 

the L and C subscales of the two scales measure liberalism and conservatism? Part of 

the evidence is given in Table 28.2, which presents the correlations among the four 

subscales of the two instruments, as well as the subscale reliability coefficients, 
calculated from the responses to the two scales. 

In a multi trait- multimethod analysis, more than one attribute and more than 

one method are used in the validation process. The results of correlating variables 

within and between methods can be presented in a so-called multitrait-multimethod 

matrix. The matrix (matrices) given in Table 28.2 is the simplest possible form of 
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H Table 28.2 Conflations between Social Attitude Dimensions across Two Measurement Methods, 

Multitrait-Multimethod Approach, 'Texas Sample (N = 227)a 

Method 1 Method 2 

(Referents) (Referents) 

Ll Cj l2 c2 

Method 1 u (.85) 

(Referents) c, -.07 (.88) 

Method 2 l2 .55 -.15 (.81) 

(Referents) C2 -.37 .54 -.09 (.82) 

^Method 1: Referents; Method 2: Statements; L = Liberalism; C — Conservatism. The diagonal parenthesized entries 

are internal consistency reliabilities; the italicized entries (.53 and .54) are cross-method L-L and C-C correlations 

(validities). 

such an analysis: two variables and two methods. Ordinarily one would want to use 

more variables. 

The most important part of the matrix is the diagonal of the cross-method cor¬ 

relations. In Table 28.2, this is the Method 1-Method 2 matrix in the lower-left sec¬ 

tion of the table. The diagonal values should be substantial, since they reflect the 

magnitudes of the correlations between the same variables measured differently. 

These values, italicized in the table (.53 and .54), are fairly substantial. 

In this example, the theory calls for near-zero or low negative correlations be¬ 

tween L and C (see Kerlinger, 1967 for a more complete development of this). The 

correlation between L\ and Cj is —.07 and between L2 and C2 is —.09, both in accord 

with the theory. The cross-correlation between L and C, that is, the correlation be¬ 

tween L of Method 1 and C of Method 2, or between Lx and C2, is -.37, higher than 

the theory predicts (an upper limit of —.30 was adopted). With the exception of the 

cross-correlation of —.37 between Ll and C2, then, the construct validity of the social 

attitudes scale is supported. One will, of course, want more evidence than the results 

obtained with one sample. And one will also want an explanation of the substantial 

cross-method negative correlation between Lx and C2. The example, however, illus¬ 

trates the basic ideas of the multitrait-multimethod approach to validity. 

Campbell and Fiske (1959) used specific terminology to describe each cor¬ 

relation in the table. The monomethod-monotrait are the reliabilities. These are found 

in the main diagonal of the matrix. In Table 28.2, these are the values .85, .88, .81, 

and .82, enclosed in parentheses. The heteromethod-monotrait are the validities which 

we discussed above. They are .53 and .54 in Table 28.2. There are two other types 

of correlation: the monomethod-heterotrait (the values —.07 and —.09), and the 

heteromethod-heterotrait (these were -.37 and -.15). Campbell and Fiske state that 

in order to have complete evidence of construct validity, the correlations must follow 

a set pattern. Failure to meet the requirements weakens validity concerns. There 
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have been some articles trying to resolve this problem by relaxing some of the re¬ 

quirements. These articles claim a partial degree of success. 

The model of the multitrait-multimethod procedure is an ideal. If possible, it 

should be followed. Certainly the investigation and measurement of important 

constructs, like conservatism, aggressiveness, teacher warmth, need for achievement, 

honesty, and so on, ultimately require it. In many research situations, however, it is 

difficult or impossible to administer two or more measures of two or more variables 

to relatively large samples. Though efforts to study validity must always be made, 

research should not be abandoned just because the full method is not feasible. 

Research Examples of Concurrent Validation 

Wood (1994) gives a good example of how to validate a test that uses medical and 

physiological data. Here the criterion is an actual physical measurement. Wood 

developed an instrument called the Breast Self-Examination Proficiency Rating In¬ 

strument (BSEPRI). This test measured how knowledgeable the test taker was about 

breast self-examination. The participants in the study were nursing students. Half of 

them were given instructions on self-examination and the other half were not. A t- 

test showed that those receiving instructions scored significantly higher than those 

that did not. Wood obtained concurrent validity by correlating the palpation scores 

of the instrument with the students’ ability to detect lumps in a silicon model. 

Iverson, Guirguis, and Green (1998) examined the concurrent validity of a short 

form of Wechsler Adult Intelligence Scale-Revised (WAIS-R). This short form 

consisted of seven subscales. The short form was developed for assessing patients with 

a diagnosis of a schizophrenia spectrum disorder. IQ scores estimated by this short 

form have a high correlation with full-form IQ scores. The verbal IQs, performance 

IQs, and full scale IQs estimated by the short form were highly correlated with the 

full form IQs. The correlations (validity coefficient) ranged from 0.95 to 0.98. In gen¬ 

eral, the seven subtest short form was shown to have adequate concurrent validity and 

is suitable for assessing intellectual functioning in persons with psychotic disorders. 

Iverson et al. correlated the new test (short form) with the established test (full scale) 

to obtain a measure of concurrent validity. Comrey (1993) used a similar procedure to 

create the short form of the Comrey Personality Scales (CPS). Using existing data, 

Comrey extracted the “best” items for each scale (discussed below) and computed two 

total scores: one on the short form, and the other on the original form. Correlating 
the two scores yielded a value for concurrent validity. 

Research Examples of Construct Validation 

In a sense, any type of validation is construct validation. Loevinger (1957) argues that 

construct validity, from a scientific point of view, is the whole of validity. At die other 

extreme Bechtoldt (1959) argues that construct validity has no place in psychology. 

Horst (1966) says that it is very difficult to apply the Cronbach and Meehl ideas within 

the logical and practical theory of psychometrics. However, when hypotheses are 

tested, when relations are empirically studied, construct validity is involved. Because of 

its importance, we now examine two research examples of construct validation. 
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A Measure of Anti-Semitism 

In an unusual attempt to validate their measure of anti-Semitism, dock and Stark 

(1966) used responses to two incomplete sentences about Jews: “It’s a shame that 

Jews . . and “I can’t understand why Jews . . Coders considered what each subject 

had written and characterized the responses as negative, neutral, or positive images 

of Jews. Each subject, then, was characterized individually as having one of the three 

different perceptions of Jews. When the responses to the Index of Anti-Semitic Be¬ 

liefs, the measure being validated, were divided into None, Medium, Medium High, 

and High Anti-Semitism, the percentages of negative responses to the two open- 

ended questions were, respectively: 28, 41, 61, 75. This is good evidence of validity 

because the individuals categorized None to High Anti-Semitism by the measure to 

be validated, the Index of Anti-Semitic Beliefs, responded to an entirely different 

measure of anti-Semitism, the two open-ended questions, in a manner congruent 

with their categorization by the index. 

A Measure of Personality 

In a later chapter we will be discussing an important analytic tool called factor analy¬ 

sis. However, it is necessary to mention this method in light of construct validation. 

In recent years, factor analysis seems to be the method of choice for many involved 

with construct validity. Factor analysis is essentially a method of finding those 

variables that have something in common. If some items of a personality test are 

designed to measure extraversion, then in a factor analysis, those items should have 

high loadings on one factor and low on the others. 

In the mid-1950s Professor Andrew L. Comrey at University of California, Los 

Angeles, undertook a task to examine all of the existing well-known, published 

personality tests. His initial goal was to try to determine who had the correct (valid) 

measure of personality. To do this, Dr. Comrey used factor analysis. Contrary to his 

initial expectations, a new personality test of its own unique character emerged. 

Comrey’s personality test, now called the Comrey Personality Scales (CPS) was 

among the first to be developed using factor analysis. In 1970, after approximately 15 

years of research and test construction, the Comrey Personality Scale was published 

(see Comrey & Lee, 1992 for a summary and procedure). Comrey’s construct for 

personality consists of eight major dimensions: 

Trust versus Defensiveness 

Orderliness versus Lack of Compulsion 

Social Conformity versus Rebelliousness 

Activity versus Lack of Energy 

Emotional Stability versus Neuroticism 

Extraversion versus Introversion 

Masculinity versus Femininity (renamed as Mental Toughness versus Sensitivity) 

Empathy versus Egocentrism 
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Since 1970, Comrey has published a number of articles supporting the validity of 

the Comrey Personality Scales. This was done by first administering the CPS, or a 

translated form of the CPS, to different groups of people. After obtaining the data, 

each set of data was factor analyzed. In each case, the same eight factors emerged. Al¬ 

though this does not say exclusively there are eight factors of personality, the data 

support it. In recent research by Brief, Comrey, and Collins (1994), the CPS was 

translated into Russian and administered to 287 male and 170 female Russian partici¬ 

pants. The data supported six of the eight subscales. The only subscales that did not 

receive enough support were Empathy versus Egocentrism and Activity versus Lack 
of Energy. 

In a short article, Comrey, Wong, and Backer (1978) present a simple procedure 

for validating the Social Conformity versus Rebelliousness scale. In one study, 

Comrey et al. recruited two groups of participants: Asians and non-Asians. The tra¬ 

ditional view of Asians is that they are more socially conforming than non-Asians. 

There is some evidence to support this claim, such as strong parental influence, 

strong traditional values, and so on. [Scattone and Saetermoe (1997) is one research 

study that demonstrated this.] Hence in this study by Comrey and others, the estab¬ 

lished notion concerning the difference between Asians and non-Asians on social 

conformity was used as the criterion or “outside measure.” The participants all took 

the Comrey Personality Scales; however, only the Social Conformity versus 

Rebelliousness was of interest for this study. Using a r-test, these researchers showed 

a statistically significant difference between Asians and non-Asians on the Social 

Conformity versus Rebelliousness scale. This study could be used as an example il¬ 
lustrating discriminant validity. 

The second study in this article demonstrated convergent validity. One expects 

that Social Conformity is related to political affiliation and philosophy. It is generally 

thought that Conservatives are more socially conforming than Liberals, who are 

considered more rebellious. In this study, persons completed the Comrey Personality 

Scales and answered questions about political affiliation. Comrey et al. found a 

statistically significant correlation between political affiliation and scores on the 

Social Conformity versus Rebelliousness scale. This provided additional information 

as to the validity of that scale. Even though this article is short, it is well presented. 
The student learn a great deal from reading this article. 

The Measurement of Democracy 

What do we mean by democracy? The word is used constantly, but what do we mean 

when we use it? Even more difficult, how is it measured? Bollen (1980) defined and 

measured democracy, used it as a variable, and demonstrated the construct validity 

of his Index of Political Democracy. He examined previous uses and definitions 

carefully, explained the theory behind the construct, and extracted from earlier 

measures important facets of political democracy to construct his measure. It has two 

large aspects —political liberty, and popular sovereignty—which can be called latent 

variables. Each aspect has three facets: press freedom, freedom of group opposition, and 

government sanctions (absence of) for political liberties; and fairness of elections, 

executive selection, and legislative selection for popular sovereignty. It is these six “indica- 
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tors” that are used to measure the political democracy of countries. Each indicator is 

defined operationally and a 4-point scale used to apply to any country. Popular sover¬ 

eignty, for instance, is measured by assessing to what extent the elite of a country are 

accountable to the people: wide franchise, equal weighting of votes, and fair electoral 

processes. The six indicators are combined into a single index or score (see Bollen, 

1979, for a detailed description of the index and its scoring). Note that “Indicator,” 

or “Social Indicator,” is an important term in contemporary social research. Unfortu¬ 

nately, there is little agreement on just what indicators are. They have been variously 

defined as indices of social conditions, statistics, and even variables. In Bollen’s paper, 

they are variables. For a discussion of definitions, see Jaeger (1978). 

Through factor analysis and other procedures, Bollen brought empirical 

evidence to bear on the reliability and construct validity of the index. He showed, 

for example, that the six indicators are manifestations of an underlying latent 

variable, which is “political democracy.” He also showed that the index is highly 

correlated with other measures of democracy. Finally, index values were calculated 

for a large number of countries. These values seem to agree with the extent of 

democracy (on a scale of 0-100) in the countries, for example, U.S., 92.4; Canada, 

99.5; Cuba, 5.2; United Arab Republic, 38.7; Sweden, 99.9; Soviet Union, 18.2; 

Israel, 96.8. Bollen has evidently successfully measured a highly complex and difficult 

construct. 

Other Methods of Construct Validation 

In addition to the multitrait-multimethod approach and the methods used in the 

above studies, there are other methods of construct validation. Any tester is familiar 

with the technique of correlating items with total scores. In using the technique, the 

total score is assumed to be valid. To the extent that an item measures the same thing 

as the total score does, the item is valid (see Chapter 27, or Friedenberg, 1995, for 

discussion on item analysis). 

In order to study the construct validity of any measure, it is always helpful to 

correlate the measure with other measures. The amorism example discussed earlier 

illustrated the method and the ideas behind it. But, would it not be more valuable to 

correlate a measure with a large number of other measures? Is there any better way 

to learn about a construct than to know its correlates? Factor analysis is a refined 

method of doing this. It tells us, in effect, what measures measure the same thing and 

to what extent they measure what they measure. 
Factor analysis is a powerful and indispensable method of construct validation. 

Bollen (1980) used it in his validation of the Index of Political Democracy and Com- 

rey used it to develop an entire personality test. Although it has been briefly charac¬ 

terized earlier and will be discussed in detail in a later chapter, its great importance in 

validating measures warrants characterization here. It is a method for reducing a 

large number of measures to a smaller number, called factors, by discovering which 

ones “go together” (i.e., which measures measure the same thing) and the relations 

between the clusters of measures that go together. For example, we may give a group 

of individuals 20 tests, each presumed to measure something different. We may find, 
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however, that these 20 tests have enough redundancy that they can be explained with 

only five measures or factors. 

A Variance Definition of Validity: The Variance 

Relation of Reliability and Validity 

The variance treatment of validity presented here is an extension of the treatment of 

reliability presented in Chapter 27. Both treatments follow Guilford’s presentation of 
validity. 

In the last chapter, reliability was defined as 

r„ = (28.1) 

the proportion of “true” variance to total variance. It is theoretically and empirically 
useful to define validity similarly: 

Vd = -fy (28.2) 

where Val is the validity, Vco the common factor variance, and Vt the total variance of 

a measure. Validity is thus seen as the proportion of the total variance of a measure 
that is common factor variance. 

Unfortunately, we are not yet in a position to present the full meaning of this 

definition. An understanding of so-called factor theory is required, but factor theory 

will not be discussed until later in the book. Despite this difficulty, we must attempt 

an explanation of validity in variance terms if we are to have a well-rounded view of 

the subject. Besides, expressing validity and reliability mathematically will unify and 

clarify both subjects. Indeed, reliability and validity will be seen to be parts of one 
unified whole. 

Common factor variance is the variance of a measure that is shared with other 

measures. In other words, common factor variance is the variance that two or more 
tests have in common. 

In contrast to the common factor variance of a measure is its specific variance, Vsp, 

the systematic variance of a measure that is not shared by any other measure. If a test 

measures skills that other tests measure, we have common factor variance; if it also 

measures a skill that no other test measures, we have specific variance. Figure 28.1 

expresses these ideas and also adds the notion of error variance. The A and B circles 

represent the variances of Tests A and B. The intersection of A and B, A Pi B, is the 

re ation of the two sets. Similarly, V(A D B) is common factor variance. The specific 
variances and the error variances of both tests are also indicated. 

From this viewpoint, then, and following the variance reasoning outlined in the 

last chapter, any measure’s total variance has several components: common factor 
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[H Figure 28.1 

variance, specific variance, and error variance. This is expressed by the equation: 

vt = vc0 +Vsp+Ve (28.3) 

To be able to talk of proportions of the total variance, we divide the terms of Equa¬ 

tion 28.3 by the total variance: 

K vt vt vt (28.4) 

How do Equations 28.1 and 28.2 fit into this picture? The first term on the right 

of the equal sign, Vco/Vt, is the right-hand member of (28.2). Therefore validity can 

be viewed as that part of the total variance of a measure that is not specific variance 

and not error variance. This is easily seen algebraically: 

Vt vt vt vt (28.5) 

By a definition of the previous chapter, reliability can be defined as 

This can be written: 

(28.6) 

(28.7) 

The right-hand side of the equations, however, is part of the right-hand side of 

(28.5). If we rewrite (28.5) slightly, we obtain 
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Y± 
v, Vt vt vt (28.8) 

This must mean, then, that validity and reliabihty are close variance relations. 

Reliability is equal to the first two right-hand members of (28.8). So, bringing in (28.1): 

K vt vt (28.9) 

If we substitute in (28.8), we get 

K vt vt (28.10) 

Thus we see that the proportion of the total variance of a measure is equal to the 

proportion of the total variance that is “true” variance minus the proportion that is 

specific variance. Or, the validity of a measure is that portion of the total variance of 

the measure that shares variance with other measures. Theoretically, valid variance 

includes no variance due to error, neither does it include variance that is specific to 
this measure and this measure only. 

This can all be summed up in two ways. First, we sum it up in an equation or 

two. Let us assume that we have a method of determining the common factor vari¬ 

ance (or variances) of a test. (Later we shall see that factor analysis is such a method.) 

For simplicity, suppose that there are two sources of common factor variance in a 

test—and no others. Call these factors A and B. They might be verbal ability and 

arithmetic ability, or they might be liberal attitudes and conservative attitudes. If we 

add the variance of A to the variance of B, we obtain the common factor variance of 
the test, which is expressed by the equations, 

Ko - Va + vB 
K_ _ vA vB 
Vt Vt vt 

Then, using (28.2) and substituting in (28.12), we obtain 

Val 
Vt vt 

(28.11) 

(28.12) 

(28.13) 

The total variance of a test, as we said before, includes the common factor vari- 

ance, the variance specific to the test and to no other test (at least as far as present in. 

formation goes) and error variance. Equations 28.3 and 28.4 express this. By substf 
tutmg in (28.4) the equality of (28.12), we obtain 
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h2 

Vt Vt vt vt vt (28.14) 

The first two terms on the right-hand side of (28.14) are associated with the validity 

of the measure, and the first three terms on the right are associated with the reliabil¬ 

ity of the measure. These relations have been indicated. Common factor variance, or 

the validity component of the measure, is labeled h2 (communality), a symbol custom¬ 

arily used to indicate the common factor variance of a test. Reliability, as usual, is 

labeled rtt. 

To discuss all the implications of this formulation of validity and reliability would 

take us too far astray at this time. All that is needed now is to try to clarify the formu¬ 

lation with a diagram and a brief discussion. 

Figure 28.2 is an attempt to express Equation 28.14 diagrammatically. The fig¬ 

ure represents the contributions of the different variances to the total variance (taken 

to be equal to 100%). Four variances, three systematic variances and one error vari¬ 

ance, comprise the total variance in this theoretical model. Naturally, practical out¬ 

comes never look this neat. It is remarkable, however, how well the model works. 

The variance thinking, too, is valuable in conceptualizing and discussing measure¬ 

ment outcomes. 

The contribution of each source of variance is indicated. Of the total variance, 

80% is reliable variance. Of the reliable variance, Factor/I contributes 30% and Fac¬ 

tor B contributes 25%, and 25% is specific to this test. The remaining 20% of the 

total variance is error variance. The test may be interpreted as quite reliable, since a 

ID Figure 28.2 

F (80%) 

r h2 = Vco (55%) 
\ 

Ve (20%) 

vA Vb v* K 

30% 25% 25% 20% 
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sizable proportion of the total variance is reliable or “true” variance. The interpreta¬ 

tion of validity is more difficult. If there were only one factor, say A, and it con¬ 

tributed 55% of the total variance, then we could say that a considerable proportion 

of the total variance was valid variance. We would know that a good bit of the reli¬ 

able measurement would be the measurement of the property known as A. This 

would be a construct validity statement. Practically speaking, individuals measured 

with the test would be rank-ordered on A with adequate reliability. 

With the above hypothetical example, however, the situation is more complex. 

The test measures two factors, A and B. There could be three sets of rank orders, 

one resulting from A, one from B, and one from specific. While repeat reliability 

might be high, if we thought we were measuring only A, to the extent we thought so, 

the test would not be valid. We might, however, have a score for each individual one 

on A and one on B. In this case the test would be valid. Note that even if we thought 

the test was measuring only A, predictions to a criterion might well be successful, es¬ 

pecially if the criterion had a lot of both A and B in it. The test could have predictive 
validity even though its construct validity was questionable. 

Indeed, modern developments in measurement indicate that such multiple scores 
have become more and more a part of accepted procedure. 

Statistical Relation between Reliability and Validity 

Although they appear in different chapters, the topics of reliability and validity are 

not separate both deal with the level of excellence of a measuring instrument. We 

have seen in past discussions that we can have a reliable measure that is not valid. 

However, a measuring instrument without reliability would automatically designate 

it to the poor stack. Also, we had briefly mentioned that if we have a valid measure 

then we also have a reliable one. In Chapter 27 we discussed what happens to the re¬ 

liability coefficient when we increase the length of the test. What happens to validity 

with an increase in length? Is it equally affected by the increase in length as reliabil¬ 

ity? The answer is “no.” Gullekson (1950) classical work present formulas to show 

the relationship. If enough items are added to the test to double the reliability coeffi¬ 

cient, the validity coefficient only increases by 41%. The prophetic formulas for va¬ 

lidity usually involve the reliability coefficient in some shape and form. For example, 

there is a formula to predict the maximum validity coefficient based on the reliability 

coefficient. Using this formula it may be possible to obtain a validity coefficient 

higher than the reliability. However, in practice it is very difficult to obtain a validity 

coefficient that is larger than the reliability. The thinking here is that one would ex¬ 

pect that a test correlated with itself should be higher than the same test correlated 
with an outside measure or criterion. 

If it was possible to eliminate measurement errors of the test and the criterion, 

we would essentially have a correlation between the true scores of both measures. 

We have seen that measurement errors tend to lower the coefficient values. We can, 

in a hypothetical realm, find what the validity coefficient might be if measurement 

error could be eliminated in (i) both criterion and test, (ii) criterion only, and.(iii) test 

only. Such corrections are referred to as corrections for attenuation. If we let r be the 

correlation between criterion * and test, y, the formula to correct for attenuation in 
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both is 

Corrected r.^ —I _ 
vr r 
’' xx' yy 

The formula to determine what the validity might be if we had a perfect criterion is 

The formula to determine the validity coefficient if we had a perfect test is 

These formulas should not be used to make decisions about individuals, but are 

useful in determining if making a test or criterion more reliable is worth the 

effort. These formulas show what would happen to validity as changes are made in 

reliability. 

The Validity and Reliability of Psychological and 

Eduational Measurement Instruments 

Poor measurement can invalidate any scientific investigation. Most of the criticisms 

of psychological and educational measurement, by professionals and laypeople alike, 

center on validity. This is as it should be. Achieving reliability is to a large extent a 

technical matter. Validity, however, is much more than technique. It bores into the 

essence of science itself. It also bores into philosophy. Construct validity, particularly, 

since it is concerned with the nature of “reality” and the nature of the properties be¬ 

ing measured, is heavily philosophical. 
Despite the difficulties of achieving reliable and valid psychological, sociological, 

and educational measurements, great progress has been made in this century. There 

is growing understanding that all measuring instruments must be critically and em¬ 

pirically examined for their reliability and validity. The day of tolerance of inade¬ 

quate measurement has ended. The demands imposed by professionals, the theoreti¬ 

cal and statistical tools available and those being rapidly developed, and the 

increasing sophistication of graduate students of psychology, sociology, and educa¬ 

tion have set new high standards that should be healthy stimulants to the imagina¬ 

tions of both research workers and developers of scientific measurement. 

Chapter Summary 

I. Validity deals with accuracy. Does the instrument measure what it is sup¬ 

posed to measure? 
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2. There are three types of validity 

• content 

• criterion-related 

• construct 

3. Content validity is concerned with the representativeness or sampling 

adequacy of the test’s content. 

4. Face validity is similar to content validity, but it is nonquantitative and 

involves merely a visual inspection of the test by sophisticated or unsophisti¬ 

cated reviewers. 

5. Under criterion-related validity there are two methods: concurrent and 
predictive. 

6. The distinguishing characteristic between concurrent and predictive validi¬ 

ties is the temporal relationship between the instrument and the criterion. 

7. An instrument high in criterion-related validity helps test users make better 

decisions in terms of placement, classification, selection, and assessment. 

8. Construct validity seeks to explain individual differences in test scores. It 

deals with abstract concepts that may contain two or more dimensions. 

9. Construct validity requires both convergence and discriminability. 

10. Convergence states that instruments purporting to measure the same thing 
should be highly correlated. 

11. Discriminability is shown when instruments that supposedly measure 
different things have a low correlation. 

12. A method used to show both convergence and discriminability is Campbell 

and Fiske’s (1959) multi trait-multimethod matrix. 

13. We can show the relationship between validity and reliability mathematically. 

14. Knowledge on how measurements are interpreted is important to research 
studies. 

15. Two less traditional topics concerning interpretation and validity are: 

criterion-referenced testing and information referenced testing (or 
admissible probability measurement). 

Study Suggestions 

1. The measurement literature is vast. The following references have been cho¬ 

sen for their particular excellence or their relevance to important measure¬ 

ment topics. Some of the discussions, however, are technical and difficult. 

The student will find elementary discussions of reliability and validity in most 
measurement texts. 

Allen, M. J., & Yen, W. M. (1979). Introduction to measurement theory. Belmont, 
CA: Brooks/Cole. 

Cronbach, L. J., & Meehl, P. (1955). Construct validity in psychological tests. 

Psychological Bulletin, 52, 281-302. [A most important contribution to 
modern measurement and behavioral research.] 
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Cureton, E. (1969). Measurement theory. In R. Ebel, V. Noll, & R. Bauer, 

Eds., Encyclopedia of educational research (4th ed.), pp. 785-804. New York: 

Macmillan. [A broad and firm overview of measurement, with an empha¬ 

sis on educational measurement.] 

Horst, P. (1966). Psychological measurement and prediction. Belmont, CA: 

Wadsworth. 

Tryon, R. (1957). Reliability and behavior domain validity: A reformulation 

and historical critique. Psychological Bulletin, 54, 229-249. [This is an 

excellent and important article on reliability. It contains a good worked 

example.] 

The following anthologies of measurement articles are valuable sources 

of the classics in the field. This is especially true of the Mehrens and Ebel and 

the Jackson and Messick volumes. 

Anastasi, A. (Ed.). (1966) Testing problems in perspective. Washington, DC: 

American Council on Education. 

Barnette, W. L. (Ed.). (1976). Reading in psychological tests and measurement (3rd 

ed.). Baltimore, MD: Williams & Wilkins. 

Chase, C., & Ludlow G. (Eds.). (1966). Readings in educational and psychological 

measurement. Boston: Houghton Mifflin. 

Jackson, D., & Messick, S. (Eds.). (1967). Problems in human assessment. New 

York: McGraw-Hill. 
Mehrens W., & Ebel, R. (Eds.). (1967). Principles of educational and psychological 

measurement. Skokie, IL: Rand McNally. 

2. An important method in validity studies is cross-validation. Advanced students 

can profit from Mosier’s essay in the Chase and Ludlow book listed above. A 

brief summary of Mosier’s essay can be found in Guilford (1954, p. 406). 

3. The more advanced student will also want to know something about response 

sets — a threat to validity, particularly to the validity of personality, attitude, 

and value items and instruments. Response sets are tendencies to respond to 

items in certain ways — high, low, approve, disapprove, extreme, and so on — 

regardless of the content of the items. The resulting scores are therefore sys¬ 

tematically biased. The literature is extensive and cannot be cited here. An ex¬ 

cellent exposition, however, can be found in Nunnally, (1978), chap. 16, 

especially pp. 655ff. Advocates of the effects of response sets on measurement 

instruments are quite strong in their statements. Rorer (1965), has thrown a 

considerable dash of salt on the response-set tail. 

The position taken in this book is that response sets certainly operate and 

sometimes have considerable effect, but that the strong claims of advocates 

are exaggerated. Most of the variance in well-constructed measures seems to 

be due to variables being measured, and relatively little to response sets. 

Investigators must be aware of response sets and their possible deleterious 

effects on measurement instruments, but should not be afraid to use the 
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instruments. If one were to take too seriously the schools of thought on re¬ 

sponse sets and on what has been called the experimenter effect (in education, 

the Pygmalion effect) discussed earlier, one would have to abandon behavioral 

research except, perhaps, research that can be done with so-called unobtrusive 

measures. 
4. Imagine that you have given a test of six items to six persons. The scores of 

each person on each item are given below. Say that you have also given 

another test of six items to six persons. These scores are also given below. The 

scores of the first test, I, are given on the left; the scores of the second test, II, 

are given on the right. 

I II 

Items Items 

Persons a b c d e / Persons a b c d e / 

1 6 6 7 5 6 5 1 6 4 5 6 6 3 
2 6 4 5 5 4 5 2 6 2 7 4 4 4 
3 5 4 7 6 4 3 3 5 6 5 3 4 2 
4 3 2 5 3 4 4 4 3 4 4 5 4 5 
5 2 3 4 4 3 2 5 2 1 7 1 3 5 
6 2 1 3 1 0 2 6 2 3 3 5 0 2 

The scores in II are the same as those in I, except that the orders of the scores of 
Items (b), (c), (d), and (/) have been changed. 

a. Do a two-way analysis of variance of each set of scores. Compare and in¬ 

terpret the F-ratios. Pay special attention to the F-ratio for Persons (Indi¬ 
viduals). 

b. Compute r„ = (Vind — Ve)/ Vind for I and II. Interpret the two r„s. Why are 
they so different? 

c. Add the odd items across the rows; add the even items. Compare the rank 

orders and the ranges of the odd totals, the even totals, and the totals of all 

six items. The coefficients of correlation between odd and even items, cor¬ 

rected, are .98 and .30. Explain why they are so different. What do they 
mean? 

d. Assume that there were 100 persons and 60 items. Would this have 

changed the procedures and the reasoning behind them? Would the effect 

of changing the orders of, say, five to 10 items have affected the rtts as 
much as in these examples? If not, why not? 

[Answers: (a) I: Fitems = 3.79 (.05); Fpersom = 20.44 (.001). II: Fitems = 1.03 
(n.s); Fpersons =1.91 (n.s). (b) I: rtt = .95; II: rtt = .48.] 
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The interview is perhaps the most ubiquitous method of obtaining information from 

people. It has been and still is used in all kinds of practical situations: the lawyer ob¬ 

tains information from a client; the physician learns about a patient; the admissions 

officer or professor determines the suitability of students for schools, departments, 

and curricula. Only recently, however, has the interview been used systematically for 

scientific purposes, both in the laboratory and in the field. 
Data-collection methods can be categorized by the degree of their directness. If 

we wish to know something about people, we can ask them about it directly. They 

may or may not give us an answer. On the other hand, we may not ask a direct 

question. We may use an ambiguous stimulus, like a blurred picture, a blot of ink, or 

a vague question; and then ask for impressions of the stimulus, on the assumption 

691 



692 Part Nine ■ Methods of Observation and Data Collection 

that the respondents will give the needed information without knowing they are giv¬ 

ing it. This method is highly indirect. Most of the data-collection methods used in 

psychological and sociological research are relatively direct or moderately indirect. 

Rarely are highly indirect means used. 
Interviews and schedules (questionnaires) are ordinarily quite direct. This is both 

a strength and a weakness. It is a strength because a great deal of the information 

needed in social scientific research can be obtained from respondents by direct ques¬ 

tions. Though the questions may have to be carefully handled, respondents can, and 

usually will, give much information directly. There is information, however, of a 

more difficult nature that respondents may be unwilling, reluctant, or unable to give 

readily and directly—for example, information on income, sexual relations, and 

attitudes toward religion and minority groups. In such cases, direct questions may 

yield data that are invalid. Yet, properly handled, even personal or controversial 

material can be successfully obtained through interviews and schedules. 

The interview is probably one of the oldest and most often used devices for 

obtaining information. It has important qualities that objective tests and scales and 

behavioral observations do not possess. When used with a well-conceived schedule, 

an interview can obtain a great deal of information. It is flexible and adaptable to 

individual situations, and can often be used when no other method is possible or 

adequate. These qualities make it especially suitable for research with children. 

Methods and considerations for interviewing children are given in Aldridge and 

Wood (1998) and in Poole and Lamb (1998). Minkes, Robinson, and Weston (1994) 

provide explanations on how to interview children who have disabilities. Ellis (1989) 

describes how to conduct an interview with gifted Canadian children. An interviewer 

can know whether the respondent, especially a child, does not understand a question 

and can, within limits, repeat or rephrase the question. Questions about hopes, 

aspirations, and anxieties can be asked in such a way as to elicit accurate information. 

Most important, perhaps, the interview permits probing into the context and reasons 

for answers to questions. McReynolds (1989) summarizes the status of clinical 
measurement instruments, one of which is the interview schedule. 

The major shortcoming of the interview and its accompanying schedule is prac¬ 

tical. Interviews take a lot of time. Getting information from one individual may take 

as long as an hour or even two hours. This large time investment costs effort and 

money. Andrews (1974) gives the requirements in terms of recruiting, training, 

selecting, and supervising of a well-conducted research study using the interview 

method. One of the important components of the interview is supervision. Amdrews 

lists at least nine responsibilities a supervisor should have. So, whenever a more eco¬ 

nomical method answers the research purposes, interviews should not be used. 

Emory (1976) cites research that has been done on interviewer characteristics. These 

studies found evidence that trivial characteristics could influence the results of the 

interview. For example, Emory cites the fact that women are better interviewers than 

men and that married men are better than single women. Emory also cites a study 

done by the National Opinion Research Center (NORC) relating characteristics to 

the quality of the interview. Training interviewers so that they produce the same level 
of quality requires time, resources, and perhaps even prior experience. 
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Interviews and Schedules as Tools of Science 

For the most part, interviews and schedules have been used simply for gathering so- 

called facts. The most important use of interviews should be to study relations and to 

test hypotheses. The interview, in other words, is a psychological and sociological 

measuring instrument. Perhaps more accurately, the products of interviews— 

respondents’ answers to carefully contrived questions — can be translated into 

measures of variables. Interviews and interview schedules are therefore subject to the 

same criteria of reliability, validity, and objectivity as other measuring instruments. 

An interview can be used for three main purposes: 

1. It can be an exploratory device to help identify variables and relations, to sug¬ 

gest hypotheses, and to guide other phases of the research. 

2. It can be the main instrument of the research. In this case, questions designed 

to measure the variables of the research will be included in the interview 

schedule. These questions are then to be considered as items in a measure¬ 

ment instrument, rather than as mere information-gathering devices. 

3. The interview can supplement other methods: follow up unexpected results, 

validate other methods, and go deeper into the motivations of respondents 

and their reasons for responding as they do. 

In using interviews as tools of scientific research, we must ask the questions: Can data 

on the research problem be obtained in an easier or better way? To achieve reliabil¬ 

ity, for example, is not a small problem. Interviewers must be trained; questions must 

be pretested and revised to eliminate ambiguities and inadequate wording. Is it worth 

the effort? Validity, too, is no small problem. Special pains must be taken to eliminate 

interviewer bias; questions must be tested for unknown biases. The particular 

research problem and the nature of the information sought must, in the final analy¬ 

sis, dictate whether the interview will be used. Cannell and Kahn (1968, chapter 15) 

and Warwick and Lininger (1975, chapter 7) provide detailed guidance on whether 

an interview should or should not be used. 

The Interview 

The interview is a face-to-face interpersonal role situation in which one person (the 

interviewer) asks a person being interviewed (the respondent) questions designed to 

obtain answers pertinent to the research problem. There are two broad types of 

interview: structured and unstructured, or standardized and unstandardized (see Cannell 

& Kahn, 1968). In the standardized interview, the questions, their sequence, and 

their wording are fixed. An interviewer may be allowed some liberty in asking ques¬ 

tions, but relatively little. The Interviewer's Manual (1976) produced by the Institute 

for Social Research at the University of Michigan states that the view toward the in¬ 

terview is evolving from the traditional view. The interview is seen as an interaction, 



694 Part Nine ■ Methods of Observation and Data Collection 

an active role relation between interviewer and interviewee, in which the interviewer 

is even a teacher. Canned and Kahn (1968), and Dohrenwend and Richardson (1963) 

provide additional information on this topic. This liberty is specified in advance. 

Standardized interviews use interview schedules that have been carefully prepared to 

obtain information pertinent to the research problem. 

Unstandardized interviews are more flexible and open. Although the research 

purposes govern the questions asked, their content, their sequence, and their word¬ 

ing are in the hands of the interviewer. Ordinarily no schedule is used. In other 

words, the unstandardized, nonstructured interview is an open situation in contrast 

to the standardized, structured interview, which is a closed situation. This does not 

mean that an unstandardized interview is casual. It should be just as carefully planned 

as the standardized one. Green and Tull (1988) state that unstructured interviews can 

obtain information that structured interviews cannot. With the informal approach of 

the unstructured interview, the researcher can get ideas concerning the interviewee’s 

motives. Such unstructured interviews are at times called depth interviews. They are 

especially useful for doing exploratory studies. Our concern here is mainly with the 

standardized interview. It is recognized, however, that many research problems may, 

and often do, require a compromise type of interview in which the interviewer is 

permitted to use alternate questions that fit for particular respondents and particular 

questions. The actual procedure of conducting an interview is not discussed in this 

book. The reader will find guidance in the Study Suggestions for this chapter. 

The Interview Schedule 

Interviewing itself is an art, but the planning and writing of an interview schedule is 

even more so. It is unusual for a novice to produce a good schedule, at least without 

considerable prior study and practice. There are several reasons for this, the main 

ones probably being the multiple meaning and ambiguity of words, the lack of sharp 

and constant focus on the problems and hypotheses being studied, a lack of apprecia¬ 

tion of the schedule as a measurement instrument, and a lack of necessary back¬ 
ground and experience. 

Kinds of Schedule Information and Items 

Three kinds of information are included in most schedules: face sheet (identification) 

information, census-type (or sociological) information, and problem information. 

Except for identification, these types of information were discussed in an earlier 

chapter. The importance of identifying each schedule accurately and completely, 

however, needs to be mentioned. The careful researcher should learn to identify with 

letters, numbers, or other symbols, every schedule and every scale. In addition, iden¬ 

tifying information for each individual must be recorded systematically. Two types of 

schedule items are in common use: fixed-alternative (or closed) and open-ended (or 

open). A third type of item, having fixed alternatives, is also used: scale items. 
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Fixed-Alternative Items 

Fixed-alternative items, as the name indicates, offer the respondent a choice among 
two or more alternatives. These items are also called closed or poll questions. The 
commonest kind of fixed-alternative item is dichotomous: it asks for Yes-No, 
Agree-Disagree, and other two-alternative answers. A third alternative, Don’t Know 

or Undecided, is also often added. 
An example of a fixed-alternative item is 

Do you feel that the U.S. government has found a cure for AIDS but is with¬ 

holding it? 

Yes.[ ] 
No.[ ] 
Don’t know.[ ] 

Although fixed-alternative items have the decided advantages of achieving 
greater uniformity of measurement and thus greater reliability, of forcing the respon¬ 
dent to answer in a way that fits the response categories previously set up, and of be¬ 
ing easily coded, they have certain disadvantages. The major disadvantage is their su¬ 
perficiality: Without probes they do not ordinarily get beneath the response surface. 
They may also irritate a respondent who finds none of the alternatives suitable. 
Worse, they can force responses. A respondent may choose an alternative to conceal 
ignorance or choose alternatives that do not accurately represent facts or opinions. 
These difficulties do not mean that fixed-alternative items are bad and useless. On 
the contrary, they can be used to good purpose if they are judiciously written, used 
with probes, and mixed with open items. A probe is a device used to find out respon¬ 
dents’ information on a subject, their frames of reference, or, more usually, to clarify 
and ascertain reasons for responses given. Probing increases the “response-getting” 
power of questions without changing their content. Examples of probes are: “Tell me 
more about that.” “How is that?” “Can you explain that?” (see Warwick & Lininger, 

1975, pp. 210-215). 

Open-Ended Items 
Open or open-ended items are an extremely important development in the technique 
of interviewing. Open-ended questions are those that supply a frame of reference for 
respondents’ answers, but put a minimum of restraint on the answers and their 
expression. While their content is dictated by the research problem, they impose no 
other restrictions on the content and manner of respondent answers. Examples will 

be given later. 
Open-ended questions have important advantages, but they have disadvantages, 

too. If properly written and used, however, these disadvantages can be minimized. 
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Open-ended questions are flexible; they have possibilities of depth; they enable the 

interviewer to clear up misunderstandings (through probing), to ascertain a respon¬ 

dent’s lack of knowledge, to detect ambiguity, to encourage cooperation and achieve 

rapport, and to make better estimates of respondents’ true intentions, beliefs, and 

attitudes. Their use also has another advantage: the responses to open-ended 

questions can suggest possibilities of relations and hypotheses. Respondents will 

sometimes give unexpected answers that may indicate the existence of relations not 
originally anticipated. 

A special type of open-ended question is the, funnel. Actually, this is a set of ques¬ 

tions directed toward getting information on a single important topic or a single set 

of related topics. The funnel starts with a broad question and narrows down progres¬ 

sively to the important specific point or points. Warwick and Lininger (1975) point 

out that the merits of the funnel is that it allows free response in the earlier 

questions, narrows down to specific questions and responses, and also facilitates the 

discovery of respondents’ frames of reference. Another form of funnel starts with an 

open general question and follows up with specific closed items. The best way to get 

a feeling for good open-ended questions and funnels is to study examples. 

To obtain information on child-rearing practices, Sears, Maccoby, and Levin 

(1957) used a number of good open-ended and funnel questions. One of them, with 
the authors’ comments in brackets, is: 

Example 

All babies cry, of course. [Note that the interviewer puts the parent at ease about 

her child s crying.] Some mothers feel that if you pick up a baby every time it 

cries, you will spoil it. Others think you should never let a baby cry for very 

long. [The frame of reference has been clearly given. The mother is also put at 

ease no matter how she handles her baby’s crying.] How do you feel about this? 

(a) What did you do about this with X? 

(b) How about in the middle of the night? 

This funnel question set not only reaches attitudes, it also probes specific practices. 

Scale Items 

A third type of schedule item is the scale item. A scale is a set of verbal items to 

eac of which an individual responds by expressing degrees of agreement or 

disagreement, or some other mode of response. Scale items have fixed alter- 

natives and place the responding individual at some point on the scale. (They 

will be discussed at greater length in Chapter 30). The use of scale items in interview 

schedules is a development of great promise, since the benefits of scales are 

combined with those of interviews. We can include, for example, a scale to mea¬ 

sure attitudes toward education in an interview schedule on the same topic. Scale 
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scores can be obtained in this way for each respondent and can be checked 

against open-ended question data. One can measure the tolerance of nonconformity, as 

Stouffer (1955) did, by having a scale to measure this variable embedded in the 

interview schedule. 

Criteria o f Que stion- Writing 

Criteria or precepts of question-writing have been developed through experience and 

research. Some of the most important of these are given below in the form of ques¬ 

tions. Brief comments are appended to the questions. When confronted with the 

actual necessity of drafting a schedule, the student should consult more extended 

treatments, since the ensuing discussion, in keeping with the discussion of the rest of 

the chapter, is intended only as an introduction to the subject. For practical 

guidance, see Emory (1976, chapter 8), which provides a good summary and key 

points in creating the schedule; Noelle-Neuman (1970), and Warwick and Lininger 

(1975). Emory emphasizes how to test the instrument before its actual use, how to 

sequence the items or questions, and what to do under certain situations. Other ref¬ 

erences are Atkinson (1971), Beed and Stimson (1985), and Mishler (1986). 

1. Is the question related to the research problem and the research objectives? Except for 

factual and sociological information questions, all the items of a schedule 

should have some research problem function. This means that the purpose of 

each question is to elicit information that can be used to test the hypotheses 

of the research. 
2. Is the type of question appropriate? Some information can best be obtained with 

the open-ended questions — reasons for behavior, intentions, and attitudes. 

Certain other information, on the other hand, can be obtained more expedi¬ 

tiously with closed questions. If all that is required of a respondent is the 

preferred choice of two or more alternatives, and these alternatives can be 

clearly specified, it would be wasteful to use an open-ended question (see 

Dohrenwend & Richardson, 1963; Schuman & Presser, 1979; Warwick & 

Lininger, 1975). 
3. Is the item clear and unambiguous? An ambiguous statement or item is one that 

permits or invites alternative interpretations, and differing responses resulting 

from the alternative interpretations. So-called double-barreled questions are 

ambiguous, for example, because they provide two or more frames of refer¬ 

ence rather than only one. Respondents, even if not baffled by the complexity 

and alternatives offered by the following question, can hardly respond using a 

common frame of reference and understanding of what is wanted. “How are 

you and your family getting along this year?” Does the questioner mean fi¬ 

nances, marital happiness, health status, or what? 
A great deal of work has been done on item-writing. Certain precepts, if 

followed, help the item writer avoid ambiguity. First, questions that contain 

more than one idea to which a respondent can react should be avoided. An 



698 Part Nine m Methods of Observation and Data Collection 

item like “Do you believe that the educational aims of the modern high 

school and the teaching methods used to attain these aims are educationally 

sound?” is an ambiguous question, because the respondent is asked about 

both educational aims and teaching methods in the same question. Second, 

avoid ambiguous words and expressions. A respondent might be asked the 

question, “Do you think the teachers in your school get fair treatment?” This 

is an ambiguous item because “fair treatment” might refer to several different 

areas of treatment. The word fair, too, can mean “just,” “equitable,” “not too 

good,” “impartial,” and “objective.” The question needs a clear context, an 

explicit frame of reference. (Sometimes, however, ambiguous questions are 
deliberately used to elicit different frames of reference.) 

4. Is the question a leading question? Leading questions suggest answers. As such, 

they threaten validity. If you ask a person “Have you read about the local 

school situation?” you may get a disproportionately large number of “yes” re¬ 

sponses because the question may imply that it is bad not to have read about 
the local school situation. 

5. Does the question demand knowledge and information that the respondent does 

not have? To counter the invalidity of response due to lack of information, it is 

wise to use information-filter questions. Before asking a person what 

he or she thinks of UNESCO, first find out whether he or she knows what 

UNESCO is and means. Another approach is possible. You can explain 

UNESCO briefly, and then ask the respondent what he or she thinks 
of it. 

6. Does the question demand personal or delicate material that the respondent may 

resist? Special techniques are needed to obtain information of a personal, deli¬ 

cate, or controversial nature. Ask income and other personal matters late in 

the interview after rapport has been built up. When asking about something 

that is socially disapproved, show that some people believe one way and oth¬ 

ers believe another way. Don’t make the respondent, in effect, disapprove of 

himself or herself. The respondent needs to be reassured that all answers and 
responses will remain confidential. 

7. Is the question loaded with social desirability? People tend to give responses that 

are socially desirable; responses that indicate or imply approval of actions or 

things that are generally considered to be good. We may ask a person about 

his or her feelings toward children. Everyone is supposed to love children. 

Unless we are careful, we will get a stereotyped response about children and 

love. Also, when we ask if a person votes, we must be careful since everyone is 

supposed to vote. If we ask respondents their reactions to minority groups, we 

again run the risk of getting invalid responses. Most educated persons, no 

matter what their true” attitudes, are aware that prejudice is disapproved. 

A good question, then, is one in which respondents are not led to express 

merely socially desirable sentiments. At the same time, one should not ques¬ 

tion respondents so that they are faced with the necessity of giving socially 
undesirable responses. 
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The Value of Interviews and Interview Schedules 

The interview, when coupled with an adequate schedule of pretested worth, is a 

potent and indispensable research tool, yielding data that no other research tool can 

yield. It is adaptable, capable of being used with all kinds of respondents in many 

kinds of research, and uniquely suited to exploration in depth. But do its strengths 

balance its weaknesses? And what is its value in behavioral research when compared 

to other methods of data collection? 
The most natural tool with which to compare the interview is the so-called ques¬ 

tionnaire. As noted earlier, “questionnaire” is a term used for almost any kind of 

instrument that has questions or items to which individuals respond. Although 

the term is used interchangeably with “schedule,” it seems to be associated 

more with self-administered instruments that have items of the closed- or fixed- 

alternative type. 
The self-administered instrument has certain advantages. With most or all of its 

items of the closed type, greater uniformity of stimulus, and thus greater reliability, 

can be achieved. In this respect, it has the advantages of objective-type, written tests 

and scales, if they are adequately constructed and pretested. A second advantage is 

that, if anonymous or confidential, honesty and frankness may be encouraged. This 

kind of instrument can also be administered to large numbers relatively easily. A 

somewhat dubious advantage is that it can be mailed to respondents. Further, it is 

economical. Its cost is ordinarily a fraction of that of interviews. 
The disadvantages of the self-administered instrument (when mailed) seem to 

outweigh its advantages. The principal disadvantage is low percentage of returns. A 

second disadvantage is that it may not be as uniform as its seems. Experience has 

shown that the same question frequently has different meanings for different people. 

As we saw, this can be handled in the interview. But we are powerless to do anything 

about it when the instrument is self-administered. Third, if only closed items are 

used, the instrument displays the same weaknesses of closed items discussed earlier. 

On the other hand, if open items are used, the respondent may object to writing the 

answers, which reduces the sample of adequate responses. Many people cannot 

express themselves adequately in writing, and many who can express themselves 

dislike doing so. 
Because of these disadvantages, the interview is probably superior to the self- 

administered questionnaire. (This objection does not, of course, include carefully 

constructed personality and attitude scales.) The best instrument available for 

sounding people’s behavior, future intentions, feelings, attitudes, and reasons 

for behavior would seem to be the structured interview coupled with an 

interview schedule that includes open-ended, closed, and scale items. Of course, 

the structured interview must be carefully constructed and pretested, and 

administered only by skilled interviewers. The cost in time, energy, and money, 

and the very high degree of skill necessary for its construction, are its main draw¬ 

backs. Once these disadvantages are surmounted, the structured interview is a 

powerful tool. 
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The Focus Group and Group Interviewing: 

Another Interviewing Method 

Perhaps this topic belongs in an earlier chapter when we were discussing qualitative 

methods. Some researchers equate the focus group method as qualitative research 

(Calder, 1977). Some have referred to this method as Group Interviews (Wells, 

1974). Basch (1987) reports that this method was discussed by Bogardus in 1926 but 

only used occasionally from that time until the 1980s. The primary users of the focus 

group until recently were market and business researchers. Basch (1987) feels that 

the focus group method has promise in areas other than marketing. He feels that it 

could be a research technique for improving health education research, practice, and 

theory. The method provides an in-depth view of people. Sudman, Bradburn, and 

Schwarz (1996) believe the focus group methodology is useful in determining how 
respondents retrieve and process information. 

The focus group technique involves interviewing two or more people at the 

same time. The size of the focus group should be large enough to generate diverse 

viewpoints, but small enough to be manageable. Krueger (1994) recommends seven 

to ten people per focus group. This will allow each person the opportunity to partici¬ 

pate in the discussion. There is a moderator who leads the discussion in a free and 

open manner. This moderator or facilitator must be well trained. It is the modera¬ 

tor’s function to keep the discussion from straying too far from the topic of interest. 

The topic under discussion can be any subject. The respondent’s answers are not ac¬ 

tively solicited. There is no direct prompting. In marketing or consumer research the 

topic would concern a product or service. In psychology, one might be interested in 

the language used by African American gay men (Mays, Cochran, Bellinger, Smith, 

Henley, et al., 1992). In health, one would use a focus group to determine fears about 

seatbelts or airbags. One of the goals is to examine people’s attitudes and behaviors. 

The other goal is to find out what each participant thinks about the topic under dis¬ 

cussion. The opinions and descriptions are elicited from the respondents. Through 

the discussions, the researcher hopes to be able to discover important insights that 

can be used later to solve problems. Calder (1977) states that the focus group method 

is useful in discovering information that can be used to design a quantitative research 

study. Some have used the focus group as a means of developing questionnaires. Fo¬ 

cus group research can also help researchers develop constructs to be used in future 
studies. Calder calls this “prescientific knowledge.” 

One of the advantages of focus groups is in their cost. It costs very little to do a 

focus group. The major costs would be the recruiting and pay for the moderator. 

Also, the participants may receive a token payment for their time. The focus group is 

also quick to do. The ideas of the respondents are available very quickly and video¬ 

taping of the sessions can be done for further analysis at a later date. The focus group 

is very good at generating hypotheses for further research. In marketing research, 

the focus group allows the client (manufacturer) who commissioned the study to be 

an active participant in the focus group. In this way, that person can get the informa¬ 

tion firsthand. This is possible because groups are kept to a manageable size. The 

interaction between respondents can provide stimulating exchanges that result in 



CHAPTER 29 ■ Interviews and Interview Schedules 701 

useful information, unobtainable with other research methods. And, as mentioned 

previously, focus groups are very flexible. An experienced moderator can direct, but 

yet let promising ideas flow. 
The focus group, however, is not very good in producing concrete information. 

One should not base a decision solely from information gathered from a focus group. 

It has been criticized by quantitative researchers as “unscientific” and not trustwor¬ 

thy. Questions are not standardized and may vary from group to group. With the use 

of very small groups, the focus group data suffers from generalizability. Unlike struc¬ 

tured survey research, the focus group does not expend a great deal of effort in mak¬ 

ing certain the group is representative. As with any group dynamics, there will be a 

few individuals who will dominate the conversation. The moderator needs to have 

sufficient experience to minimize this without shutting down the flow of communica¬ 

tion. Focus group interviewing takes a lot of patience and skill. Berger (1991) gives 

some valuable suggestions for the moderator. Berger also gives an outline as to what 

a write-up should contain for a focus group. Some participants take the focus group 

as an opportunity to vent their emotions. Flence, topics that are sensitive should not 

be explored using focus groups. Some very good references on focus groups are 

given in the Study Suggestions. Focus groups are a qualitative method of research. 

As such they are capable of producing rich information untapped by quantitative 

methods. They are best suited for learning what clients may want, or what people 

think about certain policies and rules. Focus groups have been shown to be effective 

when studying organizations. 

Some Examples of Focus Group Research 
Audience Studies Incorporated (ASI) is a marketing research firm that has operated 

out of Hollywood, California for many years. Consumers are invited to a showing, 

which presents a television show and commercials. For their participation, there are 

drawings for prizes such as shampoo, toothpaste, analgesics, and so on. During the 

showing of the program and commercials, the participants use an electronic rating 

device to communicate their thoughts about what they are viewing. These responses 

are recorded. The participants also complete questionnaires after each commercial or 

program. From this group, several persons are chosen to participate in focus groups. 

Manufacturers of consumer products usually commission ASI to conduct these focus 

groups to get ideas about how their product fares against the competition. On several 

occasions, representatives of the manufacturer participate in the focus group so that 

they can get information directly. For example, if a manufacturer is looking to de¬ 

velop a new product, the information coming from focus groups could give insights 

as to what should go into that product in terms of manufacturing and marketing. 

Mays et al. (1992) used a focus group involving African American gay males. The 

topic under discussion was sexual behavior and HIV. Using this method, Mays et al. 

were able to create a gay vernacular list for African American males. These results 

are useful in comparing African American and white American gay males, and also in 

the construction of questionnaires designed to tap sexual behavior of African Ameri¬ 

can gay males. The knowledge obtained from this study could also serve to educate 
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counselors and health professionals that deal with the African American gay male. 

Mays et al. (1992, p. 432) state 

In using the terminology presented here for the conduct of HIV-related 

research, it is important to remember that linguistic and cognitive processes are 

[e]mbedded in a context. In assessing the sexual behavior of Black gay men, the 

asking of questions that embody their vernacular must also be asked from a 

framework of their experience. 

Sussman, Burton, Dent, Stacy, and Flay (1991) issued a caution in using focus 

groups. They feel that focus groups may induce certain group effects that might bias 

responses. Their study explored the extended focus group procedure, which includes 

a pregroup questionnaire. The questionnaire includes material that will be covered 

during the focus group session, and may affect group members by having them 

commit to a position before group discussion begins. These researchers feel that 

people rely on the responses of other people, converging to a collective norm. That 

is, some respondents will become more extreme in their judgments following group 
discussions. 

One of the collective norm effects is the group polarization effect. The involve¬ 

ment in a group may bias participants to respond in more extreme ways. Specifically, 

Sussman et al. (1991) looked for a polarization of attitudes (a group-influence bias ef¬ 

fect). The discussion in the focus group was directed at how to recruit adolescent 

tobacco users into a cessation clinic. There were 31 focus groups. Each group was 

administered pretest and posttest questionnaires. The data collected supported a 

group polarization effect. After participating in a focus group, the respondents 

had a higher evaluation of the self-generated recruitment strategies. They also 

reported that if they were smokers, these strategies would induce them to join the 

program themselves. This study showed that focus groups might not extract the 

reporting of new strategies. However, they do appear to be effective in injecting into 

the participants a more favorable attitude toward self-generated solutions to 
problems. 

Chapter Summary 

1. The interview is the oldest and most universal method of extracting large 
amounts of information from people. 

2. The data collection methods used in an interview can be classified by the 
amount of directness in the questions and questioning. 

3. Interviews require a lot of time. Hence, data collection is expensive in terms 
of time, effort and money. 

4. Interviews require well-trained interviewers and a well-developed question¬ 
naire. 

5. The interview can be used for three main purposes: as an exploratory device 
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to generate ideas and hypotheses, as the the main instrument used in a study, 

and as a supplement to other methods and/or used as a follow-up. 

6. The interview is a face-to-face interpersonal role situation. It can be 

structured or unstructured. 

7. One type of unstructured interview is the group interview or focus groups. 

8. There are three kinds of information sought in interview schedules: Identi¬ 

fication, Census-type (sociological), and Problem. 

9. The type of items used in an interview schedule are: fixed-alternative items, 

open-ended items, and scale items. 

10. There are seven criteria for writing items/questions in the schedule. 

11. The focus group method is an unstructured interview using a small number 

of participants. These are low in cost and quick to do. 

12. Focus group research is qualitative research. 

13. Focus groups have a problem in generalization. 

Study Suggestions 

1. Several valuable references on the interview and the interview schedule a few 

are listed and annotated below. 

Classical Works 
Canned, C., & Kahn, R. (1968). Interviewing. In G. Lindzey & E. Aronson, 

Eds., The handbook of social psychology, vol. II (2nd ed.). Reading, ALA: 

Addison-Wesley. 526-595. 
Survey Research Center. (1976). Interviewer's manual (rev. ed.). Ann Arbor, 

MI: Institute for Social Research, University of Michigan. [An excellent 

guide to the practical aspects of interviewing.] 

Warwick, D., & Lininger, C. (1975). The sample survey: Theory and practice. 

New York: McGraw-Hill. 

More Recent Works 
Beed, T. W., & Stimson, R. J. (1985). Survey interviewing: Theory and tech¬ 

niques. New York: Routledge, Chapman, and Hall. 
Bowden, J. C. (1995). An investigator's guide to interviewing and interrogation. 

Orlando, FL: Bowden. 
Knale, S. (1996). Interviews: An introduction to qualitative research interviewing. 

Thousand Oaks, CA: Sage. 
Lukas, S. (1993). Where to start and what to ask: The assessment handbook. New 

York: Norton. 
Mollica, R. F., & Caspi-Yavin, Y. (1991). Measuring torture and torture-re¬ 

lated symptoms. Psychological Assessment, 3, 581-587. [Discusses why cur¬ 

rent interviewing instruments and techniques are inaccurate when inter¬ 

viewing people who have been tortured.] 



704 Part Nine ■ Methods of Observation and Data Collection 

Myers, J. (1996). Interviewing young children about body touch and handling. 

Chicago, IL: University of Chicago Press. 

2. Good interview schedules are fortunately plentiful. The reader should study 

two or three of them carefully. The suggested schedules that follow are both 

well constructed and substantively interesting. Note that published schedules 

usually have extensive methodological discussions accompanying them. The 

student can learn a good deal about interview scale construction from study of 

these discussions. 

Campbell A., Converse, P., & Rodgers, W. (1976). The quality of American life. 

New York: Russell Sage Foundation, app. B. [A long schedule with many 

scale items and careful interviewer instructions. Also a substantively im¬ 

portant study.] 

Free L., & Cantril, H. (1967). The political beliefs of Americans. New 

Brunswick, NJ: Rutgers University Press, app. B. [Presents good ques¬ 

tions, probes, and fixed-alternative items.] 

Glock, C., & Stark, R. (1966). Christian beliefs and anti-Semitism. New York: 

Harper & Row. [The complete schedule, mostly with fixed-alternative 
items, is given at the end of the book.] 

3. The examples given in 2 above, are all survey research, the field of research in 

which the art and technique of interviewing were developed and first used. 

Interviews, however, can be and have been used in what can be called “nor¬ 

mal” studies, studies whose only, or main, interest is in pursuing relations 

among variables. The Burt (1980) study of attitudes toward rape is a good 
example, other examples follow. 

"Normal" Studies 

Beckman, L. J., & Mays, V. M. (1985). Educating community gatekeepers 

about alcohol abuse in women: Changing attitudes, knowledge and refer¬ 

ral practices. Journal of Drug Education, IS, 289-309. [Used a phone in¬ 

terview to assess the effect of two workshops on knowledge, attitudes, and 

referral practices toward women suffering from alcohol abuse.] 

Campbell, A., & Schuman, H. (1968). Racial attitudes in fifteen cities. Ann Ar¬ 

bor, MI: Institute for Social Research, University of Michigan. [A combi¬ 

nation of survey and attitudinal questions aimed at understanding racial 
attitudes and their change.] 

Doob, A., & MacDonald, G. (1979). Television viewing and fear of victimiza¬ 

tion: Is the relationship causal? Journal of Personality and Social Psychology, 

37, 170 — 179. [Conducted a door-to-door interview to determine if peo¬ 

ple who watch more television have more fears than people who watch 

less television. A comparison was made between those that live in a low 
crime rate area and those living in a high crime rate area.] 
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Gersch, I. S., & Nolan, A. (1994). Exclusion: What the children think. 

Educational Psychology in Practice, 10, 35-45. [Designed, administered, and 

analyzed a interview schedule to measure children’s attitudes and experi¬ 

ences about school. This instrument was used to assess students who were 

excluded.] 

Jones, S. L. (1996). The association between objective and subjective care¬ 

giver burden. Archives of Psychiatric Nursing, 10, 77-84. [In three waves of 

data collection, telephone interviews were used to develop associations 

between objective and subjective burdens of caregivers.] 

4. The following are books and articles dealing with the theory and practice of 

focus groups in the social and behavioral science. Focus groups often serve as 

idea-generators and for testing hypotheses in an informal setting. Find one of 

these and read the chapters on methodology. 

Berger, A. A. (1991). Media research techniques. Newbury Park, CA: Sage. 

Greenbaum, T. L. (1993). The handbook for focus group research. New York: 

Lexington Books. 

Morgan, D. L. (1988). Focus groups as qualitative research. Newbury Park, CA: 

Sage. 
Templeton, J. F. (1994). The focus group: A strategic guide to organizing, con¬ 

ducting, and analyzing the focus group interview. Chicago, IL: Probus Pub¬ 

lishing. 
Vaughn, S. (1996). Focus group interviews in education and psychology. Thousand 

Oaks, CA: Sage. 
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Objective Tests and Scales 

■ Objectivity and Objective Methods of Observation 

■ Tests and Scales: Definitions 

Types of Objective Measures 
Intelligence and Aptitude Tests 

Achievement Tests 

Personality Measures 

Attitude Scales 

Value Scales 

■ Types of Objective Scales and Items 

Agreement—Disagreement Items 

Rank Order Items and Scales 

Forced-Choice Items and Scales 

Ipsative and Normative Measures 

■ Choice and Construction of Objective Measures 

Controversial Issues in Testing 

In the behavioral sciences, the most used method of observation and data collection is 

the test or scale. The considerable time researchers spend in constructing or finding 

measures of variables is well spent because adequate measurement of research variables 

is at the core of behavioral scientific work. In general, too little attention has been paid 

to the measurement of the variables of research studies. What good are intriguing and 

important research problems, sophisticated research design, and intricate statistical 

analysis if the variables of research studies are poorly measured? Fortunately, great 
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progress has been made in understanding psychological and educational measure¬ 

ment theory and in improving measurement practice. In this chapter we examine 

some of the technology behind objective measurement procedures. 

Objectivity and Objective Methods of Observation 

Objectivity, a central and essential characteristic of scientific methodology, is easy to 

define but evidently hard to understand. It is also controversial. Objectivity is agree¬ 

ment among expert judges on what is observed. Objective methods of observation 

are those in which anyone following the prescribed rules will assign the same numer¬ 

als to objects and sets of objects as anyone else. An objective procedure is one in 

which agreement among observers is at a maximum. In variance terms, observer 

variance is at a minimum. This means that judgmental variance, the variance due to 

differences in judges’ assignment of numerals to objects, approaches zero. An 

extended discussion of objectivity is in Kerlinger (1979, pp. 9-13 and 262-264). 

The importance of understanding objectivity in science cannot be overemphasized. It 

is especially important to understand that scientific objectivity is methodological and 

has little or nothing to do with objectivity as a presumed characteristic of scientists. 

Whether a scientist as a person is or is not objective is not the point. The point is 

that scientific objectivity inheres in methodological procedures characterized by 
agreement among expert judges — and nothing more. 

All methods of observation are inferential: Inferences about properties of the 

members of sets are made on the basis of the numerals assigned to the set members 

with interviews, tests, scales, and direct observations of behavior. The methods differ 

in their directness or indirectness, in the degree to which inferences are made from 

the raw observations. The inferences made by using objective methods of observa¬ 

tions are usually lengthy, despite their seeming directness. Most such methods 

permit a high degree of interobserver agreement, because participants make marks 

on paper, the marks being restricted to two or more choices among alternatives sup¬ 

plied by the observer. From these marks on paper the observer infers the characteris¬ 

tics of the individuals and sets of individuals making the marks. In one class of objec¬ 

tive methods, the marks on paper are made by the observer (or judge) who looks at 

the object or objects of measurement and chooses between given alternatives. In this 

case, too, inferences about the properties of the observed object or objects are made 

from the marks on paper. The main difference lies in who makes the marks. 

It should be recognized that all methods of observation have some objectivity. 

There is no sharp dichotomy; in other words, between so-called objective methods 

and other methods of observation. There is, rather, a difference in the degree of 

objectivity. Again, if we think of degrees of objectivity as degrees of agreement 

among observers, the ambiguity and confusion often associated with the problem 
disappear. 

We will agree, then, that what are here called objective methods of observation 

and measurement have no monopoly on objectivity or on inference, but that they are 

more objective and no less inferential than any other method of observation and 
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measurement. The methods to be discussed in this chapter will by no means exhaust 

possible methods, since the subject is large and varied. They are considered only as 

measures of variables, to be viewed and assessed the same as all other measures of 

variables. 

Tests and Scales: Definitions 

A test is a systematic procedure in which individuals are presented with a set of con¬ 

structed stimuli to which they respond. The responses enable the tester to assign the 

testees numerals or sets of numerals from which inferences can be made about the 

testees’ possession of whatever the test is supposed to measure. This definition says 

little more than that a test is a measurement instrument. 

A scale is a set of symbols or numerals so constructed that the symbols or numer¬ 

als can be assigned by rule to the individuals (or their behaviors) to whom the scale is 

applied, the assignment being indicated by the individual’s possession of whatever the 

scale is supposed to measure. Like a test, a scale is a measuring instrument. Indeed, 

except for the excess meaning associated with test, we can see that test and scale are 

similarly defined. Strictly speaking, however, scale is used in two ways: to indicate a 

measuring instrument and to indicate the systematized numerals of the measuring 

instrument. We use it in both senses without worrying too much about distinctions. 

Remember this, however: tests are scales, but scales are not necessarily tests. This 

can be said because scales do not ordinarily have the meanings of competition and 

success or failure that tests do. Significantly, we say “achievement testing,” not 

“achievement scaling”; “intelligence testing” and not “intelligence scaling.” 

Types of Objective Measures 

Most of the hundreds, perhaps thousands, of tests and scales can be divided into the 

following classes: intelligence and aptitude tests, achievement tests, personality 

measures, attitude and value scales, and miscellaneous objective measures. We discuss 

each of these types of measure from a research point of view. 

Intelligence and Aptitude Tests 
In psychological and educational research, a measure of intelligence or aptitude is 

often needed, either as an independent variable or as a dependent variable. In assess¬ 

ing the effects of educational programs of one kind or another on educational 

achievement, for instance, it is usually necessary to control intelligence so that the 

differences found between experimental treatment groups cannot be attributed to 

differences in intelligence rather than to the treatments. There are a number of good 

group intelligence tests that researchers can use, perhaps a so-called omnibus test. 

(An omnibus test is one that has items of different types—verbal, numerical, spatial, 

and others — in one instrument.) These tests are ordinarily highly verbal and corre¬ 

late substantially with school achievement. Buros’s (1998) handbooks are useful 

guides to such tests. Anastasi (1988) gives a classified list of representative tests in her 
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book, and breaks down the test into separate classifications such as intelligence, 

personality, and so on. 
Aptitude is the potential ability for achievement. Aptitude tests are used mainly 

for guidance and counseling. They can also be used in research, particularly as 

control variables. A control variable is one whose effect on a dependent variable may 

need to be nullified. For example, in studying the effect of a remedial reading 

program on reading achievement, verbal aptitude may need to be attributed to possi¬ 

ble group differences in verbal ability. Similarly, other possible influential variables — 

numerical and spatial abilities, for instance—may need to be controlled. Aptitude 

tests can be useful in such cases. 

Achievement Tests 

Achievement tests measure present proficiency, mastery, and understanding of general 

and specific areas of knowledge. For the most part, they are measures of the 

effectiveness of instruction and learning and, of course, are enormously important in 

education and educational research. Indeed, in research involving instructional 

methods, achievement, as we have seen, is often the dependent variable. 

Achievement tests can be classified in several ways. For our purposes, we break 

them down into, first, standardized and specially constructed tests. Standardized tests 

are published group tests that are based on general educational content common to a 

large number of educational systems. They are the products of a high degree of 

professional competence and skill in test-writing and, as such, are usually quite 

reliable and generally valid. They are also endowed with elaborate tables of norms 

(averages) that can be used for comparative purposes. Specially constructed tests are 

ordinarily teacher-made tests to measure more limited and specific achievements. 

They may, of course, also be constructed by educational researchers for measuring 
limited areas of achievement or proficiency. 

Second, standardized achievement tests can be further classified into general and 

special tests. General tests are typically batteries of tests that measure the most impor¬ 

tant areas of school achievement: language usage, vocabulary, reading, arithmetic, 

and social studies. Special achievement tests, as the name indicates, are tests in 
individual subjects, such as history, science, and English. 

Researchers often have no choice of achievement tests because school systems 

have already selected them. When given choice, however, researchers must carefully 

assess the kind of achievement test that their research problems require. Suppose the 

research variable in a study is “achievement in understanding concepts.” Many, per¬ 

haps most, tests used in schools will not be adequate for measuring this variable. In 

such cases, researchers can choose a test specifically designed to measure the under¬ 

standing of concepts, or can devise such tests themselves. The construction of an 

achievement test is a formidable job, the details of which cannot be discussed here. 

The student is referred to specialized texts. Unfortunately, there are few texts on the 

construction of tests and scales for research purposes. The many texts and other dis¬ 

cussions of measurement focus for the most part on the construction and use of in¬ 

struments for applied purposes. Researchers who need to construct achievement 

measures of one kind or another, however, will find excellent guidance in 'Adkins 
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(1974); Cangelosi (1990); Gronlund (1988); Haladyna (1997); Hopkins (1989); and Os- 

terlind (1989). Researchers who need to construct attitude scales will find Edwards’s 

(1957) book invaluable. Dawes (1972) covers some methods that Edwards did not cover. 

Personality Measures 

The measurement of personality traits is the most complex problem of psychological 

measurement. The reason is simple: Human personality is extremely complex. For 

the purposes of measurement, personality can be viewed as the organization of the 

traits of the individual. A trait is a characteristic of an individual revealed through 

recurring behaviors in different situations. We say an individual is compulsive, or has 

the trait of compulsivity because that person is observed to be overly neat in dress 

and speech, to be always punctual, to want everything to be very orderly, and to 

dislike and avoid irregularities. 

The major problem in personality measurement is validity. To measure personal¬ 

ity traits validly requires knowledge of what these traits are, how they interact and 

change, and how they relate to each other—a formidable, even forbidding, require¬ 

ment. The wonder is not, as naive critics love to point out, that personality cannot 

be measured because it is too elusive, too complex, too existential, or that measure¬ 

ment efforts have not been too successful, but rather that some measure of success 

in so difficult a task has been achieved. Nevertheless, the problem of validity is 

considerable. 
There are two general approaches to the construction and validation of person¬ 

ality measures: the a priori method, and the construct or theoretical method. In the a 

priori method, items are constructed to reflect the personality dimension to be 

measured. Since the introvert is frequently a retiring person, we might write items 

about the preference to be alone. This might, for instance, include items indicating 

one’s preference to shun parties in order to measure introversion. Since the anxious 

person will probably be nervous and disorganized under stress, we might write items 

suggesting these conditions in order to measure anxiety. In the a priori method, then, 

the scale writer collects or writes items that ostensibly measure personality traits. 

This approach is essentially that of early personality test-writers. While there is 

nothing inherendy wrong with the method—indeed, it will have to be used, espe¬ 

cially in the early stages of test and scale construction — the results can be mislead¬ 

ing. Items do not always measure what we think they measure. Sometimes we even 

find that an item we thought would measure, say, social responsibility, actually 

measures a tendency to agree with socially desirable statements. For this reason, the 

a priori method, used alone, is insufficient. As such, personality tests generally lack 

content validity. 
The method of validation often used with a priori personality scales is the known 

group method. To validate a scale of social responsibility, one might find a group of 

individuals known to be high in social responsibility, and another known to be low in 

social responsibility. If the scale differentiates the groups successfully, it is said to 

have validity. 
A priori personality and other measures will continue to be used in behavioral 

research. Their blind and naive use, however, should be discouraged. Their construct 
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and criterion-related validities must be checked, especially through factor analysis 

and other empirical means. Measures of personality, as well as other measures, have 

too often been used merely because users think they measure whatever they are said 

to measure. 

The construct or theoretical method of personality measure construction empha¬ 

sizes the relations of the variable being measured to other variables, the relations 

prompted by the theory underlying the research. While scale construction must 

always to some extent be a priori, the more personality measures are subjected to the 

tests of construct validity the more faith we can have in them. It is not enough simply 

to accept the validity of a personality scale, or even to accept its validity because it 

has successfully differentiated, say, artists from scientists, teachers from non- 

teachers, normal persons from neurotic persons. Ultimately, its construct validity, its 

successful use in a wide variety of theoretically predicted relations, must be 
established. 

Attitude Scales 

Attitudes, while treated separately here and in most textbook discussions, are really 

an integral part of personality. Modern theorists, too, consider intelligence and apti¬ 

tude as parts of personality. Personality measurement, however, is mostly of traits. 

A trait, as mentioned in the previous section, is a relatively enduring characteristic of 

the individual to respond in a certain manner in all situations. If one is dominant, 

one exhibits dominant behavior in most situations. If one is anxious, anxious behavior 

permeates most of one’s activities. An attitude, on the other hand, is an organized 

predisposition to think, feel, perceive, and behave toward a referent or cognitive 

object. It is an enduring structure of beliefs that predisposes the individual to behave 
selectively toward attitude referents. 

A referent is a category, class, or set of phenomena: physical objects, events, be¬ 

haviors, and even constructs (see Brown, 1958). People have attitudes toward many 

different things: ethnic groups, institutions, religion, educational issues and practices, 

the Supreme Court, civil rights, private property, and so on. One has, in other words, 

an attitude toward something “out there.” A trait has subjective reference; an attitude 

has objective reference. One who has a hostile attitude toward foreigners may be 

hostile only to foreigners, but one who has the trait hostility is hostile toward 
everyone (at least, potentially). 

There are three major types of attitude scales: summated rating scales, equal¬ 

appearing interval scales, and cumulative (or Guttman) scales. A summated rating 

scale (one type of which is called a Likert-type scale) is a set of attitude items, all of 

which are considered of approximately equal “attitude value,” and to each of which 

participants respond with degrees of agreement or disagreement (intensity). The 

scores of the items of such a scale are summed, or summed and averaged, to yield an 

individuals attitude score. As in all attitude scales, the purpose of the summated 

rating scale is to place an individual somewhere on an agreement continuum of the 
attitude in question. 

It is important to note two or three characteristics of summated rating scales, 

since many scales share these characteristics. First, U, the universe of items, is con- 
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ceived to be a set of items of equal “attitude value,” as indicated in the definition 

given above. This means that there is no scale of items, as such. One item is the same 

as any other item in attitude value. The individuals responding to items are “scaled.” 

This scaling comes about through the sums (or averages) of the individuals’ 

responses. Any subset of U is theoretically the same as any other subset of U: a set of 

individuals would be rank ordered the same using U2 or t/j. 

Second, summated rating scales allow for the intensity of attitude expression. 

Participants can agree or they can agree strongly. There are advantages to this, as 

well as disadvantages. The main advantage is that greater variance results. When 

there are five or seven possible categories of response, it is obvious that the response 

variance should be greater than with only two or three categories (for example, 

agree, disagree, no opinion). The variance of summated rating scales, unfortunately, 

often seems to contain response set variance. Individuals have differential tendencies 

to use certain types of responses: extreme responses, neutral responses, agree 

responses, disagree responses. This response variance confounds the attitude (and 

personality trait) variance. The individual differences yielded by summated rating 

attitude scales (and similarly scored trait measures) have been shown to be due in 

part to response set and other similar extraneous sources of variance. The response 

set literature is large and cannot be cited in detail. Nunnally’s (1978) discussion is 

well balanced. While response set can be considered a mild threat to valid measure¬ 

ment, its importance has been overrated and the available evidence does not justify 

the strong negative assertions made by response set enthusiasts. In other words, 

while one must be conscious of the possibilities and threats, one should certainly not 

be paralyzed by the somewhat blown-up danger (see Rorer, 1965 for more on this). 

Following are two summated rating items from a scale constructed by Burt 

(1980, p. 222) for her study of attitudes toward rape. They were written to measure 

sex-role stereotyping. A 7-point scale ranging from strongly agree (7) to strongly 

disagree (1) was used. The values in parentheses (and the values in between) are 

assigned to the responses indicated. 

There is something wrong with a woman who doesn’t want to marry 

and raise a family. 
A woman should be a virgin when she marries. 

Thurstone’s equal-appearing interval scales are built upon different principles. While 

the ultimate product, a set of attitude items, can be used for the same purpose of as¬ 

signing individuals attitude scores, equal-appearing interval scales also accomplish 

the important purpose of scaling the attitude items. Each item is assigned a scale 

value, which indicates the strength of attitude of an agreement response to the item. 

The universe of items is considered to be an ordered set; that is, items differ in scale 

value. The scaling procedure finds these scale values. In addition, the items of the fi¬ 

nal scale to be used are so selected that the intervals between them are equal, an im¬ 

portant and desirable psychometric feature. 
The following equal-appearing interval items, with the scale values of the items, 

are from Thurstone and Chave’s (1929, p. 61-63, 78) scale, Attitude toward the 

Church: 
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I believe the church is the greatest institution in America today. (Scale 

value: 0.2) 

I believe in religion, but I seldom go to church. (Scale value: 5.4) 

I think the church is a hindrance to religion for it still depends upon magic, 

superstition, and myth. (Scale value: 9.6) 

In the Thurstone and Chave scale, the lower the scale value, the more positive the 

attitude toward the church. The first and third items were the lowest and highest in 

the scale. The second item, of course, had an intermediate value. The total scale 

contained 45 items with scale values ranging over the whole continuum. Usually, 

however, equal-appearing interval scales contain considerably fewer items. 

The third type of scale, the cumulative or Guttman scale, consists of a relatively 

small set of homogeneous items that are unidimensional (or supposed to be). A 

unidimensional scale measures one variable, and one variable only. The scale gets its 

name from the cumulative relation between items and the total scores of individuals. 

For example, we ask four children three arithmetic questions: (a) 28/7 =?, (b) 8 X 

4 =, and (c) 12 + 9 = ? Child 1 who gets (a) correct is very likely to get the other two 

(b and c) correct. Child 2 who misses (a), but gets (b) correct, is also likely to get (c) 

correct. Child 3 who gets only (c) correct is unlikely to get (a) and (b) correct. The 

situation can be summarized as follows (the table includes the score of the fourth 
child, who gets none correct): 

(a) (b) (c) Total Score 

Child 1 I 1 1 3 

Child 2 0 1 1 2 

Child 3 0 0 1 1 

Child 4 0 0 0 0 

(1 = Correct; 0 = Incorrect) 

Note the relation between the pattern of item responses and total scores. If we 

know a child’s total score, we can predict that child’s pattern, if the scale is cumula¬ 

tive, just as knowledge of correct responses to the harder items are predictive of the 

responses to the easier items. Note, too, that both items and persons are scaled. 

Similarly, people can be asked various questions about an attitudinal object. 

If upon analysis the patterns of responses arrange themselves in the manner 

indicated above (at least fairly closely), then the questions or items are said to be uni¬ 

dimensional. Therefore, people can be ranked according to their scale responses (see 

Edwards, 1957, chapter 7, for a discussion on the cumulative unidimensional scales). 

It is obvious that these three methods of constructing attitude scales are very 

different. Note that the same or similar methods can be used with other kinds of 

personality and other scales. The summated rating scale concentrates on the partici¬ 

pants and their places on the scale. The equal-appearing interval scale concentrates 

on the items and their places on the scale. Interestingly, both types of scales yield 

about the same results as far as reliability and the placing of individuals in attitudinal 
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rank orders are concerned. Cumulative scales concentrate on the scalability of sets of 

items and on the scale positions of individuals. 

Of the three types of scales, the summated rating scale seems to be the most 

useful in behavioral research. It is easier to develop and, as indicated above, yields 

about the same results as the more laboriously constructed equal-appearing interval 

scale. Used with care and knowledge of its weaknesses, summated rating scales can be 

adapted to many needs of behavioral researchers. Cumulative scales would seem to 

be less useful and less generally applicable. If one clear-cut cognitive object is used, a 

short, well-constructed cumulative scale may yield reliable measures of a number of 

psychological variables: tolerance, conformity, group identification, acceptance of 

authority, permissiveness, and so on. It should be noted, too, that the method could 

be improved and altered in various ways. Dawes (1972) and Edwards (1957) describe 

how to construct and evaluate cumulative scales as well as summated rating and 

equal-appearing interval scales 

Value Scales 
Values are culturally weighted preferences for things, ideas, people, institutions, and 

behaviors (Kluckhohn, 1951, pp. 388-433). Whereas attimdes are organizations of 

beliefs about things “out there,” predispositions to behave toward the objects or 

referents of attitudes, values express preferences for modes of conduct and end-states 

of existence (Rokeach, 1968). Words like equality, religion, free enterprise, civil rights, 

and obedience express values. Simply put, values express the “good,” the “bad,” the 

“shoulds,” and the “oughts” of human behavior. Values put ideas, things, and behav¬ 

iors on Approval-Disapproval continua. They imply choices among courses of ac¬ 

tion and thinking. 
To give the reader some flavor of values, here are three items. Individuals can be 

asked to express their approval or disapproval of the first and second items, perhaps 

in summated rating form, and to choose from the three alternatives of the third item. 

For one’s own good and for the good of society, a person must be held in 

restraint by tradition and authority. 
Now more than ever we should strengthen the family, the natural stabilizer of 

society. 
Which of the following is the most important in living the full life: education, 

achievement, or friendship? 

Unfortunately, values have received little scientific study, even though they and 

attitudes are a large part of our verbal output, and are probably influential determi¬ 

nants of behavior. The measurement of values has thus suffered. Social and educa¬ 

tional values will probably become the focus of much more theoretical and empirical 

work in the future, however, since social scientists have become increasingly aware 

that values are important influences on individual and group behavior (see Dukes, 

1955; Haddock & Zanna, 1998; Hendrick, Hendrick, & Dicke, 1998; Hogan, 1973; 

Lubinski, Schmidt, & Benbow, 1996; Pittel & Mendelsohn, 1966; Robinson, 1996). 

A source of values scales is Levitin (1969). A highly suggestive and valuable essay 

appeared over 45 years ago is by Kluckhohn, (1951). Thurstone’s (1959) essay on 

values measurement is still important. 
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Types of Objective Scales and Items 

Two broad types of items in general use are those in which responses are indepen¬ 

dent and those in which they are not independent. Independence here means that a 

person’s response to an item is unrelated to a response to another item. True-False, 

Yes-No, Agree-Disagree, and Likert items all belong to the independent type. The 

subject responds to each item freely with a range of two or more possible responses 

from which one can choose one. Nonindependent items, on the other hand, force 

the respondent to choose one item or alternative that precludes the choice of other 

items or alternatives. These forms of scales and items are called forced-choice scales 

and items. The subject is faced with two or more items or subitems and asked to 

choose one or more of them according to some criterion, or even criteria. 

Two simple examples will show the difference between independent and nonin¬ 

dependent items. First, a set of instructions that allows independence of response 

might be given to the respondent. Second, a contrasting set of instructions, with 
more limited choices (nonindependent): 

Examples 

Indicate beside each of the following statements how much you approve them, 

using a scale from 1 through 5, 1 meaning “Do not approve at all” and 5 
meaning “Approve very much.” 

Forty pairs of statements are given below. From each pair, choose the one you 
approve more. Mark it with a check. 

Advantages of independent items are economy and the applicability of most sta¬ 

tistical analyses to responses to them. Also, when each item is responded to, a maxi¬ 

mum of information is obtained, each item contributing to the variance. Less time is 

taken to administer independent scales, too, but they may suffer from response set 

bias. Individuals can give the same or similar response to each item: they can endorse 

them all enthusiastically or indifferently depending on their particular response 

predilections. The substantive variance of a variable, then, can be confounded by 
response set. 

The forced-choice type of scale avoids, at least to some extent, response bias. At 

the same time, though, it suffers from a lack of independence, a lack of economy and 

over complexity. However, there are some researchers, such as Comrey (1970), who 

have built into the personality test a response bias scale. Forced-choice scales can 

also strain the subjects endurance and patience, resulting in less cooperation. Still, 

many experts believe that forced-choice instruments hold great promise for psycho¬ 
logical and educational measurement. Other experts are skeptical. 

Scales and items, then, can be divided into three types: Agreement-Disagree¬ 

ment (or Approve - Disapprove, or True-False, and the like) rank order, and forced- 

choice. We discuss each of these briefly. Lengthier discussions can be found in the 
literature (see Edwards, 1957; Guilford, 1954). 
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Agreement—Disagreement Items 

There are three general forms of Agreement-Disagreement items: 

1. Those permitting one of two possible responses. 

2. Those permitting one of three or more possible responses. 

3. Those permitting more than one choice of three or more possible responses. 

The first two of these forms supply alternatives like “Agree-Disagree”; “Yes- 

No”; “Yes-?-No”; “Approve-No Opinion-Disapprove”; “Approve Strongly - 

Approve- Disapprove -Disapprove Strongly”; “1, 2, 3, 4, 5.” Participants choose one 

of the supplied responses to report their reactions to the items. In so doing they give 

reports of themselves or indicate their reactions to items. Most personality and 

attitude scales use such items. If a person is constructing an instrument using this 

approach, how the scale is worded is very important. Let’s say for example, we have 

developed the following 5-point Likert scale: 

1 = Disagree 

2 = Somewhat Disagree 

3 = Neutral 

4 = Somewhat Agree 

5 = Agree 

The problem here centers on how the reader interprets the meaning of each 

scale point. One responder may choose a “2” and another responder chooses “4.” 

They both may have had the same interpretation. If one somewhat agrees, then that 

person may also somewhat disagree. Hence, the confusion. 

The third type of scale in this group presents a number of items: participants are 

instructed to indicate those items that describe them, items with which they agree, or 

simply items that they choose. The adjective check list is a good example. The 

subject is presented with a list of adjectives, some indicating desirable traits, like 

thoughtful, generous, and considerate; and others indicating undesirable traits, like 

cruel, selfish, and mean. They are asked to check those adjectives that characterize 

them. (Of course, this type of instrument can also be used to characterize other 

persons.) A better form, perhaps, would be a list with all positive adjectives of known 

scale values from which participants are asked to select a specific number of their 

own personal characteristics. The equal-appearing interval scale and its response 

system of checking those attitude items with which one agrees is, of course, the same 

idea. The idea is a useful one, especially with the development of factor scales, 

scaling methods, and the increasing use of choice methods. 
The scoring of Agreement-Disagreement types of items can be troublesome 

since not all the items, or the components of the items, receive responses. (With a 

summated rating scale or an ordinary rating scale, participants usually respond to all 

items.) In general, however, simple systems of assigning numerals to the various 

choices can be used. For instance, Agree-Disagree can be 1 and 0; Yes-No can be 1, 
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0, — 1, or, avoiding minus signs: 2, 1, 0. The responses to the summated rating items 

described earlier are simply assigned 1 through 5 or 1 through 7. 

The main thing researchers have to keep in mind is that the scoring system has 

to yield interpretable data congruent with the scoring system. If scores of 1, 0, — 1 

are used, the data must be capable of a scaled interpretation; that is, 1 is “high” or 

“most,” —1 is “low” or “least,” and 0 is in between. A system of 1, 0 can mean high 

and low or simply presence or absence of an attribute. Such a system can be useful 

and powerful, as we saw earlier when discussing variables like sex, race, social class, 

and so on. In sum, the data yielded by scoring systems have to have clearly inter¬ 

pretable meanings in some sort of quantitative sense. The student is referred to 

Ghiselli’s (1964, pp. 44-49) discussion of the meaningfulness of scores. Some experts 

however have been critical of using 0-1 or binary scoring systems. Comrey, during 

his development of the Comrey Personality Scales discovered that items that use a 

binary response scheme are subjected to problems and distortions that one would not 

necessarily get if the scale was 3 points or more. The results of Comrey’s study on 

scales are summarized in Comrey (1978) and Comrey and Lee (1992). 

Various systems for weighting items have been devised, but the evidence indi¬ 

cates that weighted and unweighted scores give much the same results. Students 

seem to find it hard to believe this. (Note that we are talking about the weighting of 

responses to items.) Although the matter is not completely settled, the evidence is 

strong that, in tests and measures of sufficient numbers of items—say 20 or more — 

weighting items differentially does not make much difference in final outcomes. 

Neither does the different weighting of responses make much difference (see 

Guilford, 1954; Nunnally, 1978). It also makes no difference at all, in variance terms, 

if you transform scoring weights linearly. You may have participants use a system, 

+ 1,0, — 1, and of course, these scores can be used in analysis. But you can add a con¬ 

stant of 1 to each score, yielding 2, 1,0. The transformed scores are easier to work 
with, since they have no minus signs. 

Rank Order Items and Scales 

The second group of scale and item types is ordinal or rank order, which is a simple 

and most useful form of scale or item. A whole scale can be rank ordered; that is, 

participants can be asked to rank all the items according to some specified criterion. 

We might wish to compare the educational values of administrators, teachers, and 

parents, for instance. A number of items presumed to measure educational values can 

be presented to the members of each group with instructions to rank order them 
according to their preferences. 

In her study of attitudes toward women’s liberation, Taleporos (1977) developed 

a rank order scale of social problems. Participants were asked to rank order the 

following social problems: Drug Addiction, Environmental Pollution, Race Discrim¬ 

ination, Sex Discrimination, Violent Crime, and Welfare. Taleporos expected that 

the two groups she was studying would rank the social issues similarly except for the 

issue Sex Discrimination. Her hypothesis was supported. This was a productive use 
of rank order scaling. 
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Rank order scales have three convenient analytic advantages: 

1. The scales of individuals can easily be intercorrelated and analyzed. 

Composite rank orders of groups of individuals can also easily be correlated. 

2. Scale values of a set of stimuli can be calculated using one of the rank order 

methods of scaling (see Guilford, 1954). 

3. The scales partially escape response set and the tendency to agree with 

socially desirable items. 

Forced-Choice Items and Scales 
The essence of a forced-choice method is that the subject must choose among alter¬ 

natives that on the surface appear about equally favorable (or unfavorable). Strictly 

speaking, the method is not new. Pair comparisons and rank order scales are forced- 

choice methods. What is different about the forced-choice method, as such, is that 

the discrimination and preference values of items are determined, and items approxi¬ 

mately equal in both are paired. In this way, response set and “item desirability” are 

to some extent controlled. (Item desirability means that one item may be chosen over 

another simply because it expresses a commonly recognized desirable idea. If a 

man is asked if he is careless or efficient, he is likely to say he is efficient, even though 

he is careless.) 
The method of paired comparisons (or pair comparisons) has a long and 

respectable psychometric past. It has, however, been used mostly for purposes of 

determining scale values (Guilford, 1954). Here we look at paired comparisons as a 

method of measurement. The essence of the method is that sets of pairs of stimuli, 

or items of different values on a single continuum or on two different continua or 

factors, are presented to the subject with instructions to choose one member from 

each pair on the basis of some stated criterion. The criterion might be: which one 

better characterizes the subject, or which does the subject prefer. The items of the 

pairs can be single words, phrases, sentences, or even paragraphs. For example, in 

his Personal Preference Schedule, Edwards (1953) effectively paired statements 

that expressed different needs. One item measuring the need for autonomy, for in¬ 

stance, is paired with another item measuring the need for change. The subject is 

asked to choose one of these items. It is assumed that the person will choose the 

item that fits his or her own needs. A unique feature of the scale is that the social 

desirability values of the paired members were determined empirically and the 

pairs matched accordingly. The instrument yields profiles of need scores for each 

individual. 
In some ways, the two types of paired comparisons technique, (1) the determin¬ 

ing of scale values of stimuli, and (2) the direct measurement of variables, are the 

most satisfying of psychometric methods. They are simple and economical because 

there are only two alternatives. Further, a good deal of information can be obtained 

with a limited amount of material. If, for example, an investigator has only 10 items, 

say five of Variable A and five of Variable B, a scale of 5 X 5 or 25 items can be 

constructed, since each A item can be systematically paired with each B item. (The 
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scoring is simple: assign a “1” to A or B in each item, depending on which alternative 
the subject chooses.) Most important, paired comparison items force the participants 
to choose. Although this may irk some participants, especially if they believe that 
neither item represents what they would choose (that is, choosing between coward 
and weakling to categorize oneself), it is really a customary human activity. We must 
make choices every day of our lives. It can even be argued that Agreement-Dis¬ 
agreement items are artificial and that choice items are “natural.” In a study of 
Adler’s concept of social interest (valuing things other than self), Crandall (1980) 
used paired comparisons to develop his Social Interest Scale. Judges rated 90 traits 
for their relevance to social interest. Forty-eight pairs were then used, one member 
of each pair having relevance for social interest, the other member not having such 
relevance. Then, after item analysis to determine the most discriminating items, a 
15-item scale was developed. Unfortunately, Crandall does not report the form of 
the scale. The idea, however, is a good one: He used the strength of paired compar¬ 
isons to find good items for a final scale. 

Forced-choice items of more than two parts can assume a number of forms 
with three, four, or five parts, the parts being homogeneous or heterogeneous in 
favorableness or unfavorableness. We discuss and illustrate only one of these types to 
demonstrate the principles behind such items. By factor analysis, a procedure known 
as the critical incidents technique, or some other method, items are gathered and 
selected. It is usually found that some items discriminate between criterion groups 
and others do not. Both kinds of items—call them discriminators and irrelevants — 
are included in each item set. In addition, preference values are determined 
for each item. 

A typical forced-choice item is a tetrad. One useful form of tetrad consists of two 
pairs of items, one pair high in preference value, the other pair low in preference 
value, one member of each pair being a discriminator (valid), and the other member 
being irrelevant (not valid). A scheme of such a forced-choice item is 

high preference-discriminator 

high preference-irrelevant 

low preference-discriminator 

low preference-irrelevant 

A subject is directed to choose the item of the tetrad that he or she most prefers, or 
that is the best description of himself or herself (or someone else), and so on This 
person is also directed to select the item that is least preferred or least descriptive of 
himself or herself. 

The basic idea behind this rather complex type of item is, as indicated earlier, 
that response set and social desirability are controlled. The subject cannot tell, at 
least not theoretically, which are the discriminator items and which the irrelevant 
items; neither can items be picked on the basis of preference values. Thus the 
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tendency to evaluate oneself (or others) too high or too low is counteracted, and 

validity is therefore presumably increased (see Guilford, 1954). 

A forced-choice item of a somewhat different type, constructed by the first 

author of this text for illustrative purposes using items from actual research is: 

conscientious 

agreeable 

responsive 

sensitive 

One of the items (sensitive) is an A item, and one (conscientious) a B item. (A and 

B refer to adjectival factors.) The other two items are presumably irrelevant. Partici¬ 

pants can be asked to choose the one or two items that are most important for 

a teacher to have. 
Forced-choice methods seem to have great promise. Yet there are technical and 

psychological difficulties, among which the most important seem to be the lack of in¬ 

dependence of items, the perhaps too complex nature of some items, and the resis¬ 

tance of participants to difficult choices. The reader is referred to Guilford’s (1954) 

or Bock and Jones’s (1968) discussions of the subject: these are authoritative, objec¬ 

tive, and brief; and to the reviews by Scott (1968) and Zavala (1965). (For some more 

recent references on forced-choice items and scaling, see Borg, 1988; Bownas and 

Bernardin, 1991; Closs, 1978; Deaton, Glasnapp and Poggio, 1980; Hyman and 

Sharp, 1983; May and Forsyth, 1980; Presser and Schuman, 1980; Ray, 1990; and 

Stanley, Wandzilak, Ansorge, and Potter, 1987.) 

Ipsative and Normative Measures 
A distinction that has become important and that is generally misunderstood in 

research and measurement is that between normative and ipsative measures. 

Normative measures are the usual kind of measures obtained with tests and scales: they 

can vary independently; that is, they are relatively unaffected by other measures, and 

are referred for interpretation to the mean of the measures of a group, individuals’ 

sets of measures having different means and standard deviations. Ipsative meusui es, on 

the other hand, are systematically affected by other measures and are referred for 

interpretation to the same mean, each individual s set of measures having the same 

mean and standard deviation. To cut through this rather opaque verbiage, just think 

of a set of ranks, 1 through 5, 1 indicating the “first,” “highest,” or “most,” and 5 

indicating “last,” “lowest,” and “least,” with 2, 3, and 4 indicating positions in 

between. No matter who uses these ranks, the sum and mean of the ranks is always 

the same, 15 and 3, and the standard deviation is also always the same, 1.414. Ranks, 

then, are ipsative measures. 
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If the values 1, 2, 3, 4, and 5 were available for use to rate, say, five objects, and 

four people rated the five objects, we might obtain something like the following: 

People 

1 2 2 3 

2 2 1 2 

Objects 3 4 5 3 

4 3 5 3 

5 5 4 2 

Sum: 15 16 17 13 

Mean: 3.0 3.2 3.4 2.6 

Note that the sums and means (and standard deviations, too) are different. These 

are normative measures. Theoretically, with normative measures there are no con¬ 

straints on the value that individual A can give to object C—except, of course, the 
numbers 1 through 5. 

With ipsative measures, however, the procedure—in this case of ranking—has 

built-in systematic restraints. Each individual must use each of 1, 2, 3, 4, and 5 once 

and once only, and all of them must be used. This says that when five objects are 

being ranked and one is given, say, Rank 1, there are only four ranks remaining to 

assign. After the next object is assigned 2, there are only three remaining, and so on 

until the last object to which 5 must be assigned. Similar reasoning applies to other 

kinds of ipsative procedures and measures: paired comparisons, forced-choice tetrads 
or pentads, Q methodology. 

The important limitation on ipsative procedures is that, strictly speaking, the 

usual statistics are not applicable, since such statistics depend on assumptions that 

ipsative procedures systematically violate. Moreover, the ipsative procedure produces 

spurious negative correlation between items. In a paired comparisons instrument, for 

instance, the selection of one member of a pair automatically excludes the selection 

of the other member. This means lack of independence and negative correlation 

among items as a function of the instrumental procedure. Most statistical tests, 

however, are based on the assumption of independence of the elements entering- 

statistical formulas. And analysis of correlations, as in factor analysis, can be seriously 

distorted by the negative correlations. Unfortunately, these limitations have not been 

understood, or have been overlooked by investigators who, for example, have treated 

ipsative data normatively (Hicks, 1970). The reader is encouraged to demonstrate 

the behavior of ipsative scales by setting up a small matrix of ipsative numbers 

generated hypothetically by responses to a paired comparisons scale. Use Is and Os 
and calculate the rs between items over individuals. 
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Choice and Construction of Objective Measures 

One of the most difficult tasks for the behavioral researcher when faced with the ne¬ 

cessity of measuring variables is to find a way through a mass of already existing mea¬ 

sures. If a good measure of a particular variable exists, there seems to be little point 

in constructing a new measure. The question is, however: Does a good measure ex¬ 

ist? The answer to this question may require much search and study. The student 

should first know which type of variable is to be measured. Some guidance has been 

attempted within the structure just provided. One must know clearly whether the 

variable is an aptitude, achievement, personality, attitude, or some other kind of vari¬ 

able. The second step is to consult one or two texts that discuss psychological tests 

and measures. Next, consult Buros’s justly well-known guides. While Buros gives 

excellent guidance to published tests, many good measures have not been published 

commercially. Thus the periodical literature may need to be searched. Although 

many scales are not available commercially, they can be reproduced (with permission) 

and used for research purposes. Other valuable sources are Andrulis (1977); Comrey, 

Backer, and Glaser (1973); Fischer and Corcoran (1994); Goldman, Saunders, and 

Busch (1996); Keyser and Sweetland (1987); and Taulbee (1983). 
Valuable sources of information on tests and scales are the journals Psychological 

Bulletin, Journal of Psychoeducational Assessment, Applied Psychological Measurement, 

Educational and Psychological Measurement, Journal of Educational Measurement, 

Psychological Assessment, and Journal of Experimental Education. 
An investigator may find that no measure exists for measuring the desired attrib¬ 

utes. Or, if a measure exists, it may be unsatisfactory for the purpose intended. 

Therefore, the investigator must construct a new measure or instrument, or abandon 

the variable. The construction of objective tests and scales is a long and arduous task. 

There are no shortcuts. A poorly constructed instrument may do more harm than 

good because it may lead the investigator to erroneous conclusions. The investigator 

who must construct a new instrument, then, has to follow certain well-recognized 

procedures and be governed by accepted psychometric criteria. 
Tremendous progress has been made in the objective measurement of 

intelligence, aptitudes, achievement, personality, and attitudes. Opinion is divided, of¬ 

ten sharply, on the value of objective measurement, however. The most impressive gain 

has been made in the objective measurement of intelligence, aptitudes, and achieve¬ 

ment. Gains in personality and attitude measurement have not been as impressive. The 

problem, of course, is validity, especially the validity of personality measures. 

Two or three recent developments are most encouraging. One is the increasing 

realization of the complexity of measuring any personality and attitude variable. 

A second is the technical advances made in doing so. Another closely allied 

development is the use of factor analysis to help identify variables and to guide 

the construction of measures. A third development (discussed in an earlier chapter) 

is the increasing knowledge, understanding, and mastery of the validity problem 

itself, and especially the realization that validity and psychological theory are 

intertwined. 
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Chapter Summary 

1. The test or scale is the most utilized method in the behavioral sciences for 

collecting data. 

2. A goal is to develop and use tests that are objective. However, objectivity is 

not easy to understand. 

3. Scientific objectivity does not depend on the characteristics of the scientist. 

4. Scientific objectivity involves agreement between expert judges. Methods of 

observation and data collection have different degrees of objectivity. 

5. A test is a systematic procedure to determine the behavior of individuals. 

6. A scale is a set of symbols or numerals constructed in a way such that these 

numerals or symbols can be assigned to individuals using some rule. 

7. Aptitude tests measure a person’s potential for achievement. They are used 
primarily for guidance and counseling. 

8. Achievement tests measure present proficiency, mastery, and understanding 

of general and specific areas of knowledge. Teacher-made tests are consid¬ 
ered to be achievement tests. 

9. Measuring personality traits is the most complex problem of psychological 

measurement. Personality is very complex with problems of validity. 

10. There are two methods for constructing and validating personality 
measures: a priori, and construct method. 

11. Attitude scales measure the predisposition of an individual to think, feel, 

perceive, and behave toward another person, idea, or object. 

12. There are three types of attitude scales: summated rating scale, equal¬ 

appearing interval scales, and cumulative or Guttman scales. 

13. The summated rating scale is the most often used scale in the behavioral 
sciences. 

14. Value scales measure a person’s expressed preference for modes of conduct. 
These include religion and free enterprise. 

15. There are two types of objective scales: independent and nonindependent. 

16. With independent objective scales, a person’s response to one item is not 

related to his or her response on another item. With nonindependent items, 

a certain response to an item could lead the respondent to more in-depth 
questions. 

17. Scales and items can be divided into three types: Agreement-Disagreement, 
rank order, and forced-choice. 

18. Normative measures are not affected by other measures. However, ipsative 
measures are affected by other measures. 

19. The researcher should take the time to determine if a test already exists for 

the study. There are a number of published and unpublished sources for tests. 

A new test should be created only if no test exists for the researcher’s purpose. 
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Study Suggestions 

1. The following annotated references may help students find their way in the 

large, difficult, but highly important field of objective tests and scales — 

especially in education. 

Adkins, D. (1974). Test construction: Development and interpretation of achieve¬ 

ment tests (2nd ed.). Columbus, OH: Charles E. Merrill. [An invaluable 

book for practitioners and researchers.] 
Bloom, B. (Ed.). (1976). Taxonomy of educational objectives. The classification of 

educational goals: Handbook 1, cognitive domain. New York: David McKay. 

[This basic and unusual book attempts to lay a foundation for cognitive 

measurement by classifying educational objectives and by giving numer¬ 

ous precepts and examples. Pages 201-207, which outline the book, are 

useful to test constructors and educational researchers.] 

Impara, J. C., & Plake, B. S. (Eds.). (1998). Buros 13th mental measurements 

yearbook. Lincoln, NE: Buros Institute. [Descriptions and reviews of pub¬ 

lished tests and measures of all kinds. See, also, earlier editions.] 

Mehrens, W., & Ebel, R. (Eds.). (1967). Principles of educational and psychologi¬ 

cal measurement. Chicago: Rand McNally. [A valuable collection of many 

of the classic contributions to measurement and test theory and practice.] 

2. To gain insight into the rationale and construction of psychological measuring 

instruments, it is helpful to study relatively complete accounts of their devel¬ 

opment. The following annotated references describe the development of in¬ 

teresting and important measurement instruments and items. 

Allport, G., Vernon, P., & Lindzey, G. (1951). Study of values. Manual of direc¬ 

tions (rev. ed.). Boston: Houghton Mifflin. 
Comrey, A. L. (1961). Factored homogeneous item dimensions in personality 

research. Educational and Psychological Measurement, 21, 417-431. 

Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd ed.). 

Hillsdale, NJ: Lawrence Erlbaum. 
Edwards, A. (1953). Personal preference schedule, manual. New York: Psycholog¬ 

ical Corp. [Measures needs in a forced-choice format (pair comparisons).] 

Likert, R. (1932). A technique for the measurement of attitudes. Archives of 

Psychology, No. 140. [Likert’s original monograph describing his tech¬ 

nique, an important landmark in attitude measurement.] 

Thurstone L., & Chave, E. (1929). The measurement of attitude. Chicago: Uni¬ 

versity of Chicago Press. [This classic describes the construction of the 

equal-appearing interval scale to measure attitudes toward the church.] 

Woodmansee, J., & Cook, S. (1967). Dimensions of verbal racial attitudes: 

Their identification and measurement. Journal of Personality and Social 
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Psychology, 7, 240-250. [Probably the best measure of attitudes toward 

blacks. The inventory is given in the Robinson, Rusk, and Head volume 

cited in Study Suggestion 3.] 

3. The following are three useful anthologies of attitude, value, and other scales. 

Their usefulness inheres not only in the many scales they contain, but also in 

perspicacious critiques that focus on reliability, validity, and other characteris¬ 
tics of the scales. 

Robinson J., RuskJ., & Head, K. (1968). Measures of political attitudes. Ann Ar¬ 

bor: Institute for Social Research, University of Michigan. 

Robinson, J., & Shaver P. (1969). Measures of social psychological attitudes. Ann 

Arbor: Institute for Social Research, University of Michigan. 

Shaw M., & Wright, J. (1967). Scales for the measurement of attitudes. New 
York: McGraw-Hill. 
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Everyone observes the actions of others. We look at other persons and listen to 

them talk. We infer what others mean when they say something; and we infer the 

characteristics, motivations, feelings, and intentions of others on the basis of these 

observations. We say, “She is a shrewd judge of people,” meaning that her 
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observations of behavior are keen and that we think her inferences of what lies 

behind the behavior are valid. This day-to-day kind of observation of most people, 

however, is unsatisfactory for science. Social scientists must also observe human 

behavior, but they are dissatisfied with uncontrolled observations. They seek reli¬ 

able and objective observations from which they can draw valid inferences. They 

treat the observation of behavior as part of a measurement procedure: they assign 

numerals to objects according to rules, in this case human behavioral acts or se¬ 
quences of acts. 

Although this may seem simple and straightforward, evidently it is not: There is 

much controversy and debate about observation and methods of observation. Critics 

of the point of view that observations of behavior must be rigorously controlled — 

the point of view espoused in this chapter and elsewhere in this book—claim that it 

is too narrow and artificial. Instead, say the critics, observations must be naturalistic: 

Observers must be immersed in ongoing realistic and natural situations and must 

observe behavior as it occurs in the raw, so to speak. As we will see, however, 
observation of behavior is extremely complex and difficult. 

Basically, there are two modes of observation: we can watch people do and say 

things, and we can ask people about their own actions and the behavior of others. 

The principal ways of getting information are either by experiencing something 

directly, or by having someone tell us what happened. In this chapter we are 

concerned mainly with seeing and hearing events and observing behavior, and 

solving the scientific problems that spring from such observation. We also examine, 

if briefly, a method for assessing the interactions and interrelations of group mem¬ 

bers: sociometry. Sociometry is a special and valuable form of observation: Group 

members observe each other and record their reactions to each other so that 
researchers can assess the sociometric status of groups. 

Problems in Observing Behavior 

The Ob server 

The major problem of behavioral observation is with the observer. One of the diffi¬ 

culties with the interviews is that the interviewer is part of the measuring instrument. 

This problem is almost nonexistent in objective tests and scales. In behavioral obser¬ 

vation, the observer is both a crucial strength and a crucial weakness. This is because 

the observer must digest the information derived from observations and then draw 

inferences about constructs. The observer looks at a certain behavior—say a child 

striking another child—and somehow must process this observation and make an in¬ 

ference that the behavior is a manifestation of the construct “aggression” or “aggres¬ 

sive behavior, or even “hostility.” The strength and the weakness of the procedure is 

the ^servers powers of inference. If it were not for inference, a machinated observer 

would be better than a human observer. The strength is that the observer can relate 
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the observed behavior to the constructs or variables of a study by bringing together 

the behavior and construct. One of the recurring difficulties of measurement is to 

bridge the gap between behavior and construct. 
The basic weakness of the observer is that incorrect inferences can be made from 

observations. Take two extreme cases. Suppose, on the one hand, that an observer 

who is strongly hostile to parochial school education observes parochial school 

classes. It is clear that this person’s bias may well invalidate the observation. The 

observer can easily rate an adaptable teacher as somewhat inflexible because of an 

existing bias or perception that parochial school teaching is inflexible. Or this 

observer may judge the actually stimulating behavior of a parochial school teacher to 

be dull. On the other hand, assume that an observer can be completely objective and 

knows nothing whatever about public or parochial education. In a sense any 

observations made will not be biased, but they will be inadequate. Observation of 

human behavior requires competent knowledge of that behavior, and even of the 

meaning of the behavior. 
There is, however, another problem: The observer can affect the objects of 

observation simply by being part of the observational situation. Actually and 

fortunately, this is not a severe problem. Indeed, it is more of a problem to the 

uninitiated, who seem to believe that people will act differently, even artificially, 

when observed. Observers appear to have little effect on the situations they observe. 

Individuals and groups seem to adapt rather quickly to an observer’s presence and to 

act as they would usually act. This does not mean that the observer cannot have an 

effect. It means that if the observer takes care to be unobtrusive and not to give the 

persons being observed the feeling that judgments are being made, then the observer 

as an influential stimulus is mostly nullified. Babbie (1995) states there that is no 

complete protection from the observer effect. However, knowledge and sensitivity to 

this problem will help provide partial protection. 

Validity and Reliability 

On the surface, nothing seems more natural when observing behavior than to believe 

that we are measuring what we say we are measuring. When an interpretative burden 

is placed on the observer, however, validity may suffer (as well as reliability). The 

greater the burden of interpretation, the greater the validity problem. This does not 

mean, however, that no burden of interpretation should be placed on the observer. 

A simple aspect of the validity of observation measures is their predictive power. 

Do they predict relevant criteria dependably? The trouble, as usual, is in the criteria. 

Independent measures of the same variables are rare. Can we say that an 

observational measure of teacher behavior is valid because it correlates positively 

with superiors’ ratings? We might have an independent measure of self-oriented 

needs, but would this measure be an adequate criterion for observations of such 

needs? 
An important clue to the study of the validity of behavioral observation measures 

would seem to be construct validity. If the variables being measured by an 
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observational procedure are embedded in a theoretical framework, then certain 

relations should exist. Do they indeed exist? Suppose our research involves Bandura’s 

(1982) self-efficacy theory and that we have constructed an observation system whose 

purpose is to measure performance competence. The theory says, in effect, that 

perceived self-efficacy, or the self-perception of competence, affects the competence 

of a person’s actual performance: the higher one’s self-efficacy, the higher the 

performance competence. If we find that self-perception of competence and 

measures of actual observed competence of doing certain prescribed tasks is positive 

and substantial, then the hypothesis derived from the theory is supported. But this is 

also evidence of the construct validity of the observation system. 

The reliability of observation systems is a simpler matter, though by no 

means an easy one. It is often defined as agreement among observers. From this 

viewpoint, film, videotape, and audiotape records can help to achieve very 

high reliability. Agreement among observers, however, has potential defects. For 

example, the magnitude of an index of agreement is partly due to chance agreement, 

and thus needs correction. Perhaps the safest course to follow is to use different 

methods of assessing reliability just as we would with any measures used in 

behavioral research: agreement of observers, repeat reliability, and the analysis of 

variance approach. Assessing reliability and agreement among observers are 

especially difficult problems of direct observation, because the usual statistics depend 

on the assumption that measures are independent—and they are often not 

independent. Most of the work done in this area has come from or based on the work 

of Cohen and Fleiss on coefficient kappa (Fleiss, 1986; Fleiss & Cohen, 1973). The 

use of generalizability theory holds promise in the measurement of reliability for 

nominal data (Li & Lautenschlager, 1997). Some developments have come from the 

health sciences where observation and agreement plays a heavy role in analyses and 

decisions (see Dunn, 1989, 1992). Medley and Mitzel (1963) give a thorough 

but technically complex exposition of the reliability of ratings in an analysis of 

variance framework. Hollenbeck (1978) and Rowley (1976) discuss reliability of 

observations when measures are nominal. More recent reviews on reliability of 

observations and interrater reliability are Dewey (1989), McDermott (1988) 

Perreault and Leigh (1989), Schouten (1986), Topf (1986), Zegers (1991)’ 

and Zwick (1988). The Perreault and Leigh article discusses the topic from the 

marketing research point of view. Topf reviews the use of the nominal 

reliability measures in nursing research, and McDermott discusses its application in 

school psychology. Chan (1987), Oud and Sattler (1984), and Powers (1985) 

have written computer programs to help researchers compute observer agreement 
statistics. ° 

It is necessary, then, to define fairly precisely and unambiguously what is to 

be observed. If we are measuring Curiosity, we must tell the observer what 

curious behavior is. If Cooperativeness is being measured, we must somehow tell 

the observer how cooperative behavior is distinguished from other kinds of 

behavior. This means that we must provide the observer with some form of 

operational definition of the variable being measured; we must define the variable 
behaviorally. 
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Categories 

The fundamental task of the observer is to assign behaviors to categories. From our 

earlier work on partitioning, recall that categories must be exhaustive and mutually 

exclusive. To satisfy the exhaustiveness condition, one must first define U, the 

universe of behaviors to be observed. In some observation systems, this is not hard to 

do. McGee and Snyder (1975), testing the hypothesis that people who salt their food 

before they taste it perceive control of behavior as being more from within the 

individual (dispositional control) than from the environment (situational control), 

simply observed participants’ salting of food in restaurants. In other observation 

systems it is more difficult. Many or most of the observation systems cited in Simon 

and Boyer’s (1970) huge anthology of observation instruments, Mirrors for Behavior, 

are complex and hardly easy to use. This work consists of 14 volumes of behavior 

observation instruments! Most of these instruments, 67 of 79, are used for educational 

observations. Readers who intend to use behavior observation in their research should 

consult these volumes, especially volume 1, which contains a general discussion on 

pages 1-24. 

In keeping with the emphasis of this book—that the purpose of most 

observation is to measure variables—we cite a classroom observation system from 

the highly interesting, even creative, work of Kounin and his colleagues (Kounin & 

Doyle, 1975; Kounin & Gump, 1974). The system reported is more complex than 

the salt-tasting observation system, but much less complex than many classroom 

observation systems. The variable observed was task-involvement, which was 

observed by videotaping 596 lessons and then observing playbacks of the tapes to 

obtain the involvement measures. These measures were categorized as high task 

involvement and low task involvement. The authors also measured continuity in 

lessons by creating categories that reflected greater or lesser continuity in the 

lessons. When the children’s behavior was observed, they used the categories to 

record the pertinent observed behaviors. 

Units of Behavior 

Deciding which units to use in measuring human behavior is still an unsettled 

problem. Here one is often faced with a conflict between reliability and validity 

demands. Theoretically, one can attain a high degree of reliability by using small and 

easily observed and recorded units. One can attempt to define behavior quite 

operationally by listing a large number of behavioral acts, and can thus ordinarily 

attain a high degree of precision and reliability. Yet in so doing one may also have so 

reduced the behavior that it no longer bears much resemblance to the behavior one 

intended to observe. Thus validity may be lost. 

On the other hand, one can use broad “natural” definitions and perhaps achieve 

a high degree of validity. One might instruct observers to observe Cooperation and 

define Cooperative Behavior as “accepting other persons” approaches, suggestions, 

and ideas; working harmoniously with others toward goals,” or some such rather 

broad definition. If observers have had group experience and understand group 
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processes, then it might be expected that they could validly assess behavior as 

cooperative and uncooperative by using this definition. Such a broad, even vague, 

definition enables the observer to capture, if he or she can, the full flavor of 

cooperative behavior. But its considerable ambiguity allows differences of 

interpretation, thus probably lowering reliability. 

Some researchers who are strongly operational in their approach insist on highly 

specific definitions of the variables observed. They may list a number of specific 

behaviors for the observer to note. No others would be observed and recorded. Ex¬ 

treme approaches like this may produce high reliability, but they may also miss part 

of the essential core of the variables observed. Suppose 10 specific types of behavior 

are listed for Cooperativeness. Suppose, too, that the universe of possible behaviors 

consists of 40 or 50 types. Clearly, important aspects of cooperativeness will be ne¬ 

glected. While what is measured may be reliably measured, it may be quite trivial or 

partly irrelevant to the variable 

Cooperativeness 

This is the molar-molecular problem of any measurement procedure in the social 

sciences. The molar approach takes larger behavioral wholes as units of observation. 

Complete interaction units may be specified as observational targets. Verbal behavior 

may be broken down into complete interchanges between two or more individuals, 

or into whole paragraphs or sentences. The molecular approach, by contrast, takes 

smaller segments of behavior as units of observation. Each interchange or partial 

interchange may be recorded. Units of verbal behavior may be words or short 

phrases. Molar observers start with a general broadly defined variable, as given 

earlier, and observe and record a variety of behaviors under the one rubric. They 

depend on experience and knowledge to interpret the meaning of the behavior they 

observe. Molecular observers, on the other hand, seek to push their own experience, 

knowledge, and interpretation out of the observational picture. They record what 
they see — and no more. 

Obs erver Infe rence 

Observation systems differ on another important dimension: the amount of inference 

required of the observer. Molecular systems require relatively little inference. The 

observer simply notes that an individual does or says something. For example, a 

system may require the observer to note each interaction unit, which may be defined 

as any verbal interchange between two individuals. If an interchange occurs, it is 

T u” i 1C d°eS n0t °CT’ * 15 n0t n0ted' °r a cate&017 may be “Strikes another 
child. Every time one child strikes another it is noted. No inferences are made in 

such systems—if of course, it is ever possible to escape inferences (for example, 

strikes ). Pure behavior is recorded as nearly as possible 

Observer systems with such low degrees of observer inference are rare. Most 

systems require some degree of inference. An investigator may be doing research on 

board-of-education behavior, and may decide that a low inference analysis is suited to 
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the problem, and use observation items like “Suggests a course of action,” “Inter¬ 

rupts another board member,” “Asks a question,” “Gives an order to superinten¬ 

dent,” and the like. Since such items are comparatively unambiguous, the reliability 

of the observation system should be substantial. 

Systems with higher degrees of inference required of the observer are more 

common and probably more useful in most research. The high inference observation 

system gives the observer labeled categories that require greater or lesser 

interpretation of the observed behavior. For example, suppose that dominance is to 

be measured. It can be defined as attempts by an individual to show intellectual (or 

other) superiority over other individuals, with little recognition of group goals and 

the contributions of others. This will, of course, require a high degree of observer in¬ 

ference, and observers will have to be trained so that there is agreement on what 

constitutes dominant behavior. Without such training and agreement—and probably 

observer expertise in group processes — reliability can be endangered. A 

sophisticated discussion concerning inference in observation is given in Weick 

(1968). Weick also discusses biases in observation and suggests methodological solu¬ 

tions for minimizing the effects of bias. Similar remarks are pertinent when we try to 

measure many psychological and sociological variables: cooperation, competition, 

aggressiveness, democracy, verbal aptitude, achievement, and social class, for exam¬ 

ple. For recent discussions of observation and inference in these areas one can read 

Alexander, Newell, Robbins, and Turner (1995); Borich and Klinzing (1984); Chavez 

(1984); Hartmann and Wood (1990); Jaffe (1997); Nurius and Gibson (1990); and 

Timberlake and Silva (1994). Borich and Klinzing and Chavez’s articles apply to 

classroom observations. Hartmann and Wood deal with behavioral observation sys¬ 

tems used in behavior modification. Nurius and Gibson deal with clinical observation 

and inference found in social work. Closely related are the Jaffe and the Alexander et 

al. papers that deal with clinical observations. Timberlake and Silva deal with the 

observation and inference obtained from watching the behavior of animals. 

It is not possible to make flat generalizations on the relative virtues of systems 

with differing degrees of inference. Probably the best advice to the neophyte is to 

aim at a medium degree of inference. Too vague categories with too little 

specification of what to observe put an excessive burden on the observer. Different 

observers can too easily put different interpretations on the same behavior. Too 

specific categories, while they reduce ambiguity and uncertainty, may tend to be too 

rigid and inflexible, even trivial. Better than anything else, the student should study 

various successful systems, paying special attention to the behavior categories and the 

definitions (instructions) attached to the categories for the guidance of the observer. 

enerality or Applicability 

Observation systems differ considerably in their generality, or degree of applicability to 

research situations other than those for which they were originally designed. Some 

systems are quite general: they are designed for use with many different research 

problems. The well-known Bales (1951) group interaction analysis is one such 

general system. This is a low inference system in which all verbal and nonverbal 
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behavior, presumably in any group, can be categorized into one of 12 categories: 

“shows solidarity,” “agrees,” “asks for opinion,” and so on. The 12 categories 

are grouped into three larger sets: social-emotional-positive, social-emotional- 

negative, and task-neutral. 

Some systems, however, were constructed for particular research situations to 

measure particular variables. The salting food example, above, is quite specific, 

hardly applicable to other situations. The Kounin and Doyle (1975) system, while 

specifically constructed for Kounin’s research, can be applied in many classroom 

situations. Indeed, most systems devised for specific research problems can probably 

be used, often with modification, for other research problems. 

We want to emphasize that “small” observation systems can be used to measure 

specific variables. Suppose, for instance, that the attentiveness of elementary school 

pupils is a key variable in a theory of school achievement. Attentiveness (as a trait or 

habit) in and of itself has little effect on achievement: let’s say the correlation is zero. 

It is a key variable because, with a certain method of teaching, it interacts with the 

method and has a pronounced indirect effect on achievement. Assuming that this is 

so, we must measure attentiveness. It seems clear that we will have to observe pupil 

behavior, while the method in question and a “control” method are being used. In 

such a case, we will have to find or devise an observation system that focuses on at¬ 

tentiveness. In assessing the influence of classroom environment, for example, 

Keeves (1972) found it necessary to measure attentiveness. He did this by observing 

students who were required to attend to tasks prescribed by the teacher. Scores that 

indicated attentiveness or the lack of it were assigned. This “small” observation 

system was reliable and apparently valid. It is likely that such targeted systems will be 

used increasingly in behavioral research, especially in education. 

Sampling of Behavior 

The last characteristic of observations, sampling, is, strictly speaking, not a 

characteristic. It is a way of obtaining observations. Before using an observation 

system in actual research, when and how the system will be applied must be decided. 

If classroom behaviors of teachers are to be observed, how will the behaviors be sam¬ 

pled? Will all the specific behaviors in one class period be observed, or will examples 

of specified behaviors be sampled systematically or randomly? In other words, a sam¬ 

pling plan of some kind must be devised and used. 

There are two aspects of behavior sampling: event sampling and time sampling. 

Event ™™pHng is the selection for observation of integral behavioral occurrences or 

events of a given class. Examples of integral events are temper tantrums, fights and 

quarrels, games, verbal interchanges on specific topics, classroom interactions 

between teachers and pupils, and so on. The investigator who is pursuing events 

must either know when the events are going to occur and be present when they 

occur, as with classroom events, or wait until they occur, as with quarrels. 

Event sampling has three virtues: (1) The events are natural lifelike situations 

and thus possess an inherent validity not ordinarily possessed by time samples. (2) An 

integral event possesses a continuity of behavior that the more piecemeal behavioral 
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acts of time samples do not possess. If one observes a problem-solving situation 

from beginning to end, one is witnessing a natural and complete unit of individual 

and group behavior. By so doing, one achieves a whole and realistic larger unit of 

individual or social behavior. As we saw in an earlier chapter, when field experiments 

and field studies were discussed, naturalistic situations have an impact and a close¬ 

ness to psychological and social reality that experiments do not usually have. (3) 

The third virtue of event sampling inheres in an important characteristic of many 

behavioral events: they are sometimes infrequent and rare. For example, one may be 

interested in decisions made in administrative or legislative meetings. Or one may 

be interested in the ultimate step in problem-solving. Teachers’ disciplinary meth¬ 

ods may be a variable. Such events and many others are relatively infrequent. As 

such, they can easily be missed by time sampling; they therefore require event sam¬ 

pling. If one takes the more active view of observation advocated by Weick (1968), 

however, one can arrange situations to ensure more frequent occurrence of rare 

events. 

Time sampling is the selection of behavioral units for observation at different 

points in time. They can be selected in systematic or random ways to obtain samples 

of behaviors. A good example is teacher behavior. Suppose the relations between 

certain variables like teacher alertness, fairness, and initiative, on the one hand; and 

pupil initiative and cooperativeness, on the other hand, are studied. We may select 

random samples of teachers and then take time samples of their behavioral acts. 

These time samples can be systematic: three 5-minute observations at specified times 

during each of, say, five class hours, the class hours being the first, third, and fifth 

periods one day, and the second and fourth periods the next day. Or they can be 

random: five 5-minute observation periods selected at random from a specified 

universe of 5-minute periods. Obviously, there are many ways that time samples can 

be set up and selected. As usual, the way such samples are chosen, their length, and 

their number must be influenced by the research problem. In a fascinating study of 

leadership and the power of group influence with small children, Merei (1949) points 

out that time sampling would show only leaders giving orders and the group 

obeying, whereas prolonged observations would show the inner workings of ordering 

and obeying. 

Time samples have the important advantage of increasing the probability of 

obtaining representative samples of behavior. This is true, however, only of behaviors 

that occur fairly frequently. Behaviors that occur infrequently have a high probability 

of escaping the sampling net, unless huge samples are drawn. Creative behavior, 

sympathetic behavior, and hostile behavior, for example, may be quite infrequent. 

Still, time sampling is a positive contribution to the scientific study of human 

behavior. 

Time samples, as implied earlier, suffer from lack of continuity, lack of adequate 

context, and perhaps naturalness. This is particularly true when small units of time 

and behavior are used. Still, there is no reason why event sampling and time 

sampling cannot sometimes be combined. If one is studying classroom recitations, 

one can draw a random sample of the class periods of one teacher at differing times, 

and observe all recitations during the sampled periods in their entirety. 
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Some very good references on event sampling and time sampling are Arrington 

(1943), Martin and Bateson (1993), Wright (1960), and Zeren and Makosky (1986). 

The Zeren and Makosky article is noteworthy because it describes a classroom 

exercise to teach students how to make systematic observation of spontaneous human 

behavior. Three observational techniques (time sampling, event sampling, and trait 

rating) are also described and compared through their use on simulated behavior 

presented on television. The classroom activity included a lecture about 

observational methods, an exercise utilizing one of the three methods, and a class 

discussion. The article discusses how to teach the scientific approach to gathering 

observational data, the importance of precise operational definitions on interrater 

agreement, and the calculation of reliability coefficients. 

Rating Scales 

To this point, we have been talking only about the observation of actual behavior. 

Observers look at and listen to the objects of regard directly. They sit in the 

classroom and observes teacher-pupil and pupil-pupil interactions. Or they may 

watch and listen to a group of children solving a problem behind a two-way mirror. 

There is another class of behavioral observation, however, that needs to be 

mentioned. This type of observation will be called remembered behavior or perceived 

behavior. It is conveniently classified under the topic of rating scales. In measuring re¬ 

membered or perceived behavior, we ordinarily present observers with an observa¬ 

tion system in the form of a scale of some kind, and ask them to assess an object on 

one or more characteristics, the object not being present. In order to do this, they 

must make assessments on the basis of past observations, or on the basis of percep¬ 

tions of what the observed object is like, and how it will behave. A convenient way to 

measure both actual behavior and perceived or remembered behavior is with rating 
scales. 

A rating scale is a measuring instrument that requires the rater or observer to 

assign the rated object to categories or continua that have numerals assigned to 

them. Rating scales are perhaps the most ubiquitous of measuring instruments, 

probably because they are seemingly easy to construct and, more important, easy and 

quick to use. Unfortunately, the apparent ease of construction is deceptive, and the 

ease of use carries a heavy price: lack of validity due to a number of sources of bias 

that enter into rating measures. Still, with knowledge, skill, and care, ratings can be 
valuable. 

For an excellent discussion of rating scales, see Guilford (1954), Nunnally 

(1978), Nunnally and Bernstein (1993) and Torgeson (1958). For a relatively 

nontechnical presentation of rating scales, one can read Selltiz, Jahoda, Deutsch, and 

Cook (1961). Although rating scales were mentioned earlier in this book, they were 

not systematically discussed. In reading what follows, the student should bear in 

rnrnd that rating scales are really objective scales. As such, they might have been 

included in Chapter 30. Their discussion was reserved for this chapter because the 

discussion of Chapter 30 focused mainly on measures responded to by the.subject 
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being measured. Rating scales, on the other hand, are measures of individuals and 

their reactions, characteristics, and behaviors by observers. The contrast, then, is 

between how the subject sees himself or herself and how others perceive the subject. 

Rating scales are also used to measure psychological objects, products, and stimuli, 

such as handwriting, concepts, essays, interview protocols, and projective test 

materials. 

Types of Rating Scales 

There are four or five types of rating scales. Tvo of these types were discussed in 

Chapter 30. They were the checklists and forced-choice instruments. We consider 

now only three types and their characteristics: the category rating scale, the 

numerical rating scale, and the graphic rating scale. They are quite similar, differing 

mainly in details. 

The category rating scale presents observers or judges with several categories from 

which they pick the one that best characterizes the behavior or characteristic of the 

object being rated. Suppose a teacher’s classroom behavior is being rated. One of the 

characteristics rated, say, is Alertness. A category item might be as shown in the first 

example. A different form uses condensed descriptions, such an item might look like 

that shown in the second example. 

Examples 

How alert is she? (Check one) 

Very alert 

Alert 

Not alert 

Not at all alert 

Is she resourceful? (Check one) 

Always resourceful; never lacking in ideas 

Resources are good 

Sometimes flounders for ideas 

Unresourceful; rarely has ideas 

Numerical rating scales are perhaps the easiest to construct and use. They also 

yield numbers that can be used directly in statistical analysis. In addition, because the 

numbers may represent equal intervals in the mind of the observer, they may 

approach interval measurement (see Guilford, 1954, p. 264). Any of the above 

category scales can be quickly and easily converted to numerical rating scales simply 

by affixing numbers before each of the categories. The numbers 3, 2, 1, 0, or 4, 3, 2, 

1 can be affixed to the Alertness item above. A convenient method of numerical rat¬ 

ing is to use the same numerical system, say 4, 3, 2, 1, 0 with each item. This is, of 

course, the system used in summated-rating attitude scales. In rating scales, it is 

probably better, however, to give both the verbal description and the numerals. 
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In graphic rating scales lines or bars are combined with descriptive phrases. The 

alertness item, just discussed, could look like this in graphic form: 

Very Alert Alert Not Alert Not at all Alert 

Such scales have many varieties: vertical segmented lines, continuous lines, 

unmarked lines, lines broken into marked equal intervals (as above), and others. 

These are probably the best of the usual forms of rating scales. They fix a continuum 

in the mind of the observer. They suggest equal intervals. They are clear and easy to 

understand and use. Guilford (1954, p. 268) overpraises them a bit when he says, 

“The virtues of graphic rating scales are many; their faults are few,” but his point is 

well taken. 

Weaknesses of Rating Scales 

Ratings have two serious weaknesses, one is extrinsic, the other is intrinsic. The 

extrinsic defect is that they are seemingly so easy to construct and use that they are 

used indiscriminantly, frequently without knowledge of their intrinsic defects. We 

will not pause to mention the errors that can creep into the unskillful construction 

and use of rating scales. Rather, we warn the reader against seizing them for any and 

all measurement needs. One should first ask the question: Is there a better way to 

measure my variables? If so, use it. If not, then study the characteristics of good 

rating scales, work with painstaking care, and put the rating results to empirical test 

and adequate statistical analysis. 

The intrinsic defect of rating scales is their proneness to constant or biased 

error. This is not new to us, of course. We met this problem when considering 

response set. With ratings, however, it is particularly threatening to validity. 

Constant rating error takes several forms, the most pervasive of which is the famous 

halo effect. This is the tendency to rate an object in the constant direction of a general 

impression of the object. Kveryday cases of halo are believing a man to be virtuous 

because we like him; and/or giving high praise to Republican presidents and 
damning Democratic ones. 

Halo manifests itself frequently in measurement, especially with ratings. 

Professors assess the quality of essay test questions higher than they should be 

because they like the testee. Or they may rate the second, third, and fourth questions 

higher (or lower) than they should because the fittest question was well answered (or 

poorly answered). Teacher evaluation of children’s achievement that is influenced by 

the children’s docility or lack of docility is another case of halo. In rating individuals 

on rating scales, there is a tendency for the rating of one characteristic to influence 

the ratings of other characteristics. Halo is difficult to avoid. It seems to be 

particularly strong in traits that are not clearly defined, not easily observable, and 

that are morally important (see Guilford, 1954, p. 279). 
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Two important sources of constant error are the error of severity and the error 

of leniency. The error of severity is a general tendency to rate all individuals too low 

on all characteristics. This is the tough marker: “Nobody gets an A in my classes.” 

The error of leniency is the opposite general tendency to rate too high. This is the 

good fellow who loves everybody—and the love is reflected in the ratings. 

An exasperating source of invalidity in ratings is the error of central tendency, the 

general tendency to avoid all extreme judgments and rate right down the middle of a 

rating scale. It manifests itself particularly when raters are unfamiliar with the objects 

being rated. 

There are other less important types of error that will not be considered here. 

More important is how to cope with the types listed above. This is a complex matter 

that cannot be discussed here. The reader is referred to Guilford (1954, pp. 

280-288, 383, 395-397), where many devices for coping with error are discussed in 

detail. Systematic errors can be dealt with to some extent by statistical means. 

Guilford has worked out an ingenious method using analysis of variance. The basic 

idea is that variances due to participants, judges, and characteristics are extracted 

from the total variance of ratings. The ratings are then corrected. An easier method 

when rating individuals on only one characteristic is two-way (correlated groups) 

analysis of variance. Reliability can also be easily calculated. The use of analysis of 

variance to estimate reliability, as we learned earlier, was Hoyt’s (1941) contribution. 

Ebel (1951) applied analysis of variance to reliability of ratings. 

Rating scales can and should be used in behavioral research. Their unwarranted, 

expedient, and unsophisticated use has been rightly condemned. But this should not 

mean general condemnation. They have virtues that make them valuable tools of 

scientific research: they require less time than other methods; they are generally 

interesting and easy for observers to use; they have a very wide range of application; 

they can be used with a large number of characteristics. It might be added that they 

can be used as adjuncts to other methods. That is, they can be used as instruments to 

aid behavioral observations, and they can be used in conjunction with other objective 

instruments, with interviews, and even with projective measures. 

Exam pi es of Observation Systems 

Other behavioral observation systems (not mentioned earlier) are summarized below 

to help the student get a feeling for the variety of systems that are possible and the 

ways in which such systems are constructed and used. In addition, the student may 

gain further understanding of when behavioral observation is appropriate. 

Time Sampling of Play Behavior 

of Hearing-Impaired Children 

Play behavior is considered an important component of normal child development. 

However, hearing-impaired children have communication deficits that interfere 
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with normal play development. Hearing-impaired children have been found to be 

involved in less complex and less social play than normal children. In their study of 

the play behavior of hearing-impaired children, Esposito and Koorland (1989) 

used a momentary time sampling technique to record the behavior of two children in 

different play settings (a 3.5-year-old and a 5-year-old). The goal was to use the 

data to compare the behavior of hearing-impaired children when integrated and not 

integrated with nonimpaired children. This involved observing and recording the 

behavior of each child during 10-second intervals for two 10-minute sessions per day 

for four days per week for two weeks during indoors free play. One setting 

was integrated and the other was not integrated. Free-play behavior of each child was 

coded according to the play categories defined by Higginbotham, Baker, and 

Neill (1980). There are eight major categories of play that can be further categorized 

as Social Play, Cognitive Play, and Nonplay. These researchers found differences in 

play behavior between the two types of settings. If peer interaction during play con¬ 

tributes to normal child development, then these results suggest that integrated envi¬ 

ronments are better suited for hearing-impaired children. 

Observation and Evaluation of College Teaching 

In one of the relatively few—and better—studies of college teachers and teaching, 

Isaacson, McKeachie, Milholland, and Lin (1964), after considerable preliminary 

work on items and their dimensions or factors, had college students rate and evaluate 

their teachers, based on their remembered observations and impressions. A number 

of similar studies have been published since this study appeared, but it is still one of 

the best. The observation system presented was not devised deliberately to measure 

variables, but rather to help evaluate teaching performance. Neverthe-less, its two 

basic dimensions can, of course, be used as variables in research. A remarkable aspect 

of studies to evaluate college teachers is that researchers seem not to be 

aware that the purpose of such observation systems should be the improvement of in¬ 

struction (or to use their dimensions as research variables), and not for administrative 

purposes (see Kerlinger, 1971). 

Isaacson et al. used a 46-item rating scale and instructed the students to respond 

according to the frequency of the occurrence of certain behavioral acts, and not 

according to whether the behaviors were desirable or undesirable. Their basic 

interest was in the dimensions or underlying variables behind the items. They found 

six such dimensions (factors). The first dimension was related to general 
teaching skill. 

Although the six factors are important because they seem to show various aspects 

of teaching (for example, Structure, which is the instructor’s organization of the 

course and its activities, and Rapport, which is the more interactive aspects of teach¬ 

ing and friendliness), we concentrate on the first. Here are three of the items: 

He put his material across in an interesting way. He stimulated the intellectual 

curiosity of his students. He explained clearly and his explanations were to the 
point (p. 347). 



CHAPTER 31 m Observations of Behavior and Society 741 

The most effective item, however, was even more general: 

How would you rate your instructor in general (all-around) teaching ability? 

a. An outstanding and stimulating instructor 

b. A very good instructor 

c. A good instructor 

d. An adequate, but not stimulating instructor 

e. A poor and inadequate instructor 

While we may question calling this study and others like it observation studies, 

there is certainly observation, though it is quite different in being remembered and 

indirect, global and highly inferential, and, finally, much less systematic in actual 

observation. We ask students to remember and rate behaviors that they may not 

have paid particular attention to. Nevertheless, the Isaacson et al. study, along with 

other studies, have shown that this form of observation can be used in instructor and 

course evaluation reliably. 

Assessment of Behavioral Observation 

There is no doubt whatever that objective observation of human behavior has 

advanced beyond the rudimentary stage. The advances, like other methodological 

and measurement advances made in the past 10 to 20 years, have been striking. The 

growth of psychometric and statistical mastery and sophistication has been felt in 

the observation and assessment of actual and remembered behavior. Social scientific 

research can and will profit from these advances. Many educational research 

problems, for example, strongly demand behavior observations: children in 

classrooms interacting with each other and with teachers, administrators and 

teachers discussing school problems in staff meetings, boards of education working 

toward policy decisions. Both basic and applied research, especially research 

involving group processes and group decisions, can profit from direct observation. 

And it can be used in field studies, field experiments, and laboratory experiments. 

Here is a methodological approach that is essentially the same in field and labora¬ 

tory situations. 

The difficulty in using full-scale systems, has undoubtedly discouraged the use 

of observation in behavioral research. But observations must be used when the vari¬ 

ables of research studies are interactive and interpersonal in nature, and when we 

wish to study the relations between actual behavior, like class management tech¬ 

niques or group interaction, and other behaviors or attribute variables. Important as 

is asking about behavior, there is no substitute for seeing, as directly as possible, 

what people actually do when confronted with different circumstances and different 

people. Moreover, in much, perhaps most, behavioral research, it is probably not 

necessary to use the larger observation systems. As shown earlier, smaller systems 

can be devised for special research purposes. Keeves’s (1972) limited system was 

highly appropriate for his purpose. In any case, scientific behavioral research 

requires direct and indirect observations of behavior, and the technical means of 
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making such observations are becoming increasingly adequate and available. The 

next century should see considerable understanding and improvement of methods of 

observation, as well as their increased meaningful use. 

Sociometry 

We constantly assess the people with whom we work, go to school, and live at home. 

We judge them for their suitability to work, play, and live with us. And we base our 

judgments on our observations of their behavior in different situations. We judge, we 

say, on the basis of our “experience.” The form of measurement we now consider 

sociometry, is based on these many informal observations. Again, the method is 

based on remembered observations and the inevitable judgments we make of people 

after observing them. 

Sociometry and Sociometric Choice 

Sociometry is a broad term indicating a number of methods of gathering and 

analyzing data on the choice, communication, and interaction patterns of individuals 

in groups. One might say that sociometry is the study and measurement of social 

choice. It has also been called a means of studying the attractions and repulsions of 

members of groups. 

A person is asked to choose one or more other persons according to one or more 

criteria supplied by the researcher: With whom would you like to work? With whom 

would you like to play? The person then makes one, two, three, or more choices 

from among the members of one’s own group (usually) or from other groups. What 

could be simpler and more natural? The method works well for kindergartners and 

for atomic scientists. 

Sociometric choice should be rather broadly understood: it not only means 

“choice of people,” it may also mean “choice of lines of communication,” “choice of 

lines of influence,” or “choice of minority groups.” The choices depend on the 

instructions and questions given to individuals. A sample list of sociometric questions 

and instructions follows: 

Example 

With whom would you like to work (play, sit next to, and so on)? 

Which two members of this group (age group, class, club, for instance) 

do you like the most (the least)? 

Who are the three best (worst) pupils in your class? 

Whom would you choose to represent you on a committee to improve 

faculty welfare? 

Which four individuals have the greatest prestige in your organization 

(class, company, team)? 

Which two groups of people are the most acceptable (least acceptable) to 

you as neighbors (friends, business associates, professional associates)? 
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Obviously, there are many possibilities. Some of these possibilities are discussed 

in Lindzey and Byrne (1968). In addition, these possibilities can be multiplied simply 

by asking: Who do you think would choose you to ... ? and Whom do you think the 

group would choose to ... ? Participants can also be asked to rank others using 

sociometric criteria, providing there are not too many to rank. Or rating scales can 

be used. 

Members of a group or organization can be asked to rate each other using one or 

more criteria. We can phrase the sociometric instructions something like the 

following: 

Example 

Here is a list of the members of your group. Rate each according to whether you 

would like to work with him/her on a committee to draft a set of bylaws. Use 

the numbers 4, 3, 2, 1, and 0, where 4 means you would like to work with 

him/her very much, 0 you would not want to work with him/her at all, and the 

other numbers representing intermediate degrees of liking to work with 

him/her. 

Clearly, other methods of measurement can be used. The main difference is that 

sociometry always has such ideas as social choice, interaction, communication, and 

influence behind it. 

Methods of Sociometric Analysis 

There are three basic forms of sociometric analysis: sociometric matrices, sociograms 

or directed graphs, and sociometric indices. Of all the methods of sociometric 

analysis, sociometric matrices, to be defined presently, perhaps contain the most 

important possibilities and implications for the behavioral researcher. Sociograms are 

diagrams or charts of the choices made in groups. We shall discuss sociograms or 

directed graphs very little, since they are used more for practical than for research 

purposes and their analysis is mathematically difficult, requiring more space than we 

can spare. The reader who requires more detail and explanation is directed to Fien- 

berg and Wasserman (1981), and Ove (1981). Sociometric indices are single numbers 

calculated from two or more numbers yielded by sociometric data. They indicate so¬ 

ciometric characteristics of individuals and groups. 

Sociometric Matrices 

We learned earlier that a matrix is a rectangular array or table of numbers or other 

symbols. For those who are unfamiliar with matrices we recommend read¬ 

ing Lindzey and Byrne (1968, pp. 470-473) for a good review of matrix analysis. 
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Explanation of elementary matrix operations and sociometric matrices can be found 

in Kemeny, Snell, and Thompson (1966, pp. 217-250, 384-406). A good elemen¬ 

tary presentation of matrices can be found in Davis (1973). An older but still valuable 

review of mathematical and statistical methods for analyzing group structure and 

communication is presented by Glanzer and Glaser (1959). 

In sociometry we are usually concerned mainly with square, or n X n matrices, n 

being equal to the number of persons in a group. Rows of the matrix are labeled i; 

columns are labeled/ i and / of course, can stand for any number and any person in 

the group. If we write a$, this means the entry in the z-th row andy-th column of the 

matrix, or, more simply, any entry in the matrix, It is convenient to write sociometric 

matrices. These are matrices of numbers expressing all the choices of group members 

in any group. 

Suppose a group of five members has responded to the sociometric question, 

“With whom would you like to work on such-and-such a project during the next two 

months? Choose two individuals.” The responses to the sociometric question are, of 

course, choices. If a group member chooses another group member, the choice is 

represented by a 1. If a group member does not choose another, the lack of choice is 

represented by 0. (If rejection had been called for, -1 could have been used.) The 

sociometric matrix of choices, C, of this hypothetical group situation is given in 

Table 31.1. 

It is possible to analyze the matrix in a number of ways. But first let us be sure 

we know how to read the matrix. It is probably easier to read from left to right, from 

i to / Member i chooses (or does not choose) member/ For example, a chooses b 

and e; c chooses d and e. Sometimes it is convenient to speak passively, “b was chosen 

by a, d, and e,” or “c was chosen by no one.” 

HD Table 31.1 Sociometric Choice Matrix: Five-Member Group, 

Two-Choice Questiona 

j 

a b c d e 

a 0 1 0 0 1 

b 1 0 0 0 1 

i c 0 0 0 1 1 

d 0 1 0 0 1 

e 1 1 0 0 0 

2 2 3 0 1 4 

Individual/ chooses individual/ That is, the table can be read by rows: b chooses a and e. It can 
a so be read by columns: b is chosen by a, d, and e. The sums at the bottom indicate the number of 
choices each individual receives. 
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The analysis of a matrix usually begins by studying it to see who chose whom. 
With a simple matrix this is easy. There are three kinds of choices: simple or one¬ 
way, mutual or two-way, and no choice. We look first at simple choices. (This was 
discussed in the preceding paragraph.) A simple one-way choice is where i chooses y, 
but j does not choose i. In Table 31.1, c chose d, but d did not choose c. We write: 
i —■*j, or c —> d. A mutual choice is where i chooses y and j also chooses i. In the table, 
a chose b and b chose a. We write: i <-»y, or a b. We might count mutual choices in 
Table 31.1 : a <-» b, a ++ e, b e. 

The extent to which any member is chosen is seen easily by adding the columns 
of the matrix. Obviously, e is “popular”: this person was chosen by all the other group 
members; a and b received two and three choices, respectively. Evidently, c is not at 
all popular: no one chose this person; d is not popular either, receiving only one 
choice. If individuals are allowed unlimited choices, that is, if they are instructed to 
choose any number of other individuals, then the row sums take on meaning. 
Participants can be told to choose one, two, three, or more other persons. Three 
seems to be a common number of choices. The number allowed should be dictated 
by the research purposes. We might call these sums indices of, say, Gregariousness. 

There are other methods of matrix analysis that are potentially useful to 
researchers. For example, by relatively simple matrix operations one can determine 
cliques and chains of influence in small and large groups. These matters, however, 
are beyond the scope of this book. 

Socioprams or Directed Graphs 
The simplest analyses are like those just discussed. But with a matrix larger than the 
one in Table 31.1 it is almost impossible to digest the complexities of the choice 
relations. Here sociograms are helpful, provided the group is not too large. We now 
change the name “sociogram” to “directed graph.” This is a more general 
mathematical term that can be applied to any situation in which i and j are in some 
relation R. Instead of saying “z choosesy,” it is quite possible to say “z influencesy,” or 
“z communicates toy,” or “z is a friend of j,” or “z dominates y.” In symbolic 
shorthand, we can write, generally: iRj. Specifically, we can write for the examples 
just given: iCj (z choosesj), ilj (z influencesy), iCj (i communicates toj), iFj (z is a 
friend ofy), z'Dy (z dominatesy). Any of these interpretations can be depicted by a 
matrix such as that of Table 31.1 and by a directed graph. A directed graph is given in 

Figure 31.1. 
We see at a glance that e is the center of choice. We might call this person a 

leader. Or we might say this person is either a likable or competent person. More 
important, note that a, b, and e choose each other. This is a clique. We define a clique 
as three or more individuals who mutually choose each other. Festinger, Schachter, 
and Back (1950) present a valuable method for identifying cliques within groups. 
Booking for more double-headed arrows, we find none. Now we might look for indi¬ 
viduals with no arrowheads pointing at them: c is one such individual. We can say 
that c is not chosen, or neglected. For more information on cliques and their 
identification one can consult Glanzer and Glaser (1959, pp. 326-327). Glanzer and 
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[U Figure 31.1 

Glaser succinctly outline methods of the multiplication of binary matrices (1, 0), 

whose application yields useful insights into group structure. 

Note that directed graphs and matrices say the same thing. We look at the 

number of choices a receives by adding the Is in the a column of the matrix. We get 

the same information by adding the number of arrowheads pointing at a in the 

graph. For small and medium-size groups and for descriptive purposes, graphs are 

excellent means of summarizing group relations. For larger groups (larger than 20 

members) and more analytic purposes, they are not as suitable. They become 

difficult to construct and to interpret. Moreover, different individuals can draw 

difrerent graphs using the same data. Matrices are general and, if handled properly, 

not too difficult to interpret. Different individuals must, with the same data, write 
exactly the same matrices. 

Sociometric Indices 

In sociometry many indices are possible. Three are given below. The student will 

find others in the literature. The discussion of this section is for the most part based 
on Proctor and Loomis (1951). 

A simple but useful index is: 

where CSj the choice status of Persony',- Xcy- = the sum of choices in Column j; and 

n = the number of individuals in the group (n - 1 is used because one cannot count 

the individual himself or herself). For C of Table 31.1, CSe = 4/4 = 1.00 and CS„ = 

2/4 = .50. How well or how poorly chosen an individual is, is revealed by CS. It is, 

in short, the choice status. It is, of course, possible to have a choice rejection index. 

Simply put, the number of 0s in any column in the numerator of Equation 31.1. 
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Group sociometric measures are perhaps more interesting. A measure of the 

cohesiveness of a group is: 

Co 
n(n — 1) 

2 

(31.2) 

Group cohesiveness is represented by Co and X(i ** j) equals sum of mutual choices 

(or mutual pairs). This useful index is the proportion of mutual choices to the total 

number of possible pairs. In a five-member group, the total number of possible pairs 

is five things taken two at a time: 

1 5(5 - 1) 

2 2 

If, in an unlimited choice situation, there were two mutual choices, then Co — 2/10 — 

.20, a rather low degree of cohesiveness. In the case of limited choice, the formula is: 

Co 
S(» <->/) 

dn 

T~ 

(31.3) 

where d equals the number of choices each individual is permitted. For C of Table 

31.1 Co = 3/ (2 X 5/2) = 3/5 = .60, a substantial degree of cohesiveness. 

esearc h Uses of Sociometry 

Since the data of sociometry seem so different from other kinds of data, students may 

find it difficult to think of sociometric measurement as measurement. No doubt 

sociometric data are different, but they are the result of observation, and they are 

measures. Since they are measures, they also have the basic measurement concerns, 

such as reliability and validity. Lindzey and Byrne (1968) discuss these measurement 

issues. Sociometric measurements are useful, for example, in classifying individuals 

and groups. In the classic Bennington College study, Newcomb (1943) measured 

individual prestige by asking students to name five students they would choose as 

most worthy to represent Bennington College at an important gathering of students 

from all types of American colleges. He then grouped students by frequency of 

choice and related this measure of sociometric prestige to political and economic 

conservatism. In reading the examples of this section, the student should clearly 

realize that sociometry is a method of observation and data collection that, like any 

other method of observation, obtains measures of variables. 
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Prejudice in Schools 
Rooney-Rebeck and Jason (1986) investigated the effects of cooperative group peer 

tutoring on the interethnic relations of black American, white American and Latino 

American first- and third-grade children. These researchers made direct observa¬ 

tions of social interactions on the playground before and after an eight-week inter¬ 

vention program. Sociometric indices were computed to measure the interethnic as¬ 

sociations. Rooney-Rebeck and Jason found an increase in interethnic interactions 

and sociometric choices for first-graders. These first-graders also showed improve¬ 

ment in their arithmetic and reading grades. However, no significant changes were 

found among the third-grade students in either interethnic associations or academic 

performance. It appears from these findings that a cooperative peer tutoring class¬ 

room structure may be beneficial to first-grade children, but not necessarily 

for third-grade children. The researchers suggest that this may be due to limited 

experience with academic competition and overt ethnic prejudices of first-grade 
children. 

Sociometry and Stereotypes 

Gross, Green, Storck, and Vanyur (1980) used a combination of sociometric and 

stereotypic ratings to study the attitudes of people. Participants of both sexes viewed a 

videotape of either a male or a female homosexual stimulus person. The participants 

were divided into three groups. One group of participants was informed that the 

stimulus person was a homosexual before viewing the tape. The second group was 

informed after the viewing, and the third group was never informed. Results revealed 

that trait ratings were more stereotypical and sociometric ratings less favorable for the 

stimulus person in both disclosure conditions: immediate or delayed. Those stimulus 

persons who were identified as homosexuals were judged more stereotypically by 

participants of their own sex. Men generally rated the stimulus person more harshly in 
the delayed condition than in the immediate disclosure conditions. 

Sociometry and Social Status 

A number of studies have been conducted using sociometry to measure social status. 

One of these studies follow, which involve social status among school-aged children. 

Inderbitzen, Walters, and Bukowski (1997) studied the relation between 

sociometric status groups and social anxiety in adolescent peer relations. The 

participants consisted of 973 students in grades 6 through 9. The number of boys 

and girls was almost equal. These participants completed the Social Anxiety Scale for 

Adolescents and a sociometric nomination task. The sociometric nomination task 

included behavioral descriptors such as liked most, liked least, starts fights the most, 

best sense of humor, class leader, easiest to push around, and most cooperative. 

These sociometric nominations were then used to classify students into standard 

sociometric status groups such as popular, average, rejected, neglected, and 

controversial; as well as into rejected subgroups: aggressive rejected and submissive 

rejected. Results indicated that students classified as rejected and neglected reported 

more social anxiety than those classified as average, popular, or controversial. In 

addition, submissive rejected students reported significantly more social anxiety than 
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did aggressive rejected or average students. Through the use of sociometry, one can 

discover the existence of adolescents’ peer problems. 

Race, Belief, and Sociometric Choice 

Graham and Cohen (1997) studied the relation between race and sex in children’s 

peer relationships. These relationships were measured by sociometric ratings and ob¬ 

served friendships. This study observed every student in a single elementary school. 

This included grades 1 to 6. This school was chosen because it had nearly an even 

number of black American to white American children in each class. The students 

were also divided into two age groups: grades 1 to 3 and grades 4 to 6. Regardless of 

age, race, or sex, and relationship measures, children favored same-sex peers over 

same-race peers. This says that boys preferred social interactions with other boys re¬ 

gardless of race and girls preferred to interact with other girls regardless of race. Al¬ 

though older black American children had more same-race than cross-race mutual 

friends, black American children were more accepting of white American children 

than the reverse. Despite some same-race preferences, cross-race evaluations were 

generally quite positive on both peer relationship measures. 

Sociometry is a simple, economical, and naturalistic method of observation and data 

collection. Whenever human actions such as choosing, influencing, dominating, and 

communicating—especially in group situations — are involved, sociometric methods 

can usually be used. They have considerable flexibility. If defined broadly, they can be 

adapted to a wide variety of research in the laboratory and in the field. Their quan¬ 

tification and analysis possibilities, though not generally realized in the literature, are 

rewarding. The ability to use the simple assignment of Is and Os is particularly fortu¬ 

nate, because powerful mathematical methods can be applied to the data with 

uniquely interpretable and meaningful results. Matrix methods are the outstanding 

example. With these methods, one can discover cliques in groups, communication 

and influence channels, patterns of cohesiveness, connectedness, hierarchism, and so 

on. 
As mentioned earlier, sociometrics like other measurement methods, are not 

without shortcomings. Longshore (1982), for example, advocates the use of other 

unobtrusive methods rather than sociometrics when studying delicate problems such 

as desegregation. Longshore points out that social scientists have not found 

consistent findings on desegregation, because researchers were more concerned with 

the outcomes of desegregation instead of the wide range of conditions under which 

desegregation occurs. Longshore says that the assessment of short-term outcomes 

should be assessed through measures such as unobtrusive observation of playgroups 

or classes instead of sociometrics. 

Chapter Summary 

1. There is a lot of controversy and debate about observation and methods of 

observation. 
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2. Two basic modes of observation 

• We can watch peoples’ overt actions (i.e., what they do and what they say) 

• We can ask people about their own actions and the behavior of others 

3. The observer could be a major problem in the study. The observer could 

make incorrect inferences about the observed behavior. 

4. The observer can affect the objects of observation by being part of the 

observational system. 

5. Observed measurements are subject to reliability and validity requirements. 

By having the observer interpret the observation, validity may be reduced. 

6. Reliability for observations is in the form of agreement between judges or 

observers. The behavior to be measured through direct observation must be 
stated clearly with good operational definitions. 

7. A fundamental task for the observer is to categorize the observed data. 

Categories are created, and as certain behaviors are observed, a tally or note 
is made in that category. 

8. Units of behavior are sometimes vague or broad. Some researchers use very 
strict operational definitions. 

9. All observation requires some level of interpretation from the observer. 

10. Different observation systems vary in the amount of generalizability. Some 
are very general, others are quite specific. 

11. Behaviors can be sampled using event sampling or time sampling 

techniques. Each has advantages and disadvantages. 

12. One type of observation involves observers presented with an observation 

system in the form of a rating scale. They are asked to assess an object in 
terms of one or more characteristics. 

13. There are five types of rating scales: 

• checklist 

• forced-choice instruments 
• category rating scale 

• numerical rating scale 

• graphic rating scale 

14. Ratings have two serious weaknesses: 

a. Because ratings are easy to construct and use, they may be created with¬ 
out knowledge of their intrinsic defects. 

b. Ratings are prone to constant or bias error. 

15. Sociometry is a broad term indicating the number of methods of gathering 

and analyzing data on choice, communication, and interaction patterns of 
individuals in groups. 

16. There are three basic forms of sociometric analysis: sociometric matrices, 
sociograms or directed graphs, and sociometric indices. 
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Study Suggestions 

1. The student should study one or two behavior observation systems in 

detail. For students of education, the Medley and Mitzel (1963) system will 

yield high returns. Other students will want to study one or two other 

systems. It is authoritative and clear with many examples. The two best 

general references are the Heyns and Lippitt (1954), and Weick (1968) in 

the first and second editions of the Handbook of Social Psychology. An 

anthology of 79 observation systems has been published by Simon and 

Boyer (1970) in cooperation with Research for Better Schools, Inc., a 

regional education laboratory. The researcher who intends using observa¬ 

tions should consult this huge collection of systems. The student of 

education will find excellent summaries and discussions of educational 

observation systems in Dunkin and Biddle (1974). The following articles 

are valuable. Boice points out the lack of training for making observations 

of behavior and makes suggestions for such training. Herbert and Attridge 

provide criteria for observation systems. They also point out that 

knowledge of such systems is limited. 

Boice, R. (1983). Observational Skills. Psychological Bulletin, 93, 3-29. 

Herbert, J., & Attridge, C. (1975). A guide for developers and users of 

observation systems and manuals. American Educational Research 

Journal, 12, 1-20. 

2. An investigator, studying the influence patterns of boards of education, 

obtained the following matrix from one board of education. (Note that 

this is like an unlimited choice situation because each individual can 

influence all or none of the members of the group.) Read the matrix: i 

influences j. 

j 
a b c d e 

a 0 0 1 1 0 

b 0 0 0 0 1 

i c 1 0 0 1 0 

d 1 0 1 0 0 

e 0 1 0 0 0 

a. What conclusions can you reach from study of this matrix? Is the board 

divided? Is there likely to be conflict? 
b. Draw a graph of the influence situation. Interpret the graph. 
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c. Is there a clique on the board? (Define clique as given in the test.) If so, 

who are its members? 

d. What members have the least number of influence channels? Are they, 

then, much less influential than the other members, other things being 

equal? 

[Answers: (c) Yes: a, c, d; (d) b and e.] 

3. For the situation in Study Suggestion 2, calculate the cohesiveness of the 
group using Equation 32.2. 

[Answer: Co = .40.] 

4. Read one of the following articles, which apply sociometrics. Pay close 
attention to how it was done. 

Ray, G. E., Cohen, R., Secrist, M.E., & Duncan, M. K. (1997). Relating 

aggressive and victimization behaviors to children’s sociometric status 

and friendships. Journal of Social and Personal Relationships, 14, 95-108. 

[This study focused on the relation between peer nominations of 9- to 

12-year-old students for aggressive and victimization behaviors and 

peer group sociometric status: popular, average, rejected, and the 
number of mutual friends.] 

Schwendinger, H., & Schwendinger, J. R. (1997). Charting subcultures at 

a frontier of knowledge. British Journal of Sociology, 48, 71-94. [This 

article describes a research program for studying adolescent sub¬ 

cultures using graphs of large subcultural networks. These graphs and 

networks are produced by social-type and sociometric methods in or¬ 
der to understand adolescents and delinquency.] 

5. Read one of the following studies on time sampling or event sampling. 

.Make a note on how the authors execute each of these procedures. 

Bass, R. F., & Aserlind, L. (1984). Interval and time-sample data collection 

procedures. Methodological issues. Advances in Learning and Behavioral 
Disabilities, 3, 1-39. [Time sampling] 

Brown, K. W., & Moskowitz, D. S. (1998). Dynamic stability of behavior: 

The rhythms of our interpersonal lives. Journal of Personality, 66, 
105-134. [Event sampling] 

Childs, G. H. (1997). A concurrent validity study of teachers’ ratings for 

nominated “problem” children. British Journal of Educational Psychology, 
61, 457-474. [Time sampling] 

Peregrine, P. N., Drews, D. R., North, M., & Slupe, A. (1993). Sampling 

techniques and sampling error in naturalistic observation: An 

empirical evaluation with implications for cross-cultural research. 

Cross-Cultural Research: Journal of Comparative Social Science, 27, 
232-246. [Compares event, time, and cluster sampling] 
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Multiple regression analysis is a method for studying the effects and the magnitudes of 

the effects of more than one independent variable on one dependent variable, using 

principles of correlation and regression. We turn immediately to research and defer 

explanation until later. 

Three Research Examples 

How are air pollution and socioeconomic status related to mortality from respiratory 

ailments? Lave and Seskin (1970) in their study of English and American data, used 
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multiple regression analysis to answer the question. In their studies in English 

boroughs, they assessed the presumed effects of air pollution and socioeconomic 

status, as independent variables, on mortality rates of lung cancer, bronchitis, and 

pneumonia, as dependent variables. 

The overall effect of the two independent variables on the dependent variable is 

expressed by the square of a correlation coefficient called the coefficient of multiple 

correlation, or R2. This coefficient’s interpretation is similar to that of r2, which we 

discussed much earlier. Recall that squaring a correlation coefficient yields an esti¬ 

mate of the amount of variance shared by two variables. This notion is used a great 
deal in regression analysis. 

It is the proportion of the variance of the dependent variable, in this case mortal¬ 

ity, accounted for by the two independent variables. The R2s between mortality due 

to bronchitis on the one hand, and air pollution and socioeconomic status on the 

other hand, ranged from .30 to .78 in different samples in England and Wales, indi¬ 

cating substantial relations. The R2s for the dependent variables, lung cancer and 

pneumonia mortalities, were similar. Multiple regression also enables the researcher 

to learn something of the relative influences of independent variables. In most of the 

samples, air pollution was more important than socioeconomic status. As a “control” 

analysis, Lave and Seskin (1970) studied other cancers that would presumably not be 

affected by air pollution. The R2s were consistently lower, as expected. Extension of 

the research to metropolitan areas in the United States yielded similar results. 

Students should bear in mind our earlier discussions of the difficulty in interpreting 

nonexpenmental results. Lave and Seskin, however, have built a strong case, even 

though some of their interpretation was questionable. At this point, it would be wise 

for readers to return to the discussion “Multivariate Relations and Regression” in 
Chapter 5. 

How are dietary restraint, energy intake, and physical activity related to body 

weight? Klesges, Isbell, and Klesges (1992) used multiple regression analysis to try 

answering this question. This study is of interest because of the number of health 

problems associated with obesity. These researchers collected one year of data on 

287 adults. The dependent variable was the weight change from baseline to the one- 

year follow-up. The independent variables were weight at baseline, body mass index, 

restraint score, age, total energy intake, percentage of fat intake, percentage of car¬ 

bohydrates and physical activity levels. The height and weight measurements of 

these participants were used to estimate body mass. The dietary intake measures 

were taken each week. Physical activity was measured through a physical activity 

questionnaire containing 16 items representing physical activities. Restraint was 

measured through a restraint scale. Two separate regression analyses were done. One 
was for men and the other was for women. 

The R2 between the dependent variable, weight change, and a linear combina¬ 

tion of the independent variables was .13 for men and .21 for women. This says that 

the mdependent variables studied by Klesges et al. accounted only for 13% of the 

variability observed in weight change for men and 21% for women. The figure for 

the men was not statistically significant at the .05 level. However, the regression 

equation for women was significant at the a = .01 level. Through the use of 
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regression, however, these researchers were able to determine that for men, initial 

body weight and body mass were the two strongest variables in accounting for 

weight change. For women, the most important variables were initial body weight 

and restraint. 

In a study of the prediction of high school GPA (grade point average), Holtzman 

and Brown (1968) used two independent variable measures: study habits and atti¬ 

tudes (Habits) and scholastic aptitude (Aptitude). The correlations between high 

school GPA (the dependent variable) and Habits and Aptitude in grade 7 (N = 1,684) 

were .55 and .61. The correlation between Habits and Aptitudes was .32. How 

much more variance was accounted for by adding the scholastic aptitude measure 

to the study habits measure? If we combine Habits and Aptitudes optimally to pre¬ 

dict GPA, we obtain a correlation of .72. The answer to the question, then, is 

.722 — .552 = .52 — .30 = .22, or 22% more of the variance of GPA is accounted for by 

adding Aptitudes to Habits. 
These are examples of multiple regression analysis. The basic idea is the same as 

simple correlation except that k, where k is greater than 1, independent variables are 

used to predict the dependent variable. In simple regression analysis, a variable, X, is 

used to predict another variable, Y In multiple regression analysis, variables 

Xu X2, ■ • ■ , Xk are used to predict Y The method and the calculations are done in a 

manner to give the “best” prediction possible, given the correlations among all the 

variables. In other words, instead of saying “If X, then Y,” we say “If X1} X2, • . • , Xh 

then and the results of the calculations tell us how “good” the prediction is and 

approximately how much of the variance of Y is accounted for by the “best” linear 

combination of the independent variables. 

Simple Regression Analysis _ 

We say that we study the regression of Y scores on X scores. We wish to study how 

the Y scores “go back to,” how they “depend on,” the X scores. Gabon (see Cowles, 

1989), who first worked out the notion of correlation, got the idea from the notion of 

“regression toward mediocrity,” a phenomenon observed in studies of inheritance. 

(The symbol r used for the coefficient of correlation originally meant “regression.”) 

Tall men will tend to have shorter sons, and short men taller sons. The sons’ heights, 

then, tend to “regress to,” or “go back to,” the mean of the population. Statistically, 

if we want to predict Y from X and the correlation between X and Y is zero, then our 

best prediction is to the mean. That is, for any given X, say X7, we can only predict 

the mean of Y The higher the correlation, however, the better the prediction. If 

r = 1.00, then prediction is perfect. To the extent that the correlation departs from 

1.00, to that extent predictions from Xto Y are less than perfect. If we plot the X and 

Y values when r = 1.00, they will all lie on a straight line. The higher the correlation, 

the closer the plotted values will be to the regression line (see Chapter 5). 

To illustrate and explain the notion of statistical regression, we use two fictitious 

examples with simple numbers. The numbers used in the two examples are the same 

except that they are arranged differently. These examples are taken from Chapter 15, 
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[Ml Table 32.1 Regression Analysis of Two Sets of Scores 

A. r = .90 B. r = .00 

Y X xy r d Y X XY Y d 

1 2 2 1.2 -.2 1 5 5 3 -2 

2 4 8 3.0 -1.0 2 2 4 3 -1 

3 3 9 2.1 .9 3 4 12 3 0 

4 5 20 3.9 .1 4 6 24 3 1 

5 6 30 4.8 .2 5 3 15 3 2 

X: 15 20 69 0 15 20 60 0 

M: 3 4 Xd2 = 1.90 3 4 Xd2 = 10.00 

X2: 55 90 55 90 

sy = 55 - 
(15)2 

5 =1° 2y2 = 55 - 
(15)2 

5 
10 

2)x2 = 90 - 

o
 II 

CN
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O
 

2>2 = 90 
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5 
10 

^xy = 69 - 
(15)(20) 

5 
YjXy = 60 

(15)(20) 

5 
- = 0 

'fjXy 9 0 b - 
^x2 To = '90 

b = — = 
10 

0 

a = Y-bX II 1 

O
 

o
 

3
 

= -.60 a = 3 - (0)(4) = 3 

Y' = a 4- bX = -.60 + .90X r = 3 + (0)x 

where in considering the analysis of variance, we studied the effect on the F-test of 

the correlation between experimental groups. The examples are given in Table 32.1. 

n the example on the left, labeled A, the correlation between the X and Y values is 

.90, whereas in the example on the right, labeled B, the correlation is 0. Certain 

calculations necessary for regression analysis are also given in the table: the sums and 

means, the deviation sums-of-squares of X and Y (Xx2 = XX2 - (XX)1 In) the devia 

ex°ph3SshrordyCtS = and “min regression Jalues to be 
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U Figure 32.1 

First, note the difference between the scores in sets A and B. They differ only in 

the order of the scores of the second or X columns. The two different orders pro¬ 

duce very different correlations between the X and L scores. In the A set, r — .90, 

and in the B set, r = .00. Second, note the statistics at the bottom of the table. St2 

and Xy2 are the same in both A and B, but %xy is 9 in A and 0 in B. Let us concen¬ 

trate on the A set of scores. The basic equation of simple linear regression is: 

T = a + bX (32.1) 

where X = the scores of the independent variable, a = intercept constant, b = re¬ 

gression coefficient, and Y' = predicted scores of the dependent variable. A regres¬ 

sion equation is a prediction formula: Y values are predicted from X values. The 

correlation between the observed X and Y values in effect determines how the pre¬ 

diction equation “works.” The intercept constant, u, and the regression coefficient, b, 

will be explained shordy. 
The two sets of X and Lvalues of Table 32.1 are plotted in Figure 32.1. Lines 

have been drawn in each plot to “run through” the plotted points. If we had a way of 

placing these lines so that they would simultaneously be as close to all the points as 

possible, then the lines should express the regression of L on X. The line in the left 

plot, where r = .90, runs close to the plotted XL points. In the right plot, however, 

where r = .00, it is not possible to run the line close to all the points. The points are, 

in effect, placed randomly, since r = .00. 

The correlations between X and Y, r = .90 and r = .00, determine the slopes of 

the regression lines (when the standard deviations of X and I are equal, as they are in 

this case). The slope indicates the change in L with a change of one unit of X. In the 

r = .90 example, with a change of 1 in X, we predict a change of .90 in L This is 

expressed trigonometrically as the length of the line opposite the angle made by the 

regression line divided by the length of the line adjacent to the angle. In Figure 32.1, 

if we drop a perpendicular from the regression line — the point where the X and L 

means intersect, for example —to a line drawn horizontally from the point where the 
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regression line intersects the Eaxis, or at Y = -.60, then 3.6/4.0 = .90. A change of 

1 in X means a change of .90 in Y Raw scores have been used for most of the exam¬ 

ples in this chapter because they better fit our purposes. A thorough treatment of re¬ 

gression, however, requires discussions using deviation scores and standard scores. 

The emphasis here, as elsewhere in the book, is on research uses of the methods and 

techniques, and not on statistics as such. The student should supplement his or her 

study, therefore, with good basic discussions of simple and multiple regression. See 
the references in the study suggestions at the end Chapter 33. 

The plot of the X and Y values of Example B (right part of Figure 32.1) is quite 

different. In Example A, one can rather easily and visually draw a line through the 

points and achieve a fairly accurate approximation to the regression line. But in Ex¬ 

ample B this is hardly possible. We can draw the line only by using other guidelines, 

which we get to shortly. Another important thing to note is the scatter or dispersion 

of the plotted points around the two regression lines. In Example A, they cling rather 

closely to the line. If r = 1.00, they would all be on the line. When r = .00, on the 

other hand, they scatter widely about the line. The lower the correlation, the greater the 
scatter. 

In order to calculate the regression statistics of the two examples, we must calcu¬ 

late the deviation sums-of-squares and cross products. This has been done at the bot¬ 
tom of Table 32.1. The formula for the slope, or regression coefficient, b, is: 

b = 
Xry 

2T7 (32.2) 

1 he two Vs are .90 and .00. The intercept constant, a, is calculated with the formula: 

a = Y~bX (32.3) 

The as for the two examples are -.60 and 3; for Example A, a = 3 - (,90)(4) = -.60. 

he intercept constant is the point where the regression line intercepts the E-axis. To 

raw the regression line, lay a ruler between the intercept constant on the E-axis and 

the point where the mean of Eand the mean ofXmeet. (In Figure 32.1, these points 
are indicated with small squares in Example A and diamonds in Example B.) 

The final steps in the process, at least as far as it will be taken here, are to write 

regression equations and then, using the equations, calculate the predicted values of Y, 

or given the A values. The two equations are given in the last line of Table 32 1 

J^irst look at the regression equation for r = .00: E' = 3 + (0)A This means of 

course, that all the predicted Es are 3, the mean of E When r = 0, the b7st p'Ttion 

s the mean, as indicated earlier. When r = 1.00, at the other extreme, the reader can 

mZ r = on"11 eXaC,dy: T SimpIy adds the constant’ X scores, 
with rh '90’ predlCtlon IS less 111311 Perfect and one predicts Y' values calculated 

h the regression equation. For example, to predict the first Y' score, we calculate: 

E'i = -.60 + (.90X2)' = 1.20 



Chapter 32 • Multiple Regression Analysis: Foundations 761 

The predicted scores of the A and B sets have been given in Table 32.1. (See columns 

labeled Y'.) Note an important point: If for Example A we plot the X and the 

predicted Y or Y' values, the plotted points all lie on the regression line. That is, the 

regression line of the figure represents the set of predicted Y values, given the X 

values and the correlation between the X and the observed F values. 

We can now calculate the predicted values of Y The higher the correlation, the 

more accurate the prediction. The accuracy of the predictions of the two sets of 

scores can be clearly shown by calculating the differences between the original Y 

values and the predicted Y values, or Y — Y' = d, and then calculating the sums-of- 

squares of these differences. Such differences are called residuals. In Table 32.1, the 

two sets of residuals and their sums-of-squares have been calculated (see columns la¬ 

beled d). The two values of Xd2, 1.90 for A and 10.00 for B, are quite different, just 

as the plots in Figure 32.1 are quite different: The values of the B set, r = .00, is 

much greater than that of the A, or r = .90, set. That is, the higher the correlation, 

the smaller the deviations from prediction and thus the more accurate the prediction. 

In the next section, we will examine an extension of the simplest model of 

regression. The extended method called multiple regression has a far wider utility in 

research than the simple model presented here. However, one should not think that 

the simplest model is without value or use. The simple regression model can indeed 

provide valuable research and practical information. For example, Erlich and Fee 

(1978) showed how this simple regression model with some additional statistics 

(confidence band or interval) can be used to determine accountability of educational 

instruction and policy. 

Multiple Linear Regression _ 

The method of multiple linear regression extends the ideas presented in the preced¬ 

ing section to more than one independent variable. From knowledge of the values of 

two or more independent variables, Xu X2, . . . , Xk, we want to predict to a depen¬ 

dent variable, Y Earlier in the book we talked about the great need to assess the 

influence of several variables on a dependent variable. We can, of course, predict 

from verbal aptitude, say, to reading achievement, or from conservatism to ethnic 

attitudes. But how much more powerful it would be if we could predict from verbal 

aptitude together with other variables known or thought to influence reading—for 

example, achievement motivation and attitude toward school work. Theoretically, 

there is no limit to the number of variables we can use, but there are practical limits. 

Although only two independent variables are used in the example that follows, the 

principles apply to any number of independent variables. 

An Example 

Take one of the problems just mentioned. Suppose we had reading achievement 

(RA), verbal aptitude (VA), and achievement motivation (AM) scores on 20 eighth- 

grade pupils. We want to predict to reading achievement, Y, from verbal aptitude, Xu 
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Table 32.2 Fictitious Example: Reading Achievement (Y), Verbal Aptitude (Xj), and 

Achievement Motivation (X2) Scores 

X, Y' Y-Y'=d 

2 

2 

1 

1 

4 

4 

4 

3 

7 3 6 

4 4 6 

7 5 3 

654 

7 7 3 

863 

3 4 5 

3 3 5 

669 

6 6 8 

10 8 6 

9 9 7 

6 10 5 

6 

3.0305 -1.0305 

3.0305 -2.0305 

2.3534 -1.3534 

1.9600 -.9600 

4.4944 .5056 

5.1715 -1.1715 

4.6684 2.3316 

5.0618 .9382 

6.0226 .9774 

5.3455 2.6545 

4.7781 -1.7781 

4.1010 -1.1010 

7.7059 -1.7059 

7.3125 -1.3125 

7.8799 2.1201 

8.9504 .0496 

9 

10 

110 

M: 5.50 

22: 770.0 

9 

4 

4 

99 

4.95 

625.0 

5 

7 

7 

104 

5.20 

600.0 

8.8407 

8.1636 

5.5649 

5.5649 

-2.8407 

-2.1636 

3.4351 

4.4351 

0 

81.6091 
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and achievement motivation, X2. Or, we want to calculate the regression of reading 

achievement on both verbal aptitude and achievement motivation. If the scores on 

verbal aptitude and achievement motivation were standard scores, we might average 

them, treat the averages as one composite independent variable, and calculate the 

regression statistics as we did earlier. We might not do too badly either. But there is a 

better way. 

Suppose the Xl (verbal aptitude), X2 (achievement motivation), and Y (reading 

achievement), scores of the 20 subjects and the sums, means, and raw score sums-of- 

squares are those of Table 32.2 (Disregard the Y' and d columns for the moment.) 

We need to calculate the deviation sums-of-squares, the deviation cross products, the 

standard deviations and the correlations among the three variables. These are the ba¬ 

sic statistics that are calculated for almost any set of data. They are given in Table 

32.3. The calculations are not done here because their mechanics were covered in 

earlier chapters. The student should do them and note that the obtained results will 

probably be slightly different from those reported above. Such differences are due to 

rounding errors — an ever-present problem in multivariate analysis. In fact, the re¬ 

sults of this problem, obtained on a desk calculator, are slightly different from those 

obtained by computer. The sums-of-squares and cross products are given in the diag¬ 

onal (from upper left to lower right) and above it, and the correlations are given be¬ 

low the diagonal. The rs of prime interest are those of the two independent variables 

with the dependent variable, ryX and ryl, .6735 and .3946 respectively. With these 

routine calculations out of the way, we can concentrate on the basic notions of multi¬ 

ple regression. The fundamental regression equation is: 

Y' = a + b\X\ + • • • + bkXk (32.4) 

[Ml Table 32.3 Deviation Sums-of-Squares and Cross Products, Correlation Coeffi¬ 

cients, and Standard Deviations (Data from Table 34.2/ 

y Xi x2 

y 165.00 100.50 39.00 

Xi .6735 134.95 23.20 

x2 .3946 .2596 59.20 

s 2.9469 2.6651 1.7652 

The tabled entries are as follows. The first line gives, successively, Xy2, the sum-of-squares of the 

deviation scores for Y, the cross product of the deviations of Xl and Y, or Xxty and finally Xx2y. The 

entries in the second and third lines, on the diagonal or above, are Xxi , XxiX2, and (in the lower 

right corner) Xx22. The italicized entries below the diagonal are the correlation coefficients. The 

standard deviations are given in die last line. 
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The symbols have the same meaning as those of the simple regression equation, 

except that there are k independent variables and k regression coefficients. Somehow, 

the a and bs must be calculated from knowledge of the Xs and Y. These calculations 

are the most complex of multiple regression analysis. For only two independent 

variables, algebraic formulas given in statistics books can be used (see Cohen & 

Cohen, 1983; Draper & Smith, 1981; Neter, Wasserman & Kutner, 1983; or 

Pedhazur, 1996). The calculation of a, once the bs are found, is straightforward. The 

problem is the calculation of the bs when there are more than two independent 

variables. Only the general ideas behind the calculations will be explained, since the 

details would take us too far from our central concern. The reader is asked to consult 

any and or all of the following: Pedhazur (1996); Draper and Smith (1981); Neter, 

Wasserman, and Kutner (1983); Kerlinger and Pedhazur (1973); Cohen and Cohen 

(1983). 

What we have, in effect, is a set of linear equations, one equation for each 

independent variable. The objective of the determination of the bs of Equation 32.4 

is to find those b values that will minimize the sums-of-squares of the residuals. This 

is the principle of least squares. The calculus provides the method of differentiation for 

doing this. If used, it yields a set of simultaneous linear equations called normal 

equations (no relation to normal distribution). A convenient form of these equations 

contains the coefficients of correlation among all the independent variables and 

between the independent variables and the dependent variable and a set of weights 

called beta weights, 07, that will be explained later (they are like the b weights). The 

normal equations for the above problem are: 

ruP\ + rup2 = ryl 

pm a (32.5) 
rnP i + r22f2 = try2 

where 0, equals beta weights; rn equals the correlations among the independent 

variables; and ry] the correlations between the independent variables and the depen¬ 

dent variable, Y (Note that r12 = r21, and that rn = r22 = 1.00. Note, too, that 

Equation 32.5 can be extended to any number of independent variables.) 

Probably the best way—certainly the most elegant way—to solve the equations 

for the /3j is to use matrix algebra. Unfortunately, knowledge of matrix algebra cannot 

be assumed. So the actual solution of the equations using matrix algebra must be 

omitted but the solution for two independent variables can be obtained algebraically 

without using matrices. However, any size greater than this would certainly require 

the use of a computer program because the amount of computations increase expo¬ 

nentially. We will show how the solution can be obtained with a little algebra. To use 

the normal equations given above, we will need to compute r12, ryl and ry2. Remem- 

er, rn and r22 are both equal to 1.00. From examining Table 32.3, we obtain rn = 

.259562, ryl = .6735 and ry2 = .394604. Putting these values into the normal equa¬ 
tions, we get: ^ 

l.OOOOOOfr + .25956202 v= .6735 

.2595620, + 1.000000, = .394604 
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Take each normal equation and rearrange them so that Pi is on one side of the 

equal sign and everything else is on the other side: 

Pi = .6735 - .259562)02 

Pi = 1.5202688 - 3.8526441/32 

Now set the equal to each other and solve for p2. 

.6735 - .259562)02 = 1.5202688 - 3.8526441)02 

3.593O821i02 - .8467688 

.8467688 
07 =-= .235666 « .2357 

3.5930821 

Solving for Pi we substitute the value of p2 back into the equation: Pi = 

.6735 - .259562)02. So, 

Pi = .6735 - .259562 X .235666 = .6123 

The solution for our two variable situation given above, yields the following beta 

weights: Pi = .6123 and p2 = .2357. The b weights or unstandardized regression 

weights are then obtained from the following formula: 

bj = Pj— (32-6) 
Si 

where Sj equals standard deviations of variables one and two (see Table 32.3) and y 

equals standard deviation of Y Substituting in Equation 32.6 we obtain: 

bx (.6123) 
2.9469 

2.6651 
.6771 

b2 (.2357) 
2.9469 

1.7652 
.3934 

To obtain the intercept constant, extend Equation 32.3 to two independent variables: 

a — Y — b\X] ~~ b2X2 

a = 5.50 - (.6771)(4.95) - (.3934)(5.20) = .1027 

An alternative method of finding the unstandardized regression coefficients is by 

using the normal equations. Note here, these normal equations will directly give the 

regression weights. The normal equations given above would be used to obtain the 

regression coefficients. 
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nbQ + Xxxbx + Xx2b2 = Xy 

Xxib0 + Xx\b\ + Xx]X2b2 = Xx]y 

Xx2b0 + Xxxx2bx + Xx\b2 — Xx2y 

Note that for two independent variables, there are three normal equations and that 

sometimes b0 is used to represent the intercept or constant term. There are three 

equations given above with three unknown parameters to be estimated: b0, bx and b2. 

The computations to solve for the regression weights are too laborious to be done by 

hand and so no computations will be presented here. 

Finally, we write the complete regression equation: 

Y' — a + bxXx + b2X2 

Y' = .1027 + ,677LXi + .3934X2 

Substituting the observed values of Xj and X2 of Table 34.2, the predicted values of Y 

are obtained. For example, calculate the predicted Ts for the fifth and twentieth 
subjects: 

Y's = .1027 + (.6771)(3) + (.3934)(6) = 4.4944 

F'20 = .1027 + (.6771)(4) + (.3934)(7) = 5.5649 

These values and the other 18 values are given in the fourth column of Table 32.2. 

The fifth column of the table gives the deviations from regression, or the residuals, 

T; - T'i = d{. For example, the residuals for F5 and F20 are 

ds = Ys - F's = 5 - 4.4944 = .5056 

4) = F20 - F'20 = 10 - 5.5649 = 4.4351 

Note that one deviation is small and the other large. The residuals are given in the 

last column of Table 32.2. Most of them are relatively small; about half are positive 
and half are negative. 

The sum-of-squares due to regression can now be calculated, but the regression 

of 1 on Xx and X2 must be considered. Square each of the F' values of the fourth 
column of Table 32.2 and sum: 

(3.0305)2 + ... + (5.5649)2 = 688.3969 

Now use the usual formula for the deviation sum-of-squares (see Chapter 13): 

= 688.3969 - 
(110)\ 

83.3969 
20 
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Similarly, calculate the sum-of-squares of the residuals: 

Xd2 = (-1.0305)2 + • • • + (4.4351)2 = 81.6091 

Note that this is a “good” example of the errors that accumulate through rounding. 

The actual regression sum-of-squares, calculated by computer, is 83.3909, an error of 

.006. Adso note, however, that even though the residuals were calculated from the 

hand-calculated predicted Ts, the sum-of-squares of the residuals is exactly that 

produced by the computer, 81.6091. 

As a check, calculate: 

cc -4- cc = cc 
'’•’reg 0%>res t 

83.3969 + 81.6091 = 165.0060 

The regression and residual sums-of-squares are not usually calculated in this way. 

They were calculated here just to show what these quantities are. Had the formulas 

that are ordinarily employed been used, we might not have seen clearly that the 

regression sum-of-squares is the sum-of-squares of the Y' values calculated by using 

the regression equation. We also might not have seen clearly that the residual sum- 

of-squares is the sum-of-squares calculated with the ds of the fifth column of Table 

32.2. Recall, too, that the a and the bs (or /3s) of the regression equation were calcu¬ 

lated to satisfy the least-squares principle; that is, to minimize the ds, or errors of 

prediction — or, rather, to minimize the sum-of-squares of the errors of prediction. 

To summarize, the regression sum-of-squares expresses that portion of the total sum- 

of-squares of Y due to the regression of Y, the dependent variable, on Xx and X2, the 

independent variables. The residual sum-of-squares expresses that portion of the 

total sum-of-squares of Y that is not due to the regression. 

The reader may wonder: Why bother with this complicated procedure of 

determining the regression weights? Is it necessary to invoke a least-squares 

procedure? Why not just average the Xx and X2 values and call the means of the indi¬ 

vidual Xi and X2 values the predicted Ts? The answer is that it might work quite 

well. Indeed, in this case it would work very well, almost as well, in fact, as the full 

regression procedure. But it might not work too well. The trouble is that you do not 

really know when it will work well and when it will not. The regression procedure 

always “works,” other things being equal. It always minimizes the squared errors of 

prediction. Note that in both cases linear equations are used and that only the 

coefficients differ: 

Regression equation-. Y' = a + blX1 + b2X2 

Mean equation: Y' = — Aj + ~ X2 

Of the innumerable possible ways of weighting X{ and X2, which should be chosen if 

the least-squares principle is not used? It is conceivable, of course, that one has prior 
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knowledge or some reason for Xx and X2. Xx may be the scores on some test that has 

been found to be highly successful in prediction. X2 may be a successful predictor, 

too, but not as successful as Xx. Therefore one may decide to weight Xx very heavily, 

say four times as much as X2. The equation would be: Y' = 4Xj + X2. And this 

might work well. The trouble is that seldom do we have prior knowledge, and even 

when we do, it is rather imprecise. How can the decision be reached to weight Xx 

four times as much as X2} An educated guess can be made. The regression method is 

not a guess, however. It is a precise method based on the data and on a powerful 

mathematical principle. It is in this sense that the calculated regression weights are 

“best.” 

The regression and residual sums-of-squares can be calculated more readily than 

indicated above. The formulas are: 

sSreg = b{±,xxy + . . . + bf£xky (32.7) 

ssres = sst-ssreg (32.8) 

In the present case, (32.7) becomes: 

ssreg = bxXxxy + bfix-yy 

This is easily calculated by substituting the two b values calculated above and the 

cross products given in Table 32.3. 

tfns = (.6771X100.50) + (.3934X39.00) = 83.3912 

ssres = 165.0 - 83.3912 = 81.6088 

Within errors of rounding, these are the values calculated directly from the fourth 

and fifth columns of Table 32.2. (Note the “most accurate” values given by a 

computer: ssregM — 83.3909 and ssres = 81.6091, which of course total sst = 5A2 = 
165.0.) J 

The Multiple Correlation Coefficient 

If the ordinary product-moment coefficient of correlation between the predicted 

values Y and the observed values of Y is calculated, we obtain an index of the magni¬ 

tude of the relation between, on the one hand, a least-squares composite ofXj and X2 

and, on the other hand, Y. This index is called the multiple correlation coefficient, R. 

Although in this chapter it is usually written as R for the sake of brevity, a more 

satisfactory way to write it is with subscripts: Ry,n...b or, in this case, R A2. The the¬ 

ory of multiple regression seems to be especially elegant when we consider the multi¬ 

ple correlation coefficient. It is one of the links that bind together the various aspects 

of multiple regression and analysis of variance. The formula for R that expresses the 

* 
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first sentence of this paragraph is: 

R = 
2yy' 

VS/S/2 

Its square is calculated: 

R2 = 
(Xyy'Y 

2/2y'2 

(32.9) 

(32.10) 

Using the F and F' values of Table 32.2, we obtain: R2 = .5054 and R — V-5054 = 

.7109. Calculating these values is a good exercise. We already have 2/ = 165. Then 

calculate: 

2/2 = 2F'2 - 
(2F')2 

N 
= 688.3969 - 

(HO)2 

20 
83.3969 

and 

(2F)(2F') (110)(110) 
2y/ = 2FF' -  -/—- = 688.3939 - -—/—- = 83.3939 

X 20 

It can be shown algebraically that 2/2 equals 2j/. The difference of .003 is due to 

rounding errors. 

R, then, is the highest possible correlation between a least-squares linear 

composite of the independent variables and the observed dependent variable. R2, 

analogous to r2, indicates that portion of the variance of the dependent variable, Y, 

due to the independent variables in concert. R, unlike r, varies only from 0 to 1.00; it 

does not have negative values. 

Tvo other important conclusions can be reached by calculating the correlations 

of the residuals, dh of Table 32.2, with X] and X2, on the one hand, and with Y, on the 

other hand. The correlations of the residuals with X! and X2 are both zero. This is 

not surprising when it is realized that, by definition, the residuals are that part of F 

not accounted for by X: and X2. That is, when the F' values are subtracted from the 

F values, that portion due to the regression of F on X! and X2 is taken from them. 

Whatever is left over, then, is unrelated to either Xl or X2. If the student will take the 

trouble to calculate the correlation between the d vector—a vector is a single set of 

measures, either in a column or a row—and either the X{ or the X2 vector, one will 

see that this is true. Don’t underestimate the importance of doing such calculations 

and pondering their meaning. This is especially important in helping to understand 

multiple regression and other multivariate techniques. It can be a serious mistake to 

let the computer do everything for us, especially with package programs. For the 

simpler statistics, like r and the various sums-of-squares, write relatively simple 

programs for a microcomputer, store them on floppy disks, and use them when 
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needed. An important research implication of this generalization will also be 
discussed later when actual research examples are summarized and discussed. 

The correlation of the residuals, dh of Table 32.2 with the original Y values also 
helps to clarify matters. This correlation is: rdy =.7033, and its square is: 
rdy = (-703 3)2 = .4946. If this latter value is added to the R2 calculated earlier, the re¬ 
sult is interesting: R2 + rdy = .5054 + .4946 = 1.0000. And this will always be true: 
“1.0000'’ represents the total variance of Y. The variance of Y due to Ts regression on 
Xx and X2 is .5054. The variance of Ynot due to the regression of Yon Xx and X2 can 
be calculated: 1.0000 — .5054 = .4946, which is, of course, the value of rdy2 just 
calculated directly. The meaning of rdy2 can be seen in two ways. The direct calcula¬ 
tion of the correlation shows that the residuals constitute that part of the variance of 
Tnot due to the regression of Yon Xx and X2. In the present case, 51% (R2 — .51) of 
the variance of the reading achievement (Y) of the 20 pupils is accounted for by a 
least-squares linear combination of verbal aptitude (Xx) and achievement motivation 
(X2). But 49% of the variance is due to other variables and to error. After discussing 
more usual ways to calculate R and R2,we will again consider the proportion or 
percentage interpretation of R2. 

In sum, R2 is an estimate of the proportion of the variance of the dependent 
variable Y, accounted for by the independent variables Xy R, the multiple correlation 
coefficient, is the product-moment correlation between the dependent variable and 
another variable produced by a least-squares combination of the independent 
variables. Its square is interpreted analogously to the square of an ordinary correla¬ 
tion coefficient. It differs from the ordinary coefficient, however, in taking values 
only from 0 to 1. R is not as useful and interpretable as R2, and henceforth R2 will be 
used almost exclusively in subsequent discussions. 

The proportion or percentage interpretation of R2 becomes clearer if a sum-of- 
squares formula is used: 

R2 = 
ss, reg 

SSt 

(32.11) 

where sst is, as usual, the total sum-of-squares of Y, or 2yt2. Substituting the regres¬ 
sion sum-of-squares calculated earlier by Formula 34.7, and the total sum-of-squares 
from Table 32.3, we obtain: 

R2 = 
83.3912 
-= .5054 
165.000 

And R is seen to be that part of the Y sum-of-squares associated with the regression 
of Y on the independent variables. As with all proportions, multiplying it by 100 
converts it to a percentage. 

Formula 32.11 provides another link to the analysis of variance. In Chapter 13 
on the foundations of analysis of variance, a formula for calculating 77, the correlation 
ratio, was given (Formula 13.4). Square that formula: 

sst 
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where ssb equals the between-groups sum-of-squares, and sst equals total sum-of- 

squares. ssb is the sum-of-squares due to the independent variable, ss„g is the sum-of- 

squares due to regression. Both terms refer to the sum-of-squares of a dependent 

variable due to an independent variable or to independent variables. 

R and R2 can be and are often inflated. Therefore, R2 should be interpreted 

conservatively. If the sample is large, say over 200, there is little cause for concern. If 

the sample is small, however, it is wise to reduce the calculated R2 by a few points. 

A. shrinkage formula can be used to do: 

( N - 1 \ 
F2 = l-(1-F2)- 

\N-n- 1 / 

where R2 equals shrunken or corrected R2-, N equals size of sample; n equals total 

number of variables in the analysis. Using this formula, the R2 in the example reduces 

to .45. When comparing R2 to R2, we can see how much R2 was inflated by chance 

error. From this formula we can also see the effect a small sample size has on 

the value of R2. Small samples tend to yield unstable R2 values and this can be 

determined by using the shrinkage formula given above. 

Tests of Statistical Significance 

Earlier we studied the simple regression of Y on X. To test the statistical significance 

of simple regression, we can assess the significance of the correlation coefficient 

between X and Y, rxy, by referring to an appropriate table. Some well-known books 

containing tables used in statistical analyses are Beyer (1990), and Burlington and 

May (1970). With the advances in statistical computer programs and their high 

accessibility, table lookups are being used less and less by researchers. Computer 

programs can now compute and output the probability of a Type I error along with 

the test statistic, making it unnecessary for table look up. However, from an educa¬ 

tional point of view students need to know about table lookups so that they can 

understand the computer output. Tests of statistical significance in multiple regres¬ 

sion, though more complex, are based on the relatively simple idea of comparing 

variances (or mean squares) as in analysis of variance. The same questions asked 

many times before must be asked again: Can this R2 have arisen by chance? Does it 

depart sufficiently from chance expectation that it can be said to be “significant”? 

Similar questions can be asked about individual regression coefficients. In this 

chapter and the next, F-tests will be used almost exclusively. They fit in nicely with 

both regression analysis and analysis of variance, and are both conceptually and 

computationally simple. Analyses can be performed on each regression coefficient. 

A t-test of a regression coefficient, if significant, indicates that the regression weight 

differs significantly from zero, which means that the variable with which it is 

associated contributes significantly to the regression. The t-test for individual 

regression coefficients are given in the next section. First we are going to use the 

F-test to determine if the complete regression model is statistically significant. 
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One is expressed by Equations 34.12a and 34.12b: 

SSreg /dfi 

SSres /df2 

ssre„ /k 
F =-£— 

ssres/(N — k 1) 

(32.12a) 

(32.12b) 

where ssreg sum-of-squares due to regression; ssres equals residual or error sum-of- 

squares; k equals number of independent variables; N equals sample size. If df{ and 

df2, the degrees of freedom for the numerator and denominator of the F-ratio in 

Equation 32.12a, are defined, we get Equation 32.12b. These formulas are important 

because they are used to test the significance of any multiple regression problem. 

Using the values calculated earlier for the example of Table 32.2, now calculate: 

83.3912/2 41.6956 

81.6091/(20 - 2 - 1) “ 4.8005 ~~ 8'686 

Note that the idea expressed by this formula is in the same family of ideas as analysis 

of variance. The numerator is the mean square due to the regression, analogous to 

the between-groups mean square, and the denominator is the mean square not due to 

regression, which is used as an error term, analogous to the within-groups mean 

square, or error variance. The basic principle, again, is always the same: variance due 

to the regression of Eon Xh X2, . . . Xk, or, in analysis of variance, due to the experi¬ 

mental effects, is evaluated against variance presumably due to error or chance. This 

basic notion, elaborated at length in earlier chapters, can be expressed: 

regression variance experimental variance 

error variance error variance 

Another formula for F is: 

R2/k 

(1 - R2)/(N - k - 1) 
(32.13) 

where k and N are the same as above. For the same example: 

p= .5054/2 _ .2527 

" (1 - .5054)/(20 - 2 - 1) ~ .0291 ~ 8-684 

which is the same as the F-value obtained with Equation 32.12, within errors of 

rounding. At 2 and 17 degrees of freedom, it is significant at the .01 level. This 
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formula is particularly useful when our research data are only in the form of correla¬ 

tion coefficients. In such a case, the sums-of-squares required by Equation 32.12 may 

not be known. Much regression analysis can be done using only the matrix of corre¬ 

lations among all the variables, independent and dependent. Such analysis is beyond 

the scope of this book. Nevertheless, the student of research should be aware of the 

possibility (see Pedhazur, 1996). 

Significance Tests of Individual Regression Weights 

Significance of the individual regression coefficients are of interest to many 

researchers because they tell the researcher which independent variables, in a 

statistical sense, make the greatest contribution in explaining the dependent variable. 

For example, the admissions officer for a major university would have available a 

number of variables that may be pertinent to predicting or explaining success in col¬ 

lege. However, with actual analysis, some of those variables would make considerably 

less contribution than others. For example McWhirter (1997) was able to identify 

which variables predicted intimate loneliness and social loneliness of college 

students. 

The formula to test for significance of individual regression weights or 

coefficients is 

t i 
h 

su 

where bi is the regression coefficient and % is the standard error for the variable i. 
This formula looks simple enough; however, the computation of the standard error is 

complex. The best way to obtain the standard error is through a computer program 

or if necessary, matrix algebra. This r-test is conducted with a degrees of freedom 

equal to n — (number of regression coefficients in the regression equation). 

Interpretation of Multiple Regression Statistics 

The interpretation of multiple regression statistics can be complex and difficult. 

Indeed, the interpretation of multivariate analysis statistics is in general considerably 

more difficult than the interpretation of the univariate statistics studied earlier. We 

therefore go into the interpretation of the statistics of our example in some depth. 

Statistical Significance of the Regression and R2 

The F-ratio of 8.684 calculated above tells us that the regression of Y on Xx and X2, 
expressed by F2yl2, is statistically significant. The probability that an F-ratio this 

large will occur by chance is less than .01 (it is actually about .003), which means that 
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the relation between Y and a least-squares combination of Xx and X2 could probably 

not have occurred by chance. 

R = .71 can be interpreted much like an ordinary coefficient of correlation, 

except that the values of R range from 0 to 1.00, unlike r, which ranges from —1.00 

through 0 to 1.00. R2 = .712 = .51 is more meaningful and useful, however. It means 

that 51% of the variance of Y is accounted for, or “determined,” by Xx and X2 in 

combination. It is accordingly called a coefficient of determination. An alternative 

labeling of this statistic is SMC, which represents for “squared multiple correlation.” | 

Relative Contributions to Y of the Xs 

Let us ask, somewhat diffidently, a more difficult question: What are the relative 

contributions of Xx and X2, of verbal aptitude and achievement motivation, to Y, 

reading achievement? The restricted scope of this book does not permit an examina¬ 

tion of the answers to this question in the detail it deserves. The problem of the 

relative contribution of independent variables to a dependent variable or variables is 

one of the most complex and difficult of regression analyses. It seems that no really 

satisfactory solution exists, at least not when the independent variables are corre¬ 

lated. Nevertheless, the problem cannot be neglected. The reader should bear in 

mind, however, that considerable reservation must be attached to the above and later 

discussions. The technical and substantive problems of interpretation of multiple 

regression analysis are discussed in two or three of the references given in study 
suggestion 1 in Chapter 3 3. 

One would think that the regression weights, b or (3, would provide us with a 

ready means of identifying the relative contributions of independent variables to a 

dependent variable. And they do, but only roughly and sometimes misleadingly. 

Earlier it was said that the regression coefficient b is called the slope. The slope of the 

regression line is at the rate of b units of T for one unit of X. In the little problem A 

of Table 32.1, for instance, b = .90. Thus, as said earlier, with a change of 1 unit in X 

we predict a change of .90 in Y. In multiple regression, however, straightforward 

interpretation like this is not so easy, because there is more than one b. Nevertheless, 

we can say, for present pedagogical purposes, that if X) and X2 have about the same scale 

of values in the example of Table 32.2, the values of Xx and X2 are in the approxi¬ 

mate range of 1 to 10 the bs are weights that show roughly the relative importance 
ofXx and X2. In the present case, the regression formula is: 

Y' = . 1027 + .6771A1 + .3934A2 

We can say that Xx, verbal aptitude, is weighted more heavily than X2, achievement 

motivation. This happens to be true in this case, but it may not always be true, 
especially with more independent variables. 

Regression coefficients, unfortunately for ihterpretative purposes, are not stable. 

They change with different samples and with addition or subtraction of independent 

variables to the analysis (see Dillon & Goldstein, 1984; Howell, 1997; Pedhazur, 

1996). There is no absolute way to interpret them. If the correlations among the 
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But many or most variables that are correlated with a dependent variable are also 

correlated among themselves. The example of Table 32.3 shows this: the correlation 

between Xx and X2 is .26, a modest correlation, to be sure. Such intercorrelations are 

often higher, however. And the higher they are (up to a certain point), the more 

unstable the interpretation situation. 
The ideal predictive situation is when the correlations between the independent 

variables and the dependent variable are high, and the correlations among the inde¬ 

pendent variables are low. This principle is important. The more the independent 

variables are intercorrelated, the more difficult the interpretation. Among other 

things, one has greater difficulty telling the relative influence on the dependent 

variable of the independent variables. Examine the two fictitious correlation matrices 

of Table 32.4 and the accompanying R2s. In the two matrices, the independent 

variables, Xx and X2, are correlated .87 and .43, respectively, with the dependent 

variable, Y But the correlations between the independent variables differ in the two 

cases. In matrix -50, a substantial correlation. In matrix B, however, r12 = ] 

The contrast between the R2s is dramatic: .76 for A and .94 for B. Since, in B, Xx 
and X2 are not correlated, any correlations they have with Y contribute directly to 

the prediction and the R1. When the correlations between the independent variables 

are exactly zero, as in matrix B, then R2 is easy to calculate. It is simply the sum-of- 

squares of the rs between each independent variable and the dependent variable: 

(.87)2 + (43)2 = .94. When the independent variables are correlated, as in matrix A 

(r12 = .50), some of the common variance of Y and Xx is also shared with X2. In short, ) 

Xx and X2 are to some extent redundant in predicting Y, In matrix B there is no such 

redundancy. 
The situation is clarified, perhaps, by Figure 32.2. Let the circles stand for the 

total variance of Y, and let this total variance be 1.00. Then the portions of the vari¬ 

ance of Y accounted for by Xx and X2 can be depicted. In both circles, the light gray 

shading indicates the variance accounted for by Xu or VXl and the dark gray shading 

X2, or VXr (The variances remaining after VXl and VXl are the residual variances, la¬ 

beled in the figure.) In B, VX] and VXl do not overlap. In A, however, VX{ and VXj 
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overlap. Simply because rn = 0 in B and r12 = .50 in A, the predictive power of the 

independent variables is much greater in B than in A. This is, of course, reflected by 
the R2s: .76 in A and .94 in B. J 

While this is a contrived and artificial example, it has the virtue of showing the 

effect of correlation between the independent variables and thus illustrates the prin¬ 

ciple enunciated above. It also reflects the difficulty of interpreting the results of 

most regression analysis, since in much research the independent variables are corre¬ 

lated. And when more independent variables are added, interpretation becomes still 

more complex and difficult. A central problem is: How does one sort out the relative 

effects of the different As on Y? The answer is also complex. There are ways of doing 

so, some more satisfying than others, but none completely satisfactory Perhaps the 

most satisfactory way, at least in the authors’ opinion and experience, is to calculate 

squared semipartial correlations (also called part correlations). These are calculated with 
the formula: 

SP2 = Ry. 12- ■k R2y.U- ■4-i) 

or in the present case, for B: 

SP2 = R2y.l2 ~ R2yA^ .9# — .76 = .18 

which indicates the contribution to the variance of F of X2 after X, has been taken into 

account. The same calculation for A yields: .76 -.76 = 0, which indicates that X, 
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contributes nothing to the variance of Y, after Xx has been taken into account. 

(Actually, there is a slight increase that emerges only with a large number of decimal 

places.) 

The student is referred to Howell (1997), Dillon and Goldstein (1984), and 

Pedhazur (1996) for discussions of the problems involved. Kerlinger and Pedhazur 

(1973) also discuss the problem in considerable detail and relate it to research 

examples. 

Other Analytic and Interpretative Problems 

A number of problems in multiple regression analysis cannot be discussed in this 

book in the detail they deserve. Some, however, must be mentioned because of the 

increasing importance of multiple regression in behavioral research. One, mentioned 

earlier, is the problem of regression weights. In this chapter and the next, the discus¬ 

sion has been confined to b weights because in most research uses of regression, we 

predict with raw or deviation scores, and bs are used with such scores. Beta, or /3 

weights, on the other hand, are used with standard scores. They are called standard 

partial regression coefficients. “Standard” means that they would be used if all variables 

were in standard score form. “Partial” means that the effects of variables other than 

the one to which the weight applies are held constant. For example, /3y U3 or (3X in a 

three-variable (independent variable) problem, is the standard partial regression 

weight, which expresses the change in Y due to change in Xh with variables two and 

three held constant. A second meaning, used in theoretical work, is that b is the pop¬ 

ulation regression weight that /3 estimates. We omit this meaning. /3s can be trans¬ 

lated into bs with the formula: 

where sy equals standard deviation of Y and Sj standard deviation of variable j. The b 

weights, too, are partial regression coefficients, but are not in standard form. 

Another problem is that in any given regression, R, R2, and the regression 

weights will be the same no matter what the order of the variables. If one or more 

variables are added or subtracted from the regression, however, these values will 

change. And regression weights can change from sample to sample. In other words, 

there is no absolute quality about them. One cannot say, for instance, that because 

verbal and numerical aptitudes have, say, regression weights of .60 and .50 in one set 

of data, they will have the same values in another set. 
Earlier in this book it was said, “Design is data discipline.” The design of 

research and the analysis of data spring from the demands of research problems. 

Again, the order of entry of independent yariables into the regression equation is 

determined by the research problem and the design of the research, which is itself 

determined by the research problem. 
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Although the order of entry of variables and the changes in regression weights 

that can occur with differing samples are difficult problems, one must remember that 

the final regression weights do not change with differing orders of entry. This is a 

real compensation, especially useful in prediction. In many research problems, for 

example, the relative contribution of variables is not a major consideration. In such 

cases, one wants the total regression equation and its regression weights mainly for 

prediction and for assessing the general nature of the regression situation. 

However, when the researcher wants to find the contribution of each indepen¬ 

dent variable, the Beta weights (standardized regression weights) should be used. 

These Beta weights have been scaled so that they can be compared to each other 

directly. The unstandardized regression weights reflect the measurement scale used 

to measure that variable. Hence, the unstandardized regression weights cannot be 

directly compared. Further, the significance of the Beta weights is equal to the signif¬ 

icance of the change in R2 when an independent variable is entered last into the 
regression equation. 

Another important point is that there usually is limited useffilness to adding new 

variables to a regression equation. Because many variables of behavioral research are 

correlated, the principle illustrated by the data of Table 32.4, and discussed earlier, 

operates so as to decrease the usefulness of additional variables. If one finds three or 

four independent variables that are substantially correlated with a dependent variable 

and not highly correlated with each other, one is lucky. But it becomes more and 

more difficult to find other independent variables that are not in effect redundant 
with the first three or four. If R2yAn = .50, then it is unlikely that R2yA2M will be much 

more than .55, and R2y 12H5 will probably be no more than .56 or .57. We have a 

regression law of diminishing returns. When independent variables are added, one 

notes how much they add to R2 and tests their statistical significance. The formula 
for doing so, much like formula 34.13, is: 

(Ry.n.ln R2y.U.k)/(k\ - k2) 

(1 ~ Ry.n-ki)m-k{ - 1) 

where kx is the number of independent variables of the larger R2, k2 number of inde¬ 

pendent variables of the smaller R2, and TV equals number of cases. This formula will 

be used later. Although an F calculated like this may be statistically significant espe¬ 

cially with a large sample, the actual increase in R2 may be quite small. In a study 

by Layton and Swanson, (1958) the addition of a sixth independent variable yielded a 

statistically significant F-ratio, but the actual increase in R2 was .0147! The difference 

earhe?11 ^ ^ ^ numerator is the s4uared semipartial correlation coefficient 

It was said above that R, R2, and the regression coefficients remain the same, if 

the same vanab es are entered in different ordemThis should not be taken to mean 

however that the order in which variables enter the regression equation does noi 

matter. On the contrary, order of entry can be very important. When the indepen¬ 

dent variables are correlated, the relative amount of variance of the dependent 
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variable that each independent variable accounts for or contributes can change dras¬ 

tically with different orders of entry of the variables. With the A data of Table 32.4, 

for example, if we reverse the order of Xx and X2, their relative contributions change 

rather markedly. With the original order, X2 contributed nothing to R2, whereas with 

the order reversed X2 becomes Xx and contributes 19% [r2 = (.43)2 = .19)] to the 

total R2, and the original Xh which becomes X2, contributes 57% (.19 + .57 = .76). 

The order of variables, while making no difference in the final R2 and thus in overall 

prediction, is a major research problem. 

However, multicolinearity or correlated independent variables is not always 

undesirable. In some cases when multiple regression is used to establish the validity 

of a measure or scale, correlated independent variables can be most useful. Indepen¬ 

dent variables, that have zero or near-zero correlation with the dependent variable 

but a high correlation with another independent variable, can actually improve the 

amount of variance shared by the dependent and independent variables. This type of 

independent variable is called a suppressor variable. Some researchers such as 

Dr. Leonard Helmers of New Orleans1 refer to them as “trim” variables. These 

variables have the effect of eliminating, suppressing, or trimming irrelevant variance 

in the other independent variables. Suppose we wanted to develop a regression 

equation to predict mechanical skills. We might use as our dependent variable the 

person score on a performance test of mechanical skills. We may select a written me¬ 

chanical aptitude test as an independent (predictor) variable. We may want to include 

a suppressor variable, such as reading comprehension. Reading comprehension 

would be a candidate for a suppressor variable, since it is most likely uncorrelated 

with mechanical skills, but related to the written Mechanical Aptitude Test, 

because this test requires reading. So the two independent variables—Mechanical 

Aptitude and Reading Comprehension—may be correlated, and Mechanical 

Performance Test may be correlated with the Mechanical Aptitude Test, but the 

Reading Comprehension Test would not be correlated with the Mechanical 

Performance Test. 
In other situations, a researcher may not be aware that a suppressor variable was 

used in the analysis. So how can one tell if he or she has a suppressor variable in this 

case? Well, if we have a computer program like SPSS or Statistical Analysis System 

(SAS), the output generated by these computer programs can, under careful scrutiny, 

be used to detect the presence of a suppressor variable. The first step is to determine 

which independent variables have a non-zero beta weight. If we find one and the 

absolute value of the simple correlation between the dependent variable and this 

independent variable is considerably smaller than the beta weight associated with 

that independent variable, we may have a suppressor variable. Also, if the beta weight 

for that independent variable is non-zero and the simple correlation between the 

dependent variable and the independent variable has the opposite sign of the beta 

'Personal communication. Dr. Helmers is the former Research Director at ASI Marketing, Inc., 

Hollywood, California. 
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weight, this is a signal that the independent variable may be a suppressor variable. In 

some research analysis like those found in marketing research, these suppressor 

variables are dropped from the analysis and the regression equation is recomputed. 

Examples of suppressor variables can be found in the literature. Hadfield, Little¬ 

ton, Steiner, and Woods (1998) used multiple regression to analyze the pedological 

skills of students and to test the hypothesis that mathematics content knowledge 

would be the most significant correlate to microteaching effectiveness. [Videotape 

ratings were used to measure teaching effectiveness. The independent variables were 

pedagogical content knowledge, math content knowledge, math anxiety, and spatial 

ability.] They found mathematics content knowledge and mathematics anxiety scores 

acted like suppressor variables. With these variables in the regression equation, there 

was a 25% increase in the variance accounted for. However, both of these variables 

had a low correlation with the dependent variable, teaching effectiveness, but corre¬ 
lated with the other independent variables. 

Leichtman and Erickson’s (1979) study of cognitive, demographic, and interac¬ 

tional determinants of role-taking skills in fourth-grade children, developed a 

regression equation where five variables predicted 36% of the variance of the role- 

taking scores. These variables were the WISC Vocabulary score, Matching Familiar 

Figures Test errors, sex, neighborhood, and handedness. The WISC Vocabulary 

score was found to be a suppressor variable. The WISC Vocabulary score was 

correlated with the other independent variables, but it was not correlated with the 
dependent variable: Role-taking scores. 

Research Exam pies 

DDT and Bald Eagles 

One of the several controversies over despoliation of the environment by commercial 

interests and the opposition and protests of environmentalist groups has focused on 

the use of DDT. One effect of DDT spraying has been the decimation of bird 

species For example, reproduction of the bald eagle population was seriously 

affected. In December 1972, the Environmental Protection Agency banned DDT 

spraying. Grier (1982) in a study of the effect of the ban on bald eagle reproduction 

reported the average number of young eagles per geographical area for the years 

1966 through 1981. His regression (and other) analyses of the reproduction averages 

(means) before and after the ban showed that the two slopes, or b coefficients 

differed significantly. From 1966 to 1974, b=~.07, indicating a decrease in repro¬ 

duction over the years, but from 1973 to 1981 b = .07, indicating an increase. (Both 

bs were statistically significant.) The method of comparing slopes statistically is given 

in Pedhazur (1996), Howell (1997), and Lee aryl Little (1996). The simple regres¬ 

sions are calculated using years as the independent variable and reproduction rates as 

the dependent variable. The correlation before the DDT ban was -.74, but after the 

'?° <'by °Ur calcuIations)- The two regressions have been plotted in Figure 
32.3. The plot portrays the regression of mean eagle young per geographical area on 
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[U Figure 32.3 

the years 1966 through 1974 (before the DDT ban) and the years 1975-1981 (after 

the ban). The regression before the ban was calculated through 1974 because the 

effect of the ban could not have been expected to manifest itself for about a year. 

Grier did his calculation through 1973. The sharp difference between the two 

relations or slopes is dramatic. 

flation Bias in Self-Assessment Examinations 

Do job applicants often tell the truth about their capabilities? Employers are becom¬ 

ing increasingly concerned over whether or not the credentials presented by a job 

applicant are truthful. Anderson, Warner, and Spencer (1984) used multiple regres¬ 

sion to help answer this question. The participants for this study were 351 job appli¬ 

cants for positions with the state of Colorado. These applicants were asked to indi¬ 

cate their degree of experience with certain job tasks. Some of the job tasks presented 

to the applicant were bogus. An inflation bias scale was created by the researchers to 

determine the extent the applicants overrepresented himself or herself. Multiple 

regression analysis was used to help determine the validity of this measurement scale. 

Applicants for a clerical position were asked to indicate how many words per minute 

they could type in addition to completing the inflation bias scale. These applicants 

were then given an actual typing performance test. The researchers then used the 

typing test as the dependent variable in a multiple regression with the inflation bias 

scale and the self-assessment exam. The results of this investigation are given in 

Table 32.7. The correlation between the typing test and the self-assessment exam 

was .27 (r2 = .073) and .41 (r2 = .168) for the inflation scale. As far as explaining the 

variation in the typing test scores, the inflation scale increased the predictability. 

Although Anderson et al. did not use a suppressor variable to increase the R2 for their 

study, they could have. A likely candidate for the job of suppressor variable might be 

reading comprehension. Since reading comprehension is needed in order to read the 
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[Ml Table 34.7 Amount of Variance Explained by Self-assessment Exam and 

Inflation Scale on Typing Performance 

Independent 
Variable R2 A if?2 

Self-assessment .07 .07 p < .05 

Inflation Scale .23 .16 p <.05 

Interaction .25 .02 p > .05 

questionnaire on self-assessment and it is probably uncorrelated with actual typing 
performance it might be a suppressor variable. 

Multiple Regression Analysis and Scientific Research 

Multiple regression is close to the heart of scientific investigation. It is also 

fundamental in statistics and inference, and is tightly tied to basic and powerful 

mathematical methods. From the researcher’s point of view, moreover, it is useful 

and practical: It performs its analytic job successfully and efficiently. In explaining 

these strong and sweeping statements, it may be possible to clarify what we have 
already learned. 

The scientist is concerned, basically, with propositions of the “If p, then q” kind. 

Such propositions “explain” phenomena. When we say, “If positive incentive, then 

higher achievement,” we are to some extent “explaining” achievement. But this is 

hardly enough. Even if supported by a good deal of empirical evidence, it does not 

go very far in explaining achievement. In addition to other If-then statements of a 

similar kind, the scientist must ask more complex questions. The scientist may ask 

for example, under what conditions the statement, “If positive incentive, then higher 

achievement,” is valid. Is it true of black American children as well as white American 

children? Is it true of children of both lower and higher intelligence? To test such 

questions and to advance knowledge, scientists in effect write statements of the kind, 

I? p' j under conditions r, s, and t, where p is an independent variable; a a 
dependent variable; and r, s, and t other independent variables. Other kinds of state¬ 

ments can, of course, be written-for example, Ifp and r, then q. In such a case p and 
r are two independent variables, both of which are required for q. 

The P°mt of all this is that multiple regression can handle such cases success¬ 
fully. In most behavioral research there is usually one dependent variable, though we 

are theoretically not restricted to only one. Consequently, multiple regression is a 

general method of analyzing much behavioral research data. Certain other methods 
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of analysis can be considered special cases of multiple regression. The most promi¬ 

nent is analysis of variance, all types of which can be conceptualized and accom¬ 

plished with multiple regression analysis. 
It was said earlier that all control is control of variance. Multiple regression 

analysis can be conceived as a refined and powerful method of “controlling” variance. 

It accomplishes this the same way analysis of variance does: by estimating the magni¬ 

tudes of different sources of influence on Y, different sources of variance of Y, 

through analysis of the interrelations of all the variables. It tells how much of Y is 

presumably due to Xu X2 . . . Xk. It gives some idea of the relative amounts of 

influence of the Xs. And it furnishes tests of the statistical significance of combined 

influences of Xs on Y and of the separate influence of each X. In short, multiple 

regression analysis is an efficient and powerful hypothesis-testing and inference¬ 

making technique. It is so because it helps scientists study, with relative precision, 

complex interrelations between independent variables and a dependent variable, and 

thus helps them “explain” the presumed phenomenon represented by the dependent 

variable. 

Chapter Summary _ 

1. Multiple regression is a method for studying the effects, and the magnitude 

of the effects, of more than one independent variable on one dependent vari¬ 

able. 
2. Simple regression involves one independent variable and one dependent 

variable. 
3. Through the method of least-squares, multiple regression involves finding 

the best regression weights that maximize the relation between a linear com¬ 

bination of the independent variables and the dependent variable. 

4. R is the multiple correlation. It is the correlation between the actual 

dependent variable values and the predicted dependent variable 

values. 
5. The multiple correlation squared, R2, is a statistic used to determine the 

quality of the regression equation found through empirical data. 

6. Computations for multiple regression are intensive. Using a computer pro¬ 

gram is recommended. 
7. The multiple correlation squared, or coefficient of determination, is used in 

statistical tests to determine if the regression equation is explaining a signifi¬ 

cant amount of the variance. 
8. A problem with multiple regression is that the independent variables may be 

correlated. As such, they lead to unstable estimates of the regression coeffi¬ 

cients and interpretation difficulties. 
9. The entire regression equation can be tested for statistical significance and 

so can each individual regression weight. 
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U Figure 32.4 

(d) (e) 

10. Tests on the individual regression weights will inform the researcher as to 

which variable is contributing toward the explanation of the dependent 
variable. 

Study Suggestions 

1. Read one or more of the following studies that used multiple regression. 

Make note of the variables used, the computer program(s) used, and the con¬ 
clusions drawn from the results. 

Abel, M. H. (1998). Interaction of humor and gender in moderating relation¬ 

ships between stress and outcomes. Journal of Psychology, 132, 267-276. 

Connelly, C. D. (1998). Hopefulness, self-esteem, and perceived social sup¬ 

port among pregnant and nonpregnant adolescents. Western Journal of 
Nursing Research, 20, 195-209. 

Ho R. (1998). The intention to give up smoking: Disease versus social 
dimensions. Journal of Social Psychology, 138,368-3 80. 

Stalenheim, E. G., Eriksson, E., von Knorring, L., & Wide, L. (1998). Testos¬ 

terone as a biological marker in psychopathy and alcoholism. Psychiatry 
Kesearch, 77? 79— 88. 

2. Given the Venn diagrams shown in Figure 32.4 one dependent variable, Y, 
and two independent variables: Xx and X2. 

(f 
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a. Determine which has a suppressor variable. 

b. Which is ideal for multiple regression? 

c. Indicate which one(s) exhibit multicollinearity. 

d. Which would produce an unusable regression equation? 

e. Which would most likely yield nonsignificant statistical tests on the regres¬ 

sion equation? 
f. Which would most likely yield nonsignificant statistical tests on the indi¬ 

vidual regression coefficients? 





Chapter 3 3 

Multiple Regression, 
Analysis of Variance, 

and Other Multivariate Methods 

m One-Way Analysis of Variance and Multiple Regression Analysis 

■ Coding and Data Analysis 

■ Factorial Analysis of Variance, Analysis of Covariance, and Related 

Analysis 
Discriminant Analysis, Canonical Correlation, Multivariate Analysis of Variance, 

and Path Analysis 

■ Ridge Regression, Logistic Regression, and Log-Linear Analysis 

Logistic Regression 

Multiway Contingency Tables and Log-Linear Analysis 

■ Multivariate Analysis and Behavioral Research. 

Close examination shows the conceptual bases underlying different approaches to 

data analysis to be the same or similar. The symmetry of the fundamental ideas has 

great aesthetic appeal, and is nowhere more interesting and appealing than in multi¬ 

ple regression and analysis of variance. Earlier, in discussing the foundations of 

analysis of variance, the similarity of the principles and structures of analysis of 

variance and so-called correlational methods was brought out. We now link the two 

approaches and, in the process, show that analysis of variance can be done using 

787 
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multiple regression. In addition, the linking of the two approaches will happily yield 

unexpected bonuses. We will see, for example, that certain analytic problems that are 

intractable with analysis of variance—or at least difficult and certainly inappropri¬ 

ate— are quite easily conceptualized and accomplished by the judicious and flexible 

use of multiple regression and its variants. Because of space constraints and because 

the book’s purpose is not to teach the mechanics of statistical methods and 

approaches, the discussion will be quite limited: Some of what is said must be taken 

on faith. Nevertheless, even at a somewhat limited level of discourse we will find that 

certain difficult problems associated with analysis of variance are naturally and easily 

handled with multiple regression type analysis. Some of these associated problems 

include analysis of covariance, pretest and posttest data, unequal numbers of cases in 

cells (of factorial designs), categorical dependent variables, multiway contingency 
tables, and the handling of both experimental and nonexperimental data. 

One-Way Analysis of Variance and 

Multiple Regression Analysis 

Suppose an experiment has been done with three methods of presenting verbal mate¬ 

rials to ninth-grade children. The dependent variable is comprehension measured by 

an objective test of the materials. Suppose, also that the results were those given in 

Table 33.1. Obviously, an analysis of variance can be and should be done. The analy¬ 

sis of variance results are given at the bottom of the table. Students are urged to do 

the calculations of the examples of this chapter. This is urgently necessary for full 

understanding of important points to be made in the chapter. For example, do the 

analysis of variance calculations of Table 33.1 and the multiple regression’calcula¬ 

tions of the problem in Table 33.2, study and ponder the results of both analyses. Do 

not leave it to a computer program, which you may not understand. Work through 

the examples whenever possible. If you do succumb to the temptation to use one of 

the large computer or microcomputer packages, be wary. The quality of statistical 

software for microcomputers (and large computers) is sometimes questionable. The 

F-ratio in Table 33.1 is 18, which, at 2 and 12 degrees of freedom, is significant at the 

.01 level. The effect of the experimental treatment is clearly significant: rf = ssb/sst = 

90/120 = .75. The relation between the experimental treatment and comprehension 
is strong. 

Now, transfer your thinking from an analysis of variance framework to a multi- 

ple regression framework. Can we obtain r,2 = .75 “directly”? The independent vari¬ 

able, Methods, can be conceived as membership in the three experimental groups 

AuA2 and Ay This membership can be expressed by Is and Os: if a subject is a mem¬ 

ber of Au assign a 1; if a member of^2 or of Ay assign a 0. Or, we can assign Is to A2 

membership and Os to the members of the other |wo groups. The results will be basi¬ 

cally the same. Indeed, use any two different numbers, for instance—1 and 10 or 31 

and 5, or any two random numbers, and the basic results will be the same. The as- 
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OH Table 33.1 Fictitious Data and One-way Analysis of Variance Results, 

Three Experimental Groups 

A1 a2 A 3 

4 7 1 

5 8 2 

6 9 3 

7 10 4 

8 11 5 

Source df ss ms F 

Between Groups 2 90.0 45.0 18.0 (p<.01) 

Within Groups 12 30.0 2.5 

Total 14 120 

signment of Is and Os, however, has interpretative advantages that will be mentioned 

later (see Cohen & Cohen, 1983), and generally works better with computer statisti¬ 

cal software. The regression analysis layout of the data of Table 33.1 is given in Table 

33.2. Treat the 15 dependent variable measures in the column labeled Y as a single 

set of scores. Treat the “scores” of Xx and X2 similarly, except that the Is and Os 

indicate group membership. The members of A\ have been assigned Is in the col¬ 

umn Xu while the members ofA2 and A} have been assigned 0 (second column). The 

members of A2 have been assigned Is in the third column, X2, while the members of 

Ai and A3 have been assigned Os. One may ask: Where is At, in the table? When 

coding experimental groups, there are only k - 1 coded vectors (columns), where k 

equals the number of experimental treatments (in this case k = 3). Expressed differ¬ 

ently, there is one coded vector (columns) for each degree of freedom. Recall from 

our earlier discussion of analysis of variance that the between-groups degrees of 

freedom was k - 1. In this case, there are three treatments, Au A2, and At, and k = 3. 

Therefore, there are k — 1 = 2 coded vectors. These vectors of Is and Os are called 

dummy variables (see Suits, 1967, for more detail on dummy variables). For full 

discussions of coding variables for multiple regression analysis, see chapter 6 and 7 of 

Kerlinger and Pedhazur (1973) or Pedhazur (1996). They fully express the three 

experimental treatments. 
Now do a multiple regression analysis of the data in Table 33.3 just as in Chapter 

32. The sums-of-squares and cross products necessary for the analysis are given in 

Table 33.3. For example: 
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Stj = (l2 + l2.... + 02) —jj- = 5 — 1.6667 = 3.3333 

2x23, = (0)(4) + (0)(5) +....+ (0)(5) - = 45 - 30 = 15 

= (1)(0) + (1)(0) + .... + (0)(0) - -^jp- = 0 - 1.6667 = - 1.6667 

\ 

To calculate the regression and residual sums-of-squares, use Formulas 32.7 and 32.8 
of Chapter 32 (given here with the numbering of this chapter): 

m Table 33.2 Regression Layout and Calculations 
(Data from Table 33.1) 

Y *2 

4 1 0 

Ai 5 1 0 

6 1 0 

7 1 0 

8 1 0 

a2 7 0 1 

8 0 1 

9 0 1 

10 0 1 

11 0 1 

A.3 1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 0 0 

X: 90 5 \ 5 

M: 6 .3333 .3333 
X2: 660 5 5 
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ssreg = bxXxxy - b2Xx2y (33.1) 

SSres = SSt ~ SSreg (33.2) 

We have in Table 33.3 all the above values except bx and b2, the regression coeffi¬ 

cients, and a, the intercept. There are several ways to calculate the bs, but they are 

beyond the scope of our treatment. So we accept them on faith: b\ — 3 and b2 — 6. 

The intercept a is calculated 

a = Y - bxXx - b2X2 (33.3) 

= 6 - (3)(.3333) - (6)(.3333) = 3. 

The sums of cross products are given in Table 33.3: Xxxy = 0 and Xx2y = 15. Substi¬ 

tuting in 33.1 and 33.2, we obtain: 

ss„g = (3)(0) + (6)(15) = 90. 

ssm = 120 - 90 = 30. 

To calculate R2, use Formula 32.11 of Chapter 32 (with a new number): 

R2 = 

ss, reg 90 

ss. 120 

R = ^75 = .8660 

= .75 

(33.4) 

Finally, calculate the F-ratio using Formula 34.13, again with a new number: 

R2/k 
p =- 

(1 - R2)/(N - k - 1) 
(33.5) 

where k equals number of independent variables and N equals number of cases. 

[U Table 33.3 Sums-of-Sq 
(Data from 

uares and Cross Products 

Table 35.2)* 

xx x2 y 

xx 3.3333 -1.6667 0 

x2 

y 

3.3333 15.0000 

120.0000 

i r i nni . :_ 
a The values on the diagonal are the deviation sums-of-squares: Xx2, Xx22, and Xy.The remaining 

three values above the diagonal are the deviation cross products: Xxxx2, XxLy, and Xx2y. 
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Substituting: 

.75/2 .375000 
F --- =-= 18. 

(1 - .75)/(15 - 2 - 1) .020833 

Another formula for F can be borrowed from the previous chapter: 

r _ SSre?Jdf\ SSreg/k 9Q/2 45 
r — --— . — 1 o 

ssreg/df2 ssrJ(N-k - 1) 30/(15 - 2 - 1) 2.5 

This F-ratio is then checked in an F-table (see Kerlinger & Pedhazur, 1973, App. D 

or Appendix C of this book), at df = 2, 12. The entry atp — .05 is 3.88, and at p = 

.01 it is 6.93. Since F of 18 calculated above is greater than 6.93, the regression is 

statistically significant, and R2 is statistically significant. Note that even though A3 

was not coded—it had no coded vector of its own—its mean is easily recovered by 
substituting 0’s for Xx and X2. 

While it has been shown that multiple regression analysis accomplishes what 

one-way analysis of variance does, can it be said that there is any real advantage to 

using the regression method? Actually, the calculations are more involved. Why do 

it, then? The answer is that with the kinds of data of the example above there is no 

practical advantage beyond aesthetic nicety and conceptual clarification. But when 

research problems are more complex—when, for example, interactions, covariates 

(intelligence test scores), nominal variables (sex, social class), continuous variables 

and nonlinear components (A2, A3) are involved — the regression procedure has 

decided advantages. Indeed, many research analytic problems that analysis of 

variance cannot handle readily or at all can be fairly readily accomplished with 

multiple regression analysis. Factorial analysis of variance, analysis of covariance, 

and, indeed, all forms of analysis of variance can also be done with regression analy¬ 

sis. Since it is not our purpose to teach statistics and the mechanics of analysis, we 

refer the reader to appropriate discussions like those cited earlier in this chapter. We 

will explain in the next section, however, the nature of highly important methods of 
coding variables and their use in analysis. 

Coding and Data Analysis 

Before enlarging the discussion of multiple regression and analysis of variance, we 

need to know something about different ways of coding experimental treatments for 

multiple regression analysis. A code is a set of symbols assigned to a set of objects for 

various reasons. In multiple regression analysis, coding is the assignment of numbers 

to the members of a population or sample to indicate group or subset membership 

according to a rule determined by an independent means. When some characteristic 

or aspect of the members of a population or sample is objectively defined, it is then 

possible to create a set of ordered pairs, the first members of which constitute the 
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dependent variable, Y, and the second members numerical indicators of subset or 

group membership. 
In the preceding discussion of the coding of experimental treatments in the 

multiple regression analogue of one-way analysis of variance, Is and Os were used. 

Vectors of Is and Os are correlated. In Table 33.3, for instance, the sum of the cross 

products, %x{x2, is -1.6667, and rn = --50. Such 1 and 0, or dummy, coding works 

quite well. It is also possible to use other forms of coding. One of these, effects 

coding, consists of assigning {1, 0, -1} or {1, -1} to experimental treatments. 

Although a useful method, it will be discussed only briefly. 
To clarify matters, the coding of the data of Table 33.2, a multiple regression 

analogue of the one-way analysis of variance of the data of Table 33.1, with three 

experimental groups or treatments, is laid out in Table 33.4. Under the heading 

“Dummy” is given the dummy coding of Table 33.4, using only two subjects per 

experimental group. Since there are two degrees of freedom, or £-1 = 3 — 1=2, 

there are two column vectors labeled X\ and X2. The dummy coding assignment has 

already been explained: A “1” indicates that a subject is a member of the experimen¬ 

tal group against which the 1 is placed, and a 0 that the subject is not a member of 

the experimental group. 
Under the Effects column, the coding is seen to be {1, 0, -1}. Effects coding is 

virtually the same as dummy coding—indeed, it has been called dummy coding 

except that one experimental group, usually the last, is always assigned — Is. If the ns 

of the experimental groups are equal, the sums of the columns of the codes equal 

zero. The vectors, however, are not systematically uncorrelated. The correlation 

between the two columns under Effects in Table 33.4, for example, is .50. (Contrast 

this with the correlation between the Dummy code columns: r = -.50.) 

[Ml TABLE 33.4 Examples of Dummy, Effects, and Orthogonal Coding of Experimental Treatments3 

Dummy Effects Orthogonal 

Groups Xt x2 Xt x2 Xt x2 

At 1 0 1 0 0 2 

1 0 1 0 0 2 

a2 0 1 0 1 -1 -1 

0 1 0 1 -1 -1 

A3 0 0 -1 -1 1 -1 

0 0 -1 -1 1 -1 

ri2 = -.50 K
>

 II 

V
/A

 

o
 

ru = -00 

aIn the dummy coding, A3 is a control group. In the orthogonal coding, A2 is compared to A„ and Ax is compared to A2 

and A3, or (A2 + Af)!2. 
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Each of these two systems of coding has its own characteristics. Two of the 

characteristics of dummy coding were discussed in the previous section. One of the 

characteristics of effects coding, on the other hand, is that the intercept constant a, 

yielded by the multiple regression analysis, will equal the grand mean, or Mu of Y. 

For the data of Table 33.2, the intercept constant is 6.00, which is the mean of all the 
Y scores. 

The third form of coding is orthogonal coding; it is also called “contrasts” cod¬ 

ing, but some contrasts coding can be nonorthogonal. As its name indicates, the 

coded vectors are orthogonal or uncorrelated. If an investigator’s main interest is in 

specific contrasts between means rather than the overall E-test, orthogonal coding 

can provide the needed contrasts. In any set of data, a number of contrasts can be 

made. This is, of course, particularly useful in analysis of variance. The rule is that 

only contrasts that are orthogonal to each other, or independent, are made. For 

example, in Table 33.4, the coding of the last set of vectors is orthogonal: each of the 
vectors totals to zero and the sum of their products is zero, or 

(0 X 2) + (0 X 2) + (-1)(-1) + . . . + (1)(-1) = 0 

rv_ is also equal to zero. 

Instead of the dummy coding of Table 33.2, suppose we now use orthogonal 

coding. Suppose we also decide to test^2 against A}, or MAi - MA}, and also test Ax 

against A2 and A3, or - (MAi + MAj)/2. Xx is then coded (0, — 1, 1) and X2 is 

coded (2, -1, -1), as shown by the orthogonal coding of Table 33.5. The interested 

reader grounded in analysis of variance can follow up such possibilities by reading 
Cohen and Cohen (1983) or Kerlinger and Pedhazur, (1973). 

No matter what kind of coding is used, R2, F, the sums-of-squares, the standard 

errors of estimate, and the predicted Ts will be the same (the means of the experi¬ 

mental groups). The intercept constant, the regression weights, and the f-tests of b 

weights will be different. Strictly speaking, it is not possible to recommend one 

method over another; each has its purposes. At first, it is probably wise for the stu¬ 

dent to use the simplest method, dummy coding, or Is and 0s. One should fairly 

soon use effects coding, however. Finally, orthogonal coding can be tried and mas¬ 

tered. Before using orthogonal coding to any extent, the student should study the 
topic of comparisons of means (see Hays, 1994). 

simplest use of coding is to indicate nominal variables, particularly 
dichotomies. Some variables are “natural” dichotomies: sex, public school-parochial 

school, conviction-no conviction, vote for-vote against. All these can be scored 

(1, 0) and the resulting vectors analyzed as though they were continuous score 

vectors. Most variables are continuous, or potentially so, however, even though they 

can always be treated as dichotomous. In any case, the use of (1, 0) vectors for 
dichotomous variables in multiple regression is highly useful. 

With nominal variables that are not dichotomies we can still use (1, 0) vectors. 

One simply creates a (1, 0) vector for each subset but only one of a category or 

partition. Suppose the category A is partitioned into Ah A2, A3, say Protestant, 
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Catholic, Jew. Then a vector is created for Protestants, each of which is assigned a 1, 
the Catholics and Jews are assigned 0. Another vector is created for Catholics: each 
Catholic is assigned 1; Protestants and Jews are assigned 0. It would, of course, be 
redundant to create a third vector for Jews. The number of vectors is k — 1, where k 
equals the number of subsets of the partition or category. 

While sometimes convenient or necessary, partitioning a continuous variable 
into a dichotomy or trichotomy discards information. If, for example, an investigator 
dichotomizes intelligence, ethnocentrism, cohesiveness of groups, or any other 
variable that can be measured with a scale that even approximates equality of inter¬ 
vals, possible valuable information is being discarded. To reduce a set of values with a 
relatively wide range to a dichotomy is to reduce its variance and thus its possible 
correlation with other variables. A good rule of research data analysis, therefore, 
is: Do not reduce continuous variables to partitioned variables (dichotomies, 
trichotomies, etc.) unless compelled to do so by circumstances or the nature of the 

data (seriously skewed, bimodal, etc.). 

Factorial Analyis of Variance, Analysis of Covariance, 

and Related Analyses 

It is with factorial analysis of variance, analysis of covariance, and nominal variables 
that we begin to appreciate the advantages of multiple regression analysis. We do 
little more here than comment on the use of coded vectors in factorial analysis of 
variance. Exceptionally full discussions can found in Pedhazur’s (1996) exhaustive 
work. We will, however, explain the basic reason why multiple regression analysis is 

often better than factorial analysis of variance. 
The underlying difficulty in research and analysis is that the independent 

variables in which we are interested are correlated. Analysis of variance, however, 
assumes that they are uncorrelated. If we have, say, two experimental independent 
variables and subjects are assigned at random to the cells of a factorial design, we can 
assume that the two independent variables are not correlated—by definition. And 
factorial analysis of variance is appropriate. But if we have two nonexperimental 
variables and the two experimental variables, we cannot assume that all four indepen¬ 
dent variables are uncorrelated. Although there are ways to analyze such data with 
analysis of variance, they are cumbersome and “unnatural.” Moreover, if there are 
unequal ns in the groups, analysis of variance becomes still more inappropriate 
because unequal ns also introduce correlations between independent variables. The 
analytic procedure of multiple regression, on the other hand, takes cognizance, so to 
speak, of the correlations among the independent variables as well as between the- 
independent variables and the dependent variable. This means that multiple 
regression can analyze —separately or together—both experimental and nonexperi¬ 
mental data effectively. Moreover, continuous and categorical variables can be used 

together. 
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When subjects have been assigned at random to the cells of a factorial design 

and other things are equal, there isn’t much benefit derived from using multiple 

regression. But when the ns of the cells are unequal, and one wants to include one, 

two, or more control variables—like intelligence, sex, and social class — or the 

analysis involves using continuous variables, then multiple regression should be 

used. This point is most important. In analysis of variance, the addition of 

control variables is difficult and clumsy. With multiple regression, however, the 

inclusion of such variables is easy and natural: each is merely another vector of 
scores, another A)! 

Analysis of Covariance 

Analysis of covariance (not analysis of covariance structures, which we study later) is 

a particularly good example of the value of a multiple regression approach, because it 

is hard and cumbersome in the analysis of variance framework, and easily and readily 

grasped and done in a regression framework. What analysis of covariance does in its 

traditional application (see Hays, 1994) is to test the significance of the differences 

among means after taking into account or controlling initial individual differences on 

a covariate, a variable that is correlated with the dependent variable. (This correlation 

is taken into account.) In the multiple regression approach, however, the covariate’s 

influence is controlled just as though it were any independent variable whose influ¬ 

ence on the dependent variable has to be controlled. The covariate can be a pretest 
or a variable whose influence must be “removed” statistically. 

Large-scale studies by Prothro and Grigg (1960) and McClosky (1964) found 

people’s agreement with social issues became greater when the issue became more 

abstract. Suppose a political scientist believes that authoritarianism has a good deal to 

do with this relation, that the more authoritarian the person, the more that person 

agrees with abstract social assertions. In order to study the relation between abstract¬ 

ness and agreement, the researcher will have to control Authoritarianism. In other 

words, the political scientist is interested in studying the relation between abstract¬ 

ness of issues and statements on the one hand, and agreement with such issues and 

statements on the other. At this point there is no interest in authoritarianism and 

agreement. The interest is to control the influence of authoritarianism on agreement. 
Authoritarianism is the covariate. 

The political scientist devises three experimental treatments, Ah A2, and Ah 

different levels of abstractness of materials. Responses are obtained from 15 subjects 

who have been assigned randomly to the three experimental groups, five in each 

group. Before the experiment begins, the investigator administers the F (Authoritari¬ 

anism) scale to the 15 subjects and uses these measures as a covariate. The goal is to 

control the possible influence of authoritarianism on agreement. This is a fairly 

straightforward analysis of covariance problem in which we test the significance of 

the differences among the three agreement means after correcting the means for the 

influence of authoritarianism and taking into' account the correlation between 

authoritarianism and agreement. We now do the analysis of covariance, using 
multiple regression analysis. 
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Is] Table 33.5 Fictitious Analysis of Covariance Problem, Three Experimental Groups 

and One Covariate 

Treatments 

A\ a2 A3 

X Y X Y X Y 

12 12 6 9 12 15 

11 12 9 9 10 12 

10 11 11 13 4 9 

12 10 14 14 4 8 

10 12 2 5 8 11 

First, the data are presented in the usual analysis of covariance way in Table 33.5. 

In analysis of covariance one does separate analyses of variance on the X scores, the Y 

scores, and the cross products of the X and Y scores, XY. Then, using regression 

analysis, one calculates sums-of-squares and mean squares of the errors of estimate of 

the total and the within-groups and, finally, the adjusted between-groups. Since the 

concern here is not with the usual analysis of covariance procedure, we do not do 

these calculations. Instead, we proceed immediately to a multiple regression 

approach to the analysis. 
The data of Table 33.5, arranged for multiple regression analysis, are given in 

Table 33.6. As usual, there is one vector for the dependent variable, Y A second 

vector, Xu is the covariate. The remaining two vectors, X2 and X3, represent the 

experimental treatments Ax and A2. (It is not necessary to have a vector for Ah since 

there is only one vector for each degree of freedom, and there are only two degrees 

of freedom.) 
A regression analysis yields: R2y.m = .8612 and R2yl = .7502. To test the 

significance of the differences among the means of Au A2, and A3, after adjusting for 

the effect of Xh the variance in Y due to the covariate is subtracted from the total 

variance accounted for by the regression of Y on variables Xu X2 and X: R2y.m ~ 
R2y l. This remainder is then tested: 

(R2y, 123 - KxW, - k2) 

(i -R2y.my(N-kx -1) 
(33.6) 

where kx equals the number of independent variables associated with R2y.\23 the larger 

R2, and equals the number of independent variables associated with R2yA, the smaller 

R2. Thus by substituting the values we get: 
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(.8612 - ,7502)/(3 - 1) .0555 
F =-—-— =-= 4.405 

(1 - ,8612)/(15 - 3 - 1) .0126 

which, at 2 and 11 degrees of freedom, is significant at the .05 level. (Note that an 

ordinary one-way analysis of variance of the three groups, without taking the covari¬ 

ate into account, yields a nonsignificant F-ratio.) R2y 23 or the variance of Y accounted 

for by the regression on variables two and three (the experimental treatments), after 

allowing for the correlation of variable 1 and Y, is .1110. While this is not a strong 

relation, especially compared to the massive correlation between the covariate, au¬ 

thoritarianism, and Y (;r2ly = .75), it is not inconsequential. Evidently, abstractness of 

issues influences agreement responses: the more abstract the issues, the greater the 

agreement. Authoritarianism is unlikely to have a correlation with Y of .87. The ex¬ 

ample was deliberately contrived to show how a strong influence like the covariate X 

can be controlled and the influence of the remaining variables (in this case experi- 

OH Table 33.6 Fictitious Analysis of Covariance Data of Table 
35.6 Arranged for Multiple Regression Analysisa 

Y Xt X2 *3 

A, 12 12 1 0 

12 11 1 0 

11 10 1 0 

10 12 1 0 

12 10 1 0 

a2 9 6 0 1 

9 9 0 1 

13 11 0 1 

14 14 0 1 

5 2 0 1 

A.3 15 12 0 0 

12 10 0 0 

9 4 0 0 

8 4 0 0 

11 8 0 0 

3 Y = dependent variable; = covariate; X2 = treatment Ai; X} treatment A2. 
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mental treatments) evaluated. Note that Formula 33.6 can be used in any multiple 

regression analysis; it is not limited to analysis of covariance or other experimental 

methods. 

The analysis of covariance, then, is seen to be simply a variation on the theme of 

multiple regression analysis. And in this case it happens to be easier to conceptualize 

than the rather elaborate analysis of covariance procedure — especially if there is 

more than one covariate (see Bruning and Kinte, 1987 or Li, 1957). The covariate is 

nothing more than an independent variable. Moreover, a variable considered as a 

covariate in one study can easily be considered as an independent variable in another 

study. 

Discriminant Analysis, Canonical Correlation, 
Multivariate Analysis of Variance, and Path Analysis 

Canonical correlation and discriminant analysis address themselves to two important 

research questions: What is the relation between two sets of data with several 

independent variables and several dependent variables? How can individuals best be 

assigned to groups on the basis of several variables? Canonical correlation analysis 

addresses itself to the first question, and discriminant analysis to the second. As one 

would expect from the name, multivariate analysis of variance is the multivariate 

counterpart of analysis of variance: the influence of k independent experimental vari¬ 

ables on m dependent variables is assessed. Path analysis is more a graphic and 

heuristic aid than a multivariate method. As such, it has great usefulness, especially 

for helping to clarify and conceptualize multivariate problems. 

Discriminant Analysis 

A discriminant function is similar to a regression equation with a categorical depen¬ 

dent variable. Each, however, has a different purpose. This dependent variable is 

usually represented in the form of group membership. In multiple regression, 

however, the linear combination of the predictor or independent variables is used to 

estimate the dependent variable. The dependent variable in regression is a continu¬ 

ous measure. Most researchers use multiple regression to estimate the values of the 

dependent variable for the purpose of selection. That is, if a predicted value for a set 

of independent variable values exceeds a certain cutoff, a decision is made. Discrimi¬ 

nant analysis is involved with classification and not necessarily selection. Given a 

profile of scores on the independent variables, discriminant analysis can help a re¬ 

searcher determine to which group that individual belongs. Some natural scientists 

have applied the method to help classify anthropological findings of bones or ani¬ 

mals. Like multiple regression, the independent variables are assumed to be continu¬ 

ous but the dependent variable is categorical. In the most elementary situations, the 

discrete or categorical dependent variable has only two categories. The problem that 

discriminant function attempts to resolve is finding a set of coefficients or weights, uh 
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for the independent variables (also called discriminating variables). We want to find 

these weights so that we can test whether a particular combination of the indepen¬ 

dent variables resembles those members in Category 1 or more closely resembles 

those in Category 2. The major goal is to weight and linearly combine the indepen¬ 

dent variables so that the categories are forced to be as different statistically as 
possible. 

Discriminant analysis answers two major questions. First, it will tell us whether 

or not the set of independent variables is any good in distinguishing between the two 

groups or categories. The second question is only important if the answer to the first 

question is “yes” The second deals with classification. It will tell us which group or 

category a single individual should belong to. In other words, the discriminant 

function separates the members of the group maximally. It tells us to which group 

each member probably belongs. Additionally, it can also test to determine which of 

the independent variables account for the difference between the groups. In short, if 

we have two or more independent variables and the members of, say, two groups, the 

discriminant function gives the “best” prediction, in the least-squares sense, of the 
“correct” group membership of each member of the sample. 

Some researchers have stated that two-group discriminant analysis is the same as 

multiple regression except that the dependent variable, Y, is dichotomous instead of 

continuous. Some have gone as far as to say that any binary coding of the dependent 

variable (dummy coding) can be used. However, this is not exactly true. Lindeman, 

Merenda, and Gold (1980) have shown that the regression weights from multiple 

regression, b,s, are proportional to the discriminant function weights, u,s, if the 

dependent variable is coded as n2/(nl + n2) for members of group 1 and - nl/(nl + 
n2) for members in Group 2. 

The linear discriminant analysis as formulated by Fisher (1936), is an appropri¬ 

ate method when the dependent variable is categorical. The independent or 

predictor variables should be measured on an interval scale. In order to test whether 

there is a statistically significant difference between the groups, the independent 

variables must be distributed normally with equal variances and covariances. In order 

to use discriminant analysis properly for classification, other assumptions about the 

data are made. One assumption is that one must believe that each individual profile 

has an equal probability of being in each group or category. One must also assume 

that the cost of misclassification for each individual is the same. These assumptions 

necessary for discriminant function are not always satisfied. As a result, in recent 

years, many researchers have turned away from discriminant analysis in favor of 
logistic regression. 

Canonical Correlation 

It is not too large a conceptual step from rqiiltiple regression analysis with one 

dependent variable to multiple regression analysis with more than one dependent 

variable. Computationally, however, it is a considerable step. We will not, therefore, 

supply the actual calculations. The regression analysis of data with k independent 

variables and m dependent variables is called canonical correlation analysis. This 
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method was developed by Hotelling (1935, 1936). The basic idea is that, through 

least-squares analysis, two linear composites are formed: one for the independent 

variables Xt, and one for the dependent variables Yy The correlation between these 

two composites is the canonical correlation. And, like R, it will be the maximum cor¬ 

relation possible given the particular sets of data. It should be clear that what has 

been called until now multiple regression analysis is a special case of canonical analy¬ 

sis. In view of practical limitations on canonical analysis, it might be better to say that 

canonical analysis is a generalization of multiple regression analysis. 

Canonical correlation can have one or more of the following objectives. 

1. Testing whether two sets of variables are correlated or not correlated. 

2. Finding two sets of weights or coefficients so that the correlation between the 

two sets is at a maximum. 

3. Finding the variables in each set that make the greatest contribution in the 

correlation between the sets. 

4. Predicting values in one set of variables using values entered into the other 

set. 

Of these perhaps the third point is the most interesting and useful. For example, we 

may want to determine which achievement-based variables would have the greatest 

relation with a set of performance measures. Canonical correlation can provide that 

information. After all, if we have a set of achievement-based variables, such as a 

battery of achievement tests, not every test is the same. Also, one cannot reasonably 

expect them to make the same contribution. Hence, it is logical for us to think of 

canonical correlation as a step-by-step method that selects two variables, one from 

each set of variables that have the strongest relation over any other pair. After that, it 

will then continue to find the next best pair. 
As far as the assumptions we need to make when applying canonical correlation 

to our data, they are not as important if we do not make inferences about the canoni¬ 

cal statistic. If we use it only for descriptive purposes, we do not have to assume that 

the data come from a multinormal distribution or that the data come from a popula¬ 

tion with a common variances and covariance. However, if we are to make infer¬ 

ences, as in a test of statistical significance, then these assumptions must be met. 

Additionally, both the independent and dependent variables must be measured on an 

interval scale, or that one set is measured on an interval scale and the other is on a 

dichotomous scale. 
Similar to multiple regression and discriminant analysis, the goal here for canon¬ 

ical correlation to find weights or coefficients. The difference is that there are two 

sets instead of one: one set for the independent variable (also called predictors), and 

another set for the dependent variables (also called criterion). The weights for both 

sets of variables are found so that they would maximize the correlation between the 

two sets. So, unlike multiple regression and discriminant analysis, canonical correla¬ 

tion is capable of producing more than one set of weights for the independent and 

dependent variables. However, the first set of weights would be the set that accounts 

for the greatest amount of variance. Each linear combination of variables (there is 
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one for each set of variables) is often called a canonical variate (see Lindeman, 

Merenda, and Gold, 1980). 

Research Example 

Bedini, Williams, and Thompson (1995) used canonical correlation to study the 

relation between employment burnout and therapeutic role stress. This study dealt 

only with therapeutic recreation specialists. The burnout measures: Emotional 

Exhaustion, Depersonalization, and Personal Accomplishment were used as the 

dependent variables, whereas role stress measures: Role Ambiguity, and Role Con¬ 

flict were used as the independent variables. The researchers found one function that 

explained the relation between the two sets of variables. This function accounted for 

almost 36% of the explained variance between the two sets. Additional analyses 

determined that approximately 5 3 % of the variance for burnout is accounted for by 

the role stress variables. The results suggest that people who are experiencing role 

stress are more likely to be burned out, for example, experience emotional exhaus¬ 

tion, depersonalization, and a sense of low personal accomplishment. 

Multivariate Analysis of Variance 

As one might suspect, analysis of variance has its multivariate counterpart, multivari¬ 

ate analysis of variance, which enables researchers to assess the effects of k indepen¬ 

dent variables on m dependent variables. Like its univariate companion, which we 

examined in some detail earlier, it is or should be used for experimental data. The 

multivariate analysis of variance, or MANOVA, is a method closely related to dis¬ 

criminant analysis with multiple groups. This similarity is only on its structure and 

not necessarily where it should be used and what the assumptions are. Like the uni¬ 

variate version of analysis of variance presented in an earlier chapter, the designs used 

for univariate (one dependent variable) can be used for multiple dependent variables. 

In other words, each participant of the study is measured more than once, so that the 

person has at least two dependent measures. In some cases, it can be two or more dif¬ 

ferent dependent variables. In others it could be the same variable measured at dif¬ 

ferent times. The latter is often called repeated measures analysis of variance. Some re¬ 

searchers have inappropriately called and analyzed the data from their study as a 

repeated-measures ANOVA. They should have called and analyzed the data using a 

MANOVA. The reasons for this is that one would need to meet the requirement that 

the error component of the scores are independent. This is the homogeneity of vari¬ 

ance assumptions, which often times is difficult to meet especially if the dependent 

variables are not truly repeated measures. There are statistical tests available to test 
this assumption (see Kirk, 1995). 

MANOVA, however, has a few assumptions of its own that could be questioned. 

The within-group variances measured for the dependent variables for each of the 

groups in the analysis must be equal. Also, we would need to assume that the depen¬ 

dent variables are distributed as a multivariate normal distribution. Tests fot multi¬ 

variate normality are not sufficiently advanced. The determination is usually done in 
a piecemeal series of tests. 
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The multivariate analysis of variance is at its best when the assumptions are met 

and also when there is a substantial correlation between the dependent variables. If 

the correlation between the dependent variables is low or near zero, the researcher 

would make no gain by using a MANOVA. In this case, separate ANOVAs can be 

computed with each dependent variable serving as a single outcome measure. If this 

is the case, the researcher will need to adjust the level of the Type I error to compen¬ 

sate for the family-rate or family-wise error. With the other extreme, if the correla¬ 

tion between the dependent variables is at or near 1.00, we know that the two are 

measuring essentially the same thing and are redundant. With that, only a single 

ANOVA need be computed for one of those dependent variables. 

We forgo further discussion here except to say that, as in all or most multivariate 

analysis, the results of multivariate analysis of variance are sometimes difficult to in¬ 

terpret. This is because the difficulties mentioned earlier of assessing the relative 

importance of variables in this influence on one dependent variable, as in multiple 

regression analysis, are often compounded in multivariate analysis of variance, 

canonical correlation, and discriminant analysis. If an interaction effect is statistically 

significant, the process of sorting out which variables are involved in the interaction 

effect can be unwieldy. Bray and Maxwell (1982) and Pedhazur (1996) provide very 

good discussions of multivariate analysis of variance. Note also that if there are 

covariates involved, we would have MANCOVA. 
Nemeroff’s (1995) study on disease and perception of contagion used a design 

where the collected data can be analyzed by MANOVA. This study was done to 

examine how people react to individuals who have a contagious disease. In this study, 

participants were given crayons and four sheets of blank paper. They were each told 

to draw the flu germ for different target people: self, friend, lover, stranger, and 

disliked person. These drawings were scored on several dimensions by trained 

judges. These evaluation scores served as the dependent variables. The dimensions 

Active, Big, and Complex were combined into a single measure — Intensity. Active 

was scored on how active or passive the germ appeared. Complex was concerned 

with the amount of detail the participant put into the drawings. The remaining three 

individual variables were Abstraction, Reaching, and Happy. Abstraction referred to 

how personified the drawing appeared. Reaching referred to how contained the germ 

appeared, and Happy measured the judges perception of how nice or happy the germ 

appeared. The independent variable for this study was the source individuals, for 

example, lover, self, stranger, and so on. 
Through the use of MANOVA, Nemeroff found that people do perceive the flu 

germ differently when it comes from a different source of contagion. For example, 

self-germs differed from stranger germs on intensity. Lover germs were perceived as 

being less angry in color than disliked-person germs, which were found to be the 

most threatening. The lover germ was found to be the least threatening. 

Path Analysis 

The development of path analysis is credited to Wright (1921). The goal was to 

develop a causal model for genetics and biology using correlations. As we have 
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discussed earlier, correlations do not imply causality. However, Wright was able to 

use them as such because his studies were done under very tight controls. Wright 

distinguished between direct and indirect effects using correlations and regression. A 

variable X may have a direct effect on the variable Y but an indirect effect on the 

variable Z. This effect is established by examining the standardized regression 

weights (correlations) between X and Y, X and Z, and Y and Z. If the correlation 

between ‘X and F’ and ‘F and Z’ are substantial, but the correlation between X and Z 

is minimal we have a direct effect between X and F and between F and Z, and an in¬ 

direct one between X and Z. Wright’s contribution also included a way to use tracing 

rules in path diagrams to perform the necessary computations. 

A rediscovery of Wright’s work occurred in sociology in the mid-1960s to early 

1970s. These methods then became popular with psychological and educational 

researchers in the 1970s and 1980s. Bender (1986) gives a good historical perspective 

of this transition. However, the behavioral and social science data are not quite like 

the data Wright collected and used. As such, to call it a “causal” model is misleading. 

Wright, as mentioned, had very tight controls on the genetic and breeding variables, 

but the level of control in the social and behavioral science studies is much lower. 

Blalock (1972) mentions the requirements for doing a path analysis where the results 

would be useful. Today, path analysis still serves as a useful research tool in develop¬ 

ing a conceptual model that can be tested empirically. Although the term “causal 

modeling” lingers, it is not really causal. This will be true also when we consider the 

later chapter on structural equation modeling. A book that gives good coverage of 
path analysis is Loehlin (1998). 

Path analysis is a form of applied multiple regression analysis that uses path dia¬ 

grams to guide problem conceptualization or to test complex hypotheses. Through 

its use one can calculate the direct and indirect influences of independent variables 

on a dependent variable. These influences are reflected in so-called path coefficients, 

which are actually regression coefficients (beta, /3 or b). Moreover, one can test 

different path models for their congruence with observed data (see Pedhazur, 1996). 

While path analysis has been and is an important analytic and heuristic method, it is 

doubtful that it will continue to be used to help test models for their congruence 

with obtained data. Rather, its value will be as a heuristic method to aid conceptual¬ 

ization and the formation of complex hypotheses. The testing of such hypotheses, 

however, will probably be done with analytic tools more powerful and more appro¬ 

priate for such testing. The method covered in Chapter 35 is currently the best 

method to use in analyzing and testing hypotheses from path analytic models. Let us 

look at an example to give a general idea of the approach. 

Consider the two models, a and b, of Figure 33.1 Suppose we are trying to “ex¬ 

plain” achievement, x4, in the figure, or GPA. We believe that model a is “correct”; 

you believe, however, that model b is “correct.” Model a says, in effect, that SES and 

intelligence both influence x3, n achievement, or need for achievement (ra-Ach), and 

that x3 influences x4, GPA or achievement. Well and good! We believe, in other 

words, that model a best expresses the relations among the four variables.' On the 

other hand, you believe that model b is a better representation. It adds a direct influ- 
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HU Figure 33.1 xx = Socioeconomic Status (SES); x2 = Intelligence; 

x3 = 72-Ach, or Need for Achievement; x4 = GPA, Grade Point Average (GPA), 

(Achievement) 

SES 

ence of x2, intelligence, on x4, achievement (note the paths from x2 to x4 and from x2 

to x3 to x4). Which model is “correct”? It is possible in path analysis to test the two 

models using the method in Chapter 35. 

Ridge Regression, Logistic Regression, 

and Log-linear Analysis 

Ridge Regression 

Ridge regression is a method well-known to applied statisticians and engineering sci¬ 

ence researchers. However, it has not been popular in psychological or behavioral 

science research. The inventors of the method, Arthur Hoerl and Robert Kennard, 

published their monumental paper in 1970. Despite psychology’s attitude toward this 

method, the impact of Hoerl and Kennard’s paper has been so great, the Institute for 

Scientific Information has designated it a “Citation Classic” (Hoerl, 1995). 

Psychology usually associates the paper by Price (1977) as psychology’s introduc¬ 

tion to ridge regression. However, Simon’s (1975) well-written and informative man¬ 

uscript on the topic preceded Price’s by two years. Also, Bolding and Houston (1974) 

wrote a computer program to perform ridge regression. Simon (1975) demonstrated 

how the method could be used in human factor studies where all the requirements of 

a true experiment were not met. These studies involved one or more predictor vari¬ 

ables that were highly correlated. These correlated variables were due to the failure of 

completing a true experiment or to the investigator’s inability to select or control rel¬ 

evant experimental conditions. Simon refers to these types of studies as “undesigned” 
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studies. Keith (1988) and Price (1977) call them “nonexperimental research.” Hoerl 

and Kennard (1970) call them “non-orthogonal studies.” 

Ridge regression’s disfavor in psychological research may be due in part to the 

criticisms leveled at the method by Rosenboom (1979). Most Bayesian methods or 

biased-estimation techniques require human intervention and judgment instead of a 

strictly mathematical analytical method such as least squares. Ridge regression is one 

of these methods. As such, it has been considered dishonest. Even authors of well- 

known statistics textbooks such as Draper and Smith (1981) have stated that the 

method was very controversial in the 1970s. However, as stated in an article by Frank 

and Friedman (1993), ridge regression is clearly the better method of regression 

analysis under many nonexperimental conditions. Many researchers agree with Keith 

(1988) that multiple regression is the method of choice when it comes to nonexperi¬ 

mental studies. However, multiple regression breaks down swiftly when the predictor 

variables are highly correlated or collinear. This is due to the fact that multiple re¬ 

gression as it currently stands in most statistical computer packages uses the method 

of least-squares. The reader should note that the second author of this book is taking 

a rather extreme position on this topic. For research studies where the predictor vari¬ 

ables are correlated slightly or moderately (around .5 or less) the need for using a 

method such as ridge regression may not be necessary. In fact, Keith (1999) has 

pointed out that multiple regression yields fairly stable estimates of the regression 

coefficients when the level of collinearity is moderate. 

The Problem with Ordinary-Least-Scfuares (OLS) 

A purpose of multiple regression analysis is to obtain a set of unbiased coefficients or 

weights that will have a minimum amount of variable error and a reasonable fit to an 

existing set of data. A popular method for doing this is the method of ordinary-least- 

squares (OFS). This method is covered in every elementary statistics textbook as well 

as in an earlier chapter of this book. It is straightforward, mathematically deter¬ 

mined, and requires no human judgment. This method involves estimating the 

regression coefficients with the constraint that the sum-of-squares of the difference 

between the predicted and the observed outcome measure is at a minimum: 

X(V/ ~ Y)2 = minimum for the equation Y = f30+ /31a1 + f32x2 . . .+ (3nxn + e. 

In this equation the Xs are the predictor variables and the Y is the dependent or cri¬ 

terion variable. When the predictor variables are mathematically independent (i.e., 

the correlations between the Xs are equal to zero), the estimated regression coeffi¬ 

cients are reasonable representations of the true regression coefficients within the 

limits of sampling fluctuations. When the predictor variables are highly correlated, 

the individual regression coefficients calculated using the OFS method are often un¬ 

satisfactory. The matrix of highly intercorrelated predictor variables is called ill- 

conditioned. The predictive qualities of this equation generated by least-squares are 

reasonably accurate for the data used to generate the equation. However, for a new 
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set of data applied to the same regression equation results in poor predicted values 

for the outcome measure. That is, cross-validation of the regression equation is 

extremely poor. Also, the relative effects of the individual regression coefficients 

cannot be evaluated. In other words, the regression coefficients obtained from using 

least-squares on correlated predictor variables may not make sense when evaluated in 

real-world terms. Hoerl and Kennard (1970) and resummarized by Simon (1975) 

stated that one or more of the following characteristics could occur in a least squares 

fit of correlated predictor variables: 

1. regression coefficients become too large in absolute value, 

2. some coefficients may have the wrong sign, 

3. the coefficients are unstable; another set of data for the same variables will 

produce different outcome values, and 

4. individual regression weights are over- or underestimating the effect of a par¬ 

ticular variable. 

Two variables highly correlated will result in coefficients where one variable receives 

a large weight and the other receives a small insignificant weight. A more complete 

discussion on the dangers of ordinary OLS is given by Newman (1976). 

Hoerl and Kennard (1970) developed an alternative to the conventional multiple 

regression approach with correlated predictor variables. This method was created to 

allow researchers to assess variables in chemical engineering problems where it 

would be impractical to drop variables or create composite ones. This method, called 

ridge regression, yields a better prediction equation than one would get from using 

least-squares. It is better because the estimated coefficients are closer to the true 

coefficients on the average. The signs on the coefficients are more accurate; the 

coefficients are more stable, with a higher likelihood of being repeated for a new 

set of data, and the estimated outcome measure can be made with a smaller 

mean square error. Through ridge regression the eigenvalues will become less 

discrepant. 

Essentially, ridge regression analysis is identical to OLS regression except that a 

small number, k, has been added to the diagonal of the correlation matrix of predic¬ 

tor variables. The addition of this number k to the diagonal makes the matrix less ill- 

conditioned. It also has the effect of lowering the mean square error when compared 

to least-squares. The best k value is the one where the regression coefficients have 

stabilized and the residual sums-of-squares is low. To find this value, the researcher 

must try several values of k. A number of researchers have objected to this ad hoc 

method of selecting k. As demonstrated by Simon (1975) the k value can be directly 

added to the diagonal of the correlation matrix and then submitted to a regression 

computer program, or the researcher can add dummy cases to the original data (aug¬ 

mented data) and selecting the zero intercept option of the computer program. 

BMDP (Dixon, 1990) has a subprogram in their statistical package for performing 

ridge regression. Lee (1980) shows how one can do this with regression programs 
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that do not have a zero intercept option. Several studies have been done to develop a 

more analytical way of determining k. The discussion of those studies would 

consume too much space for this book. The reader is asked to consult Simon’s paper 

or Draper and Smith (1981). 

The price that one pays in using ridge regression is that the regression coeffi¬ 

cients are no longer unbiased and the RSS is not a minimum. However, the benefits 

of a properly executed ridge regression may outweigh these negatives. However, like 

all statistical methods, ridge regression must be used correctly. Draper and Smith 

(1981, p. 322) put it most directly with their statement: 

The ridge regression selection is not a miraculous panacea. It is a least squares 

solution restricted by the addition of some external information about the 

parameters. The blind use of ridge regression without this realization is danger¬ 

ous and misleading. If the external information is sensible and is not contra¬ 

dicted by the data, then ridge regression is also sensible. 

Research Example 

Bee and Beronja (1986) used ridge regression in a study of college students with an 

undetermined major. These researchers collected ACT test results along with colle¬ 

giate academic performance and personality measures, such as motivation and work 

habits. The goal was to develop a regression equation that could predict college 

academic performance (grade point average) using personality variables, program 

experience variables (e.g., level of difficulty of courses in major area) and precollege 

test scores (ACT). These explanatory or independent variables were collinear. When 

Bee and Beronja fitted the data by the ordinary regression method, they found none 

of the explanatory variables to be related significantly to academic performance. The 

ridge regression estimates, however, provided a very different result. Ridge regres¬ 

sion found the variables, ACT-Math, work habits, motivation to succeed, and 

difficulty of math courses to be significantly related to academic performance. Bee 

and Beronja found that k = A yield the best results in the ridge regression. All of the 

regression weights found using ordinary-least-squares were not statistically signifi¬ 

cant (p > .05). However, four of the regression weights determined by ridge regres¬ 
sion were significant. 

Logistic Regression 

We discussed earlier in the book multiple regression and discriminant function 

analysis. Generally, if one has a categorical dependent variable, the recommendation 

was to do a discriminant function analysis. However, a discriminant function analysis 

is only effective if the variables meet certain assumptions. In some studies within the 

social and behavioral science, the independent or predictor variables are categorical 

or nominal. When this occurs, the discriminant function analysis begins to lose its 

effectiveness in terms of its goodness-of-fit to the data. If one uses multiple regres¬ 

sion, the equation of best fit may be way off and yield an equation that may not yield 
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useful information. After all, the traditional multiple regression assumes the data are 

measured on an interval scale (or something close to that) and follows a normal 

distribution. 

A method that has been gaining much popularity in recent years is logistic 

regression. This development seems rather new to researchers in the field of psy¬ 

chology, sociology, and education. The life and medical sciences have been using it 

for a much longer period. The social sciences’ lag on the use of this method is ironic. 

Back in the late 1960s psychologists and social researchers at the University of 

Michigan’s Institute for Social Research (ISR) had developed the methods called 

multiple classification analysis (MCA) and Multivariate Nominal Scale Analysis (MNA), 

which is now referred to as logistic regression. Psychology actually had an early intro¬ 

duction to the method that lay latent for years except for those who were affiliated 

with or knowledgeable of ISR. 

Andrews, Morgan, Sonquist, and Klem (1973) describe a technique for examin¬ 

ing the relations between independent variables and a dependent variable that resem¬ 

bles multiple regression. They point out the problem involved when the independent 

or predictor variables are measured on a nominal scale and offer a solution. Multiple 

Classification Analysis, MCA as they call it, can take nominal or non-nominal data 

for the predictor variables. For the dependent or criterion variable, the data can be 

measured on an interval scale or dichotomous scale. The multivariate nominal scale 

analysis (Andrews & Messenger, 1973) is an expansion of MCA. It allows for 

nominally scaled dependent variables with more than two categories. By today’s 

labeling, MCA is called logistic regression, and MNA is called polychotomous logistic 

regression (see Dixon, 1990). We will use the more popular terms in our discussion of 

this method. 
Logistic regression, therefore, is a technique for fitting a regression surface to data 

in which the dependent variable is a dichotomy. In educational psychology we might 

classify students as High or Low mental functioning. Or, if we are referring to ther¬ 

apy, it would be Improved or Not Improved; Successful or Not Successful. For every 

study that uses a dichotomous dependent variable, logistic regression is a viable can¬ 

didate as the method of analysis. However, one may ask, “Which should I use — dis¬ 

criminant analysis or logistic regression?” There is a controversy surrounding the 

comparison of discriminant analysis and logistic regression. Press and Wilson 

(1978) reported the situations in which discriminant analysis does quite well; that is, 

the data meets the assumptions. However, when the assumptions are not met, 

logistic regression yields a superior form of analysis. Logistic regression has fewer as¬ 

sumptions to satisfy but is no panacea for data collected under questionable 

research designs. Discriminant analysis can easily produce a probability of 

success that lies outside the range of 0 and 1, which is not acceptable. Logistic re¬ 

gression, on the other hand, does not produce probabilities beyond 0 and 1. Both 

will yield regression estimates and both are capable of classifying individuals. In 

logistic regression, a researcher gets an added bonus: The regression coefficient or 

weights can be transformed into odds ratios, a useful statistic that we described in 

Chapter 10. It is useful in giving the researcher ideas as to what is going on within 

the data. 
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In a direct comparison between discriminant analysis and logistic regression, lo¬ 

gistic regression fares much better when variables are non-normal. Also, logistic re¬ 

gression is not as strongly affected as discriminant analysis when meaningless vari¬ 

ables are included in the analysis. This includes variables that are dichotomous or 

have been subjected to dummy coding. The use of dichotomous variables is very 

common in the behavioral science research. So if one’s research data contains cate¬ 

gorical or nominally scaled variables or there is some reasonable doubt about some of 

the variables, it is probably best to use logistic regression instead of discriminant 

analysis. 

A similar comparison could be made between logistic regression and ordinary 

multiple regression using dichotomous independent and dependent variables. With 

multiple regression, predicted values can fall outside the 0, 1 range. Also, if the calcu¬ 

lated variances of the dependent variable were to fluctuate for values of the indepen¬ 

dent variables, such as having more Is than Os for one level and equal Os and Is in 

another, the analysis will produce a large variance. As a result, the assumption 

of homogeneity of variance and normality will be violated. However, there are 

situations where multiple regression with a dichotomous dependent variable would 

give good results (see Cox & Wermuth, 1992). 

A Research Example 

The data for this example comes as a courtesy of Dorothy Scattone at the University 

of Southern Mississippi. Her study dealt with the perceptions of two different groups 

of Asians toward physical and mental disabilities. One group of Asians was born and 

raised in an Asiatic country and the other group consisted of American-born Asians. 

The participants were 215 college students who answered a number of questions 

concerning certain disabilities such as Down Syndrome or their level of acceptance 

of people with asthma or facial scars, and so on. These variables are measured on a 

5-point rating scale where 5 equals high acceptance and 1 equals low acceptance. 

The results of this analysis show us which variables discriminated between 

American-born and foreign-born Asians, and tells us the probabilities. For the Stut¬ 

ter variable participants are asked to indicate the level of acceptance for a person who 

has a speech problem, namely, stuttering, where 1 equals no acceptance to 5 equals 

full acceptance. With full acceptance, the respondent agrees that he or she is willing 

to have the person as a member of the family through marriage. Since this variable 

was significant it tells us that U.S.-born and foreign-born Asians differ in their re¬ 

sponse. The odds ratio for the variables is a different way of talking about probabili¬ 

ties. The advantage that the odds ratio has over the test of significance is that the 

odds-ratio is relatively unaffected by sample size. For Stuttering, the odds ratio was 

.4516. This says foreign-born Asians are .4516 times less likely to accept a person 

with stuttering than U.S.-born Asians or, in other words, U.S.-born Asians are 2.2 

times more likely to accept a person with these disabilities than foreiarn-born Asians 
(1/.4516). \ 

In addition to this information, the logistic regression analysis also provides a 

measure of how accurate the regression equation is in terms of classification.' With 

the data we have here, the logistic regression equation was able to correctly classify 
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76.74% of the cases. The equation was generally more accurate in predicting for¬ 

eign-born Asians (92.02%) than U.S.-born Asians (28.85%). There are other statis¬ 

tics, such as the Wald Test, that are associated with a logistic regression output. We 

will not be discussing them here. Rather, we will refer the reader to such books as 

Hosmer and Lemeshow (1989) or Shoukri and Edge (1996). 

Multiway Contingency Tables 

and Log-Linear Analysis 

It is fitting that we introduce this section following logistic regression because the 

topic we are about to undertake deals exclusively with categorical data. In logistic 

regression, we have a dichotomous dependent variable and categorical and interval 

independent variables. With multiway contingency tables, we deal only with categor¬ 

ical data. The analyses of multiway contingency tables are important because a lot of 

the data used by behavioral and social scientists are categorical. The use of 

traditional analysis of variance and multiple regression approaches toward analyzing- 

categorical data does not work well in many cases. 

We studied the one- and two-dimensional contingency table in Chapter 10. At 

that time, we briefly introduced the notion of multiway tables. Traditionally, many 

researchers studied multiway contingency tables by looking at a series of two-way 

tables. The computations are relatively straightforward and the researcher can usu¬ 

ally arrive at some reasonable conclusion about the data. Also, they are more unlikely 

to have sparse or empty cells. One of the most likely events that will occur in large 

tables is sparse cells or empty cells, which can affect the results of the analysis. 

Hence, many researchers would collapse categories to eliminate this problem. 

However, the series of two-way contingency tables in analyzing multiway contin¬ 

gency tables is not able to capture the existence of higher order interaction effects 

between the dimensions. Glick, DeMorest, and Hotze (1988) give a good example of 

how to analyze a three-way contingency table correctly with a series of two-way 

analyses. They were also able through a progression of logical statements and analy¬ 

ses to arrive at a conclusion about the three-way interaction term. We will see later 

in this section a reanalyses of their data in light of multiway contingency tables or 

log-linear analysis. Also, the associations between variables are different under two- 

way analysis than under multiway since the multiway takes into consideration the 

other variables involved. Further, the use of only two-way tables does not allow for 

the simultaneous comparison of all pairwise associations. 

Remember in the categorical data analysis of Chapter 10, we stated the 

difference between observed values and expected values. Both of these represent fre¬ 

quencies within each cell of a contingency table. If the expected frequencies fit the 

observed frequencies, we would say that there was no relation between the two 

categorical variables. This is so because the expected frequencies are computed under 

conditions of what we might expect if there was no relation between the two 

variables. Hence, if the observed frequencies fit the expected frequencies, we can 

conclude that our collected data found no relation. Subsequently, if there was a lack 
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of fit, then we say that the two variables are related. The analysis of multiway contin¬ 

gency tables operates pretty much the same way. The researcher specifies a model 

involving the variables, such as no three-way interactions or only specific two-way 

interactions. After the model is specified, expected frequencies are generated. If the 

observed frequencies fit the expected frequencies, then we know that the chosen 

model fits the observed data and the elements of the model account for the observed 

values. In multiway tables, one of the goals is to find the variables that are related to 

other variables. Finding the expected values so that we can test to see if the observed 

values fit is more computationally demanding than for the simple two-way tables. 

Although we will not go through the actual computations, we can direct the reader 

to useful references that clearly show the operation. One of the more popular 

algorithms for finding the expected values was developed by Deming and Stephan 

(1940). A description of this method can be found in their original article. It can also 

be found in the 1964 Dover republication of Deming’s 1943 book or in Dillon and 

Goldstein (1984). Dillon and Goldstein give a very clear and easy to follow computa¬ 

tional example. Sometimes the Deming and Stephan method is called iterative propor¬ 

tional fitting. True to its name, iterative proportional fitting requires an initial esti¬ 

mate of the expected frequencies, and then through a number of steps they are 

adjusted. In the first iteration, estimates are obtained to be used in the next iteration. 

Just as in logistic regression, the iterations cease once two successive iterations 

produce estimates that are very close to one another. 

A benefit produced by the log-linear approach is one of parsimony. That is, with 

the log-linear approach, the researcher specifies a model of terms to be fitted very 

much like what is done in analysis of variance or multiple regression. The researcher 

attempts to obtain the best-fit possible with the fewest terms. Let us say we let 

represent the expected frequency in cell (i,j) of a two-way contingency table. Let us 

label one of the variables as A and the other as B. A would have i categories and B 

would have j categories. We can express the model for this contingency table as 

logeOmij) = A + AG(0 + AB( j) + AAB(y)- 

Sometimes, this equation is written without the subscripts i andy. These subscripts 

are used to indicate the number of categories in each variable. If the equation is 

written without the subscripts, the categories are implied. For the sake of simplicity, 

we will write our equations without direct reference to the number of categories in 

each variable. One will note that this equation resembles the one used in analysis of 

variance. However, among the differences, the reader needs to remember that with 

multiple regression or analysis of variance, the equation is developed to predict or 

account for the variation from individual to individual. In different words, analysis of 

variance and multiple regression make an estimate of the dependent variable for each 

case or individual. In log-linear or contingency tables, the prediction is to the cell 

frequency or category and not to the individual. Although a number of writers (Bake- 

man & Robinson, 1994; Fienberg, 1980; Howell, 1997; Kennedy, 1992) of multiway 

contingency tables and log linear analysis make analogies to multiple regression and 

analysis of variance, they emphasize this one major difference. 
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In log-linear analysis, if we had three categorical variables we would write it as 

loge(w*y) = /x + Ha + + Vc + flAB + AAC + ABC + l^ABC 

Note that in each model, there are main terms and the interactions. When all 

possible combinations of the terms are accounted for in the equation, the model is 

referred to as saturated. The goodness-of-fit statistic will be a perfect zero telling us 

the model fits the observed data; that is, the observed values fit the expected values. 

However, a researcher can with this method of analysis fit different models. 

Guidance dictated by theory or previous information can be used to eliminate some 

of the terms. If the observed data are found to fit the expected values generated by 

the new model, we have successfully fit a more parsimonious model. These more 

parsimonious models are often referred to as reduced models or unsaturated models. 

What a good-fitting unsaturated model tells us is that we didn’t need all of the terms 

of the saturated model in order to get a decent fit of the observed values to the 

expected values. 

The interaction terms of the log-linear model are referred to as higher order 

terms. The more terms in the interaction, the higher the term. In the three-way 

model presented above, the /jlabc term is the highest order term, whereas /jl is the 

lowest order term. This brief specification is important when discussing the differ¬ 

ence between hierarchical and nonhierarchical models. Some experts on log-linear 

analysis for contingency tables have stated that the hierarchical model is the most 

useful and the results from non-hierarchical models are questionable (Bakeman & 

Robinson, 1994; Howell, 1997). We will restrict our discussion here to hierarchical 

models only. In hierarchical models we view the higher order terms as a composite of 

lower order terms. In order to compute pcAB we would need to also compute fx, jxA, 

and /xB, which are all the lower order terms. Thus, in hierarchical models, higher 

order terms are included only if the lower order terms are also included in the 

model. Nonhierarchical models don’t have this restriction and as such can obtain 

results that are difficult to interpret. 

There can be a large number of unsaturated models. As the number of categori¬ 

cal variables increase, the number of models also increase. In some cases it becomes 

very difficult to test all of the models. In fact, the researcher should not try to test all 

models in the hope of finding one that fits the data. The model should be based on 

theory or a combination of theory and previous findings. Take for example the study 

by Glick, DeMorest, and Hotze (1988). They found a three-way interaction without 

the use of what we call log-linear analysis. This three-way interaction term, ixABC, in 

log-linear terms would be the highest order term for the data. Hence we would spec¬ 

ify the model with the three-way term. Or, if we wanted to expand on their analysis 

and include a fourth categorical variable, we would definitely include in the model a 

term for the three-way interaction. Deciding which terms to include in the model for 

testing is called specification. 
Specifying the model for a log-linear analysis on contingency tables uses a 

special notation. Capital letters of the alphabet surrounded by brackets are used to 

represent the effect of each variable separately. For example, when we refer to the A 
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effect in a three-way table we would write [A], With a hierarchical model if we state 

[AB], we are referring to the model: 

loge(mtj) ~ fx + fxA + fxB + fxc + fJ-AB 

If we write [A] [RC] we are referring to the model 

loge(m9) = fX + flA + /xB + flc + jXBC 

If we write [ABC], we would be talking about the saturated model: 

l°ge(^>) - P + + /As + P-C + /Xab + /XAC + P-BC + /MfiC 

Bakeman and Robinson (1994) use a notation system that slightly differs from this. 

The computer program that accompanies their book is very easy to use and appears 

to be as well written as some of the commercially available programs. However, their 

computer program does not print out the brackets “[ ].” 

The goodness-of-fit statistic that we saw in Chapter 10 has a formal name which 

we did not mention. This name is necessary for this chapter mainly because we will 

introduce another goodness-of-fit statistic. The one we saw in Chapter 10 is called 

the Pearson Chi-Square. Its formula is 

Another statistic that is almost identical to the Pearson y2 is the likelihood ratio y2. 

To distinguish between the two, the likelihood ratio chi-square is usually written as 

G2. As discussed by Wickens (1989), the two are nearly identical in their approxima¬ 

tion of a chi-square distribution. The choice of which one is used is a matter of 

preference. Wickens does mention that the Pearson y2 is more familiar and is 

intuitively clearer than the likelihood ratio. Some computer programs give both. The 

advantage that the likelihood ratio chi-square (G2) has over the Pearson chi-square is 

computational. The likelihood ratio formula does not use the expected frequencies in 

a direct way. The likelihood ratio chi-square for a two-way table is given as 

G2 = 2^2/oJog/o. — SR, log R, — SC) log Cy + NlogNj 

where 

2/o, log/o, 
\ 

is the sum of the observed values times the log of the observed value in each cell of 
the contingency table. 

IRj log Rj 
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HD Table 33.7 Marginals and Cell Frequency 

Cl c2 c3 

Ri xu = 34 x12 = 26 x13 -- 75 x1+ = 135 

r2 x2i = 20 X22 = 30 x23 = 82 x2+ = 132 

4j- 

II +
 

H x+2 = 56 x+3 =157 x++ = 267 

is the sum of the row total times the log of the row totals, 

SCy log Cj 

is the sum of the column totals times the log of the column totals. The “AT’ in N log 

N is the total frequency count. The use of these symbols is only effective when talk¬ 

ing about two-dimensional tables. With three-way or multiway tables, researchers 

would use a different notation. The observed cell values for a three-way table would 

be written as xl]k What we would designate as row total and column totals in a two- 

way table are now called marginal totals. For a three-way table, they would be written 

as x+jh xi+h xij+. The grand total, or the total number of counts is x+++. These 

notations can also be used for a two-way contingency table. Table 33.7 shows the re¬ 

lation of contingency components and notation. 
We can then rewrite the goodness-of-fit equation for a two-way contingency 

table as 

G2 = 2(2x,y logx1} - Xx,+ logx,+ - Sx+ylogx+y + x + + logx + +) 

For our sample data in Table 33.7, 

G2 = 2 (34 log 34 + 26 log 26 + 75 log 75 + 20 log 20 + 30 log 30 

+ 82 log 82 - 135 log 135 - 132 log 132 - 54 log 54 - 56 log 56 

- 157 log 157 + 267 log 267) 

= 2 (119.8996 + 84.7105 + 323.8116 + 59.9147 + 102.0359 + 361.3510 

- 662.2121 - 644.5299 - 215.4051 - 225.4197 - 793.8306 + 1491.7954) 

= 2 (2.1213) = 4.2426 

Had we computed \2 instead of G2, the x2 value would be 4.1943. The computa¬ 

tion of this value required the additional calculation for the expected values, fe^ For 

this example they would be fen = 27.3, fe \2 = 28.31, ^13 = 79.38, y^2t — 26.7, 

fe22 = 27.69, and/^3 = 77.62. As we can see, G2 and x2 do not produce the same 

value. Both values, however, are evaluated with the same number of degrees of free¬ 

dom and also with the same chi-square table. 
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Research Example 

Since Glick et al. (1988) give their data in their article, we will use their data to illus¬ 

trate the log-linear approach to multiway contingency tables. Glick et al. studied 

three variables: Compliance, Distance, and Group Membership. The variable 

compliance had two categories: Complied or Refused. Group Membership involved 

whether or not the requester of a favor was a member of the same group as the 

participant. That is, did the requester have a similar physical appearance as the 

participant? If the answer was “yes,” then he or she was considered as an In Group 

confederate; if “no,” he or she was an Out Group confederate. The distance variable 

measured three distances of near, medium, or far. These researchers hypothesized 

that people would be willing to comply if the Out Group confederate was further 

away from them than In Group confederates. The researchers were essentially 

hypothesizing a three-way interaction. We can write the Glick et al. log-linear 
model as: 

1°ge(mij) A A Mr AG "f AG A AGd "f AGg AGg ~f AGdg 

If we can obtain an adequate fit between expected values and observed values without 

the three-way interaction term, it would tell us that the data couldn’t justify the 

three-way interaction. As such, the data would not uphold the researchers’ hypothe¬ 

sis. This might mean that the effect of interpersonal distance on compliance is not 
different between In Group and Out Group members. 

In using Bakeman and Robinson’s (1994) computer program, ILOG, that accom¬ 
panies their textbook, we obtained the following result given in Table 33.8. 

Here we can see what happens to G2 when we fit the saturated model. The satu¬ 

rated model fits the observed data perfectly. Next we remove the three-way interac¬ 
tion term from the model; that is, we test the model: 

logefyfy) = A^ + AG + Md + AG + AGd + AGg + AGc 

If the G statistic is not significant, we know that we have found at least one model 

that fits the observed data well. When we fit the model, the G2 that we obtain is 12.4 

OH Table 33.8 Analysis of Glick, et. al. data 

Term 
Model G2 df Sig. Deleted A G2 A df 

[CDG] (saturated) 0.0 0 p > 0.05 — 

[DG][CD][CG] 12.4 2 p < 0.005 CDG 12.4 2 

[CD] [CG] 13.0 4 p < 0.05 DG 0.6 2 

[CG] [D] 20.2 6 p < 0.(k)5 CD 7.2 2 

[DG][C] 26.8 7 p < 0.001 CG 6.6 ' 1 
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with 2 degrees of freedom. If we consult a y2 table for a = .05 and df — 2 the critical 

value is 5.99. Since 12.4 exceeds 5.99 we have a statistically significant y2 test and 

this tells us the model does not fit. In looking at Table 33.8 we have listed the results 

of the statistical test for each model. All of the reduced models tested are statistically 

significant. This tells us that the models we tested do not fit the observed data. Since 

the only model that fits the data is the saturated model, we reach the same conclusion 

that Click et al. had found. There is a three-way interaction between the variables. 

Multivariate Analysis and Behavioral Research 

Although our study of multivariate methods has been rather superficial, we must still 

stop to place them into the research scheme of things and to evaluate them. Should 

we abandon analysis of variance, for example, simply because multiple regression can 

accomplish all that analysis of variance can—and more? Some such implication has 

perhaps been picked up by the reader. Isn’t multiple regression analysis really 

unsuited to experimental data because it is a so-called correlational method (which it 

is only in part)? Other important questions can and should be asked and answered, 

especially at this time in the development of behavioral science research. We are at 

the point, perhaps, of an important transition. Since Fisher invented and expounded 

on the analysis of variance in the 1920s and 1930s, the method, or rather, approach, 

has had great influence on behavioral research, particularly in psychology. Are we 

now about to leave this stage? Have we entered a “multivariate stage ? If so, it can 

have an enormously important influence on the kind and quality of research done by 

psychologists, sociologists, and educators in the next century. Obviously, we can’t 

handle all such questions in a textbook. But we should at least try to open the door to 

the student. 
Should the analysis of variance approach be supplanted by multiple regression 

analysis? We don’t think it should. But is this merely a sentimental clinging to 

something we have found interesting and satisfying? Perhaps. But there is more to it 

than that. There is little point to using multiple regression in the ordinary analysis of 

variance problem situation: random assignment of subjects to experimental treat¬ 

ments; equal or proportional ns in the cells; one, two, or three independent variables. 

Another argument for analysis of variance is its usefulness in teaching. Multiple 

regression analysis, while elegant and powerful, lacks the structural heuristic quality 

of analysis of variance. There is nothing quite so effective in teaching and learning 

research as drawing paradigms of the designs using analysis of variance analytic 

partitioning. 
The answer is that both methods should be taught and learned. The additional 

demands on both teacher and student are inevitable, just as the development, growth, 

and use of inferential statistics earlier in the century made their teaching and learn¬ 

ing inevitable. Multiple regression and other multivariate methods, however, will no 

doubt suffer some of the lack of understanding, even opposition, that inferential sta¬ 

tistics has suffered. Even today there are psychologists, sociologists, and educators 

who know little about inferential statistics or modern analysis, and who even oppose 
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their learning and use. This is part of the social psychology and pathology of the sub¬ 

ject, however. While there will no doubt be cultural lag, the ultimate acceptance of 

these powerful tools of analysis is probably assured. 

Multivariate methods, as we have seen, are not easy to use and to interpret as 

univariate methods. This is due not only to their complexity; it is due more so to the 

complexity of the phenomena that behavioral scientists work with. One of the draw¬ 

backs of educational research, for instance, has been that the enormous complexity of 

a school or a classroom could not adequately be handled by the too-simple methods 

used. Some scientists feel that they can never mirror the “real” world with their 

methods of observation and analysis. They are individuals bound to simplifications of 

the situations and problems they study. They can never “see things whole,” just as no 

human being can see and understand the whole of anything. But multivariate meth¬ 

ods mirror psychological, sociological, and educational reality better than simpler 

methods, and they enable researchers to handle larger portions of their research 

problems. In educational research, the days of the simple methods experiment with 

an experimental group and a control group are almost over. In sociological research, 

the reduction of much valuable data to frequency and percentage crossbreaks will 
decrease relative to the whole body of sociological research. 

Most important of all, the healthy future of behavioral research depends on the 

healthy development of psychological, sociological, and other theories to help 

explain the relations among behavioral phenomena. By definition, theories are inter¬ 

related sets of constructs or variables. Obviously, multivariate methods are well 

adapted to testing fairly complex theoretical formulations, since their very nature is 

the analysis of several variables simultaneously. Indeed, the development of behav¬ 

ioral theory must go hand in hand, even depend on, the assimilation, mastery, and 

intelligent use of multivariate methods. We will see in the last two chapters of this 

book a different multivariate view on doing research in the social and behavioral 
sciences. 

Chapter Summary 

1. This chapter examines the differences and similarities between analysis of 
variance and multiple regression. 

2. Multiple regression can essentially do all of the analyses that ANOVA is 
capable of and more. 

3. Analysis of variance has a structure that is intuitively appealing to 
researchers. 

4. This chapter discusses the differences between different types of coding: 

Dummy, Effects, and Orthogonal. Each would produce the same R1 2 3 4 5, but in¬ 
dividual variable coefficients will be different. 

5. The difference between analysis of variance and analysis of covariance is that 

m ANOVA, the independent variables are uncorrelated. In analysis of 
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covariance, at least one variable is correlated with the other independent 

variables. 
6. This correlated variable is called a covariate. It is used to remove its variance 

from the dependent variable before the independent variables are tested. 

7. Analysis of covariance is handled easily by multiple regression. 

8. Discriminant analysis is similar to multiple regression with a few exceptions. 

The dependent variable is categorical in discriminant analysis. Plus it gives a 

statistic that tells you how well the discriminant function classifies 

observations. 
9. With canonical correlation, instead of one dependent variable, as in multiple 

regression and discriminant analysis, it has more. The goal is to find two sets 

of coefficients that maximize the variance between the two sets of variables. 

10. Multivariate analysis of variance or MANOVA is the multivariate equivalent 

to analysis of variance. In univariate ANOVA the analysis is done for one 

dependent variable at a time. With the multivariate analysis of variance, 

multiple dependent variables are considered at the same time. 

11. MANOVAs, as with all multivariate methods, can lead to results that are 

difficult to interpret. 
12. Path analysis uses standardized regression weights to study the direct and 

indirect effects of variables on other variables. It is best used as a conceptual 

model to be tested. 
13. Path analysis involves drawing a path diagram that shows how the variables 

are related. 
14. Ridge regression was first used in chemical engineering by Arthur Hoerl. It 

was later expanded into a tool for other areas. 
15. Ordinary-least-squares is the statistical method used by most multiple re¬ 

gression computer programs However, when the independent variables are 

highly correlated with each other, least-squares runs into problems in terms 

of estimation. 
16. Ridge regression adds a bias into the equation and as such will stabilize the 

regression coefficients. Ridge regression is a controversial topic in the 

behavioral sciences. 
17. Logistic regression is the popular and alternative approach to discriminant 

analysis. It does not have quite the restrictions placed on discriminant 

analysis. 
18. With less restrictions, logistic regression can handle a variety of problems. 

Like discriminant analysis, logistic regression has a categorical dependent 

variable. 
19. Multiway contingency tables are handled using log-linear analysis. 

20. The major idea behind log-linear analysis for multiway contingency tables is 

to find the proper model that will account for the variation in the observed 

values. 
21. There are hierarchical and nonhierarchical models in log-linear analysis. 

The hierarchical is the most useful. Nonhierarchical models are subject to 

problems in interpretation. 
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Study Suggestions 

1. Unfortunately, completely satisfactory elementary treatments of multiple re¬ 
gression are scarce, especially if one expects concomitant regression treatment 
of analysis of variance. Perhaps satisfactory elementary treatment of such a 
complex subject is not possible. The following annotated references on multi¬ 
ple regression and other multivariate methods may be helpful. Some of these 
are also listed in the Reference section because they have been cited in this 
chapter. 

Kerlinger, E, & Pedhazur, E. (1973). Multiple regression in behavioral research. 
New York: Elolt, Rinehart and Winston. [A text that attempts to enhance 
understanding of multiple regression and its research uses by providing as 
simple an exposition as possible and many examples with simple numbers. 
Also has a complete multiple regression computer program in the ap¬ 
pendix.] 

Pedhazur, E. (1996). Multiple regression in behavioral research: Explanation and 
prediction (3rd ed.). Orlando, FL: Harcourt Brace. [The revision of the 
Kerlinger and Pedhazur text. It is, however, much more detailed and 
thorough. Elighly recommended.] 

Stevens, J. P. (1996). Applied multivariate statistics for the social sciences (3rd ed.) 
Mahwah, NJ: Lawrence Erlbaum. [A very readable book on multivariate 
statistics. Annotated with computer output from popular statistical 
programs.] 

Tabachnick, B., & Fidell, L. (1996). Using multivariate statistics (3rd ed.). New 
York: HarperCollins. [Shows multivariate statistics from a computer 
output point of view. Very useful for those who want to know about 
multivariate statistics and also the computer programs used to do the 
analyses.] 

After the student and researcher have mastered the elements of multiple 
regression analysis and have had some experience with actual problems, the 
following references provide sophisticated guidance in the use of multiple re¬ 
gression analysis and, more important, the interpretation of data. 

Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for 
the behavioral sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbaum. [An ex¬ 
cellent treatment of multiple regression. Shows how many problems 
where analysis of variance was used could have been analyzed with 
multiple regression. Also shows how multiple regression can be used to 
study causality.] 

Daniel, C., Wood, F. S., & Gorman, J. W. (1980). Fitting equations to data: 
Computer analysis of multifactor data. (2nd ed.). New York: Wiley. 
[Summary through examples of how these staticians approached the 
analysis of research data where researchers did not follow the standard re- 
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quirements of statistical design of experiments. Uses a lot of computer¬ 

generated analysis and explanations.] 

Draper, N., & Smith, H. (1981). Applied regression analysis (2nd ed.). New 

York: John Wiley & Sons. [A classic in the field of regression analysis. Re¬ 

quires some sophistication mathematically, but it is an often cited and 

useful book.] 
Kleinbaum, D. G., Kupper, L. L., Muller, K. E. & Nizam, A. (1997). Applied 

regession analysis and other multivariable methods. (3rd ed.). Belmont, CA: 

Duxbury. [This book clarifies the confusion between multivariate and 

multivariable. This book was briefly mentioned in Chapter 2. It is worth¬ 

while reading.] 
Mendenhall, W. (1968). An introduction to linear models and the design and 

analysis of experiments. Belmont, CA: Wadsworth. [Undoubtedly one 

of the best books written that introduces the unsophisticated to the use of 

multiple regression (general linear model) in place of analysis of variance. 

It requires knowledge of matrix algebra. This book is now out of print.] 

Neter, J., Wasserman,W. & Kutner, M. H. (1996). Applied linear regression 

models (3rd ed.). Burr Ridge, IL: Irwin. [A book similar to Woodward, 

Bonett, and Brecht listed below. Good coverage of the use of regression. 

Requires knowledge of matrix algebra.] 

The following books are fundamental: they emphasize the theoretical and 

mathematical bases of multivariate methods. 

Carroll, J. D., & Green, R (1997). Mathematical tools for applied multivariate 

analysis (3rd. ed.). New York: Academic Press. [An outstanding book on 

the mathematical basis of multivariate analysis. Highly recommended.] 

Kenny, D. (1979). Correlation and causality. New York: John Wiley & Sons. 

[Worth many hours of study.] 
Wickens, T. D. (1994). The geometry of multivariate statistics. Mahwah, NJ: 

Lawrence Erlbaum. [Introduces the procedures of multivariate statistics 

in a geometric way. It helps the student conceptualize multivariate 

relationships.] 

2. Suppose that a social psychologist has two correlation matrices: 

X X Y X X Y 

1.00 0 .70 X ’ 1.00 .40 .70 

0 1.00 .60 x2 .40 1.00 .60 

.70 .60 1.00. Y .70 .60 1.00 

A B 

a. Which matrix, A or B, will yield the higher R2? Why? 

b. Calculate the R2 of matrix A. 

[Answers: (a) Matrix A; (b) R2 = .85] 



822 Part Ten ■ Multivariate Approaches 

3. Here are three sets of simple fictitious data, laid out for an analysis of vari¬ 

ance. Lay out the data for multiple regression analysis, and calculate as much 

of the regression analysis as possible. Use dummy coding (1, 0), as in Table 

33.2. The b coefficients are: bx = 3: b2 = 6. 

A, a2 A 3 

7 12 5 
6 9 2 
5 10 6 
9 8 3 
8 11 4 

Imagine that Au A2, and T3 are three methods of changing racial attitudes 

and that the dependent variable is a measure of change with higher scores in¬ 

dicating more change. Interpret the results. [Answers: a = 4;R2=.75;F = 18, 

with df= 2, 12; ssreg = 90; sst = 120. Note that these fictitious data are really 

the scores of Table 33.2 with 1 added to each score. Compare the various re¬ 

gression and analysis of variance statistics, above, with those calculated with 
the data of Table 33.2] 

4. Using the data of Table 34.2 in Chapter 34, calculate the sums of each and 

X2 pair. Correlate these sums with the Y scores. Compare the square of this 

correlation with R2yX2 — .51 (r2 = ,702 = .49). Since the two values are quite 

close, why shouldn’t we simply use the averages of the independent variables 

and not bother with the complexity of multiple regression analysis? 

5. The following lists several interesting studies that have used multiple regres¬ 

sion, path analysis, and discriminant analysis effectively. Read one or two of 

them carefully. Those marked with an asterisk are perhaps easier than the 
others. 

Abel, M. H. (1998). Interaction of humor and gender in moderating relation¬ 

ships between stress and outcomes. Journal of Psychology, 132, 267-276. 

[Uses multiple regression to study the moderating effects of humor on 
stress and anxiety.] 

Bachman, I., & O’Malley, R (1977). Self-esteem in young men: A longitudinal 

analysis of the impact of educational and occupational attainment. Journal 

of Personality and Social Psychology, 35, 365-380. [An outstanding educa¬ 

tional study that used path analysis. Results contrary to expectation.] 

Fischer, C. (1975). The city and political psychology. American Political Science 

Review, 69, 559-571. [Uses path analysis to study sense of political effi¬ 
cacy.] 

Frederick, C. M., & Morrison, C. S. (1998). A mediational model of social 

physique anxiety and eating disordered behaviors. Perceptual and'Motor 

Skills, 86, 139-145. [Develops a very simple and easy to understand path 
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model relating physique anxiety, eating disorder traits, and eating 

disorder behavior.] 
Leith, K. P., & Baumeister, R. F. (1998). Empathy, shame, guilt and narratives 

of interpersonal conflicts: Guilt prone people are better at perspective 

taking. Journal of Personality, 66, 11 — 39. |[Uses multivariate analysis of 

variance, analysis of covariance, and path analysis to study guilt-prone 

people.] 
Marjoribanks, K. (1972). Ethnic and environmental influences on mental abil¬ 

ities. American Journal of Sociology, 78, 323-337. [An interesting use of the 

addition and subtraction of P2S to assess the relative influence of variables, 

especially of the environment and ethnicity.] 
Onwuegbuzie, A. J. (1997). The teacher as researcher: The relationship 

between research anxiety and learning style in a research methodology 

course. College Student Journal, 31, 496-506. [This study uses multiple 

regression to determine some of the characteristics of research-anxious 

teachers in terms of what kind of learning style:.] 
Ronis, D. L., Antonakos, C. L., & Lang, W. P. (1996). [Usefulness of multiple 

equations for predicting preventive oral health behaviors. Health 

Education Quarterly, 23, 512-527. [Discusses the results of a study using 

canonical correlation. They found three functions to account for three 

oral health behaviors.] 
Vincke, J., & Bolton, R. (1997). Beyond the sexual model: Combining 

complementary cognitions to explain and pred ict unsafe sex among gay 

men. Human Organization, 56, 38-46. [Uses boith multivariate analysis of 

variance and discriminant analysis to assess the pleasures and dangers of 

unprotected sexual practices.] 
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and Second-Order Factor Analysis 
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The Principal Factor Method 
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Second Order Factor Analysis 

Factor Scores 

Research Examples 

Confirmatory Factor Analysis 

m Factor Analysis and Scientific Research 

Factor analysis is referred to by many researchers as the queen of analytic methods. 

This is due to its power, elegance, and closeness to the core of scientific purpose. It 

is, however, a method that is not free of controversy. Even though it is a powerful 

method, it is not a panacea for badly designed or undesigned studies. Comrey (1978) 

pointed out that factor analysis has been a topic of much discussion and criticism. 

However, despite the criticisms, its growth in usage continues. In this chapter we ex¬ 

plore what factor analysis is and why and how it is done. We will also look at the pit- 

falls that a researcher may encounter if he or she is not careful when using this pow¬ 

erful method. In the exploration we will also examine past and current research in 

which factor analysis has been a central methodology. 

825 
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Factor analysis serves the cause of scientific parsimony. It reduces the multiplic¬ 

ity of tests and measures to greater simplicity. It tells us, in effect, what tests or mea¬ 

sures belong together—which ones virtually measure the same thing—and how 

much they do so. It thus reduces the number of variables with which the scientist 

must cope. It also helps the scientist locate and identify unities or fundamental prop¬ 

erties underlying tests and measures. Let us say that a researcher has measured a 

group of people on 20 variables. Correlations between the variables are computed 

and summarized in the form of a correlation matrix. When a researcher examines a 

table of correlations between variables, it is very difficult to interpret what is really 

going on. It is usually difficult to find an interpretable pattern of correlations. Factor 

analysis is designed to take those correlations and find some order within them. The 

method is designed to find what the variables have in common. Even though our dis¬ 

cussion of factor analysis in this chapter will center on the use of correlation coeffi¬ 

cients, factor analysis is not limited to just correlational matrices. In the social, 

behavioral, and educational sciences, however, the correlation is the most often used 
index in a factor analysis. 

A factor is a construct, a hypothetical entity, a latent variable that is assumed to 

underlie tests, scales, items, and, indeed, measures of almost any kind. For those be¬ 

havioral science researchers who are developing scales or tests, factor analysis can be 

used to provide evidence as to the absence or presence of validity. A number of fac¬ 

tors have been found to underlie intelligence, for example: verbal ability, numerical 

ability, abstract reasoning, spatial reasoning, memory, and so on. Similarly, aptitude, 

attitude, and personality factors have been isolated and identified. Even nations and 
people have been factored! 

Foundations 

A Brief History 

The development of the method called factor analysis is attributed to Charles Spear¬ 

man. In 1904, Spearman published a 93-page article covering his theory of intelli¬ 

gence and the development of the method to confirm his theory that one common 

factor accounted for all of human intelligence. This single factor is called g, or gen¬ 

eral factor. Spearman analyzed tables of correlations between psychological tests and 

showed that there was one factor common to all of the tests. The leftover variances 

were attributed to the specific tests. Sometimes Spearman’s theory is referred to as 

the two-factor theory. Spearman also linked his theory to neurophysiology by claim¬ 

ing that the g factor served the entire human cortex or nervous system. Many re¬ 

searchers did much work on Spearman’s theory. Some of the more notable names are 

mentioned in Ferguson (1971) or Carroll (1993). The concept of g is controversial. 

Even though many have developed empirical studies to show that it does not exist, its 

usage and reference remains. One of the main antagonists of Spearman’s theory was 

L. L. Thurstone (1947) who provided initial evidence that there were factors of intel¬ 

ligence and called these “Primary Mental Abilities.” Although Thurstone provided 
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ammunition against Spearman, his theory of intelligence was also shown later to be 

questionable. 
Despite these roots, beginnings, and initial intentions of factor analysis, the 

methods created as a result of Spearman and Thurstone’s work remain important. In 

their efforts to “prove” each other wrong, modern and creative methods of factor 

analysis emerged. Researchers are still using these methods today. Thurstone’s 

contribution to the field is monumental. Most of modern factor analysis is the direct 

result of his work. Professor Andrew Comrey of UCLA once told the second author 

of this textbook that Thurstone (1947) laid the groundwork for about 90% of 

modern factor analysis. Researchers since that time have been attempting to define 

the last 10%. Thurstone effectively took Spearman’s method of factor analysis and 

improved upon it. Thurstone was responsible for the development of the centroid 

method. Prior to the advent of the high-speed computer, factor analyses were done 

by hand. The centroid method provided a very good approximation to the more 

powerful method developed by Hotelling (1933). Hotelling’s principal factor method 

was better suited for computers, but was extremely laborious for hand computations. 

For the purpose of easing interpretation of factor analytic results, Thurstone also 

developed the method of rotation and the concept of simple structure. Simple 

structure is one of the key developments within the factor analytic methodology. 

In this chapter and in the next, we will try to make as few references as possible 

to matrix algebra. However, the discussion of factor analysis requires reference to 

matrices. Some explanations become easier using them. This is especially true when 

we discuss confirmatory factor analysis and structural equation modeling. 

A Hyp othetical Example 

Suppose we administer six tests to a large number of seventh-grade pupils. We 

suspect that the six tests are measuring not six but some smaller number of variables. 

The tests are vocabulary, reading, synonyms, numbers, arithmetic (standardized test), 

arithmetic (teacher-made test). The names of these tests indicate their nature. We 

label them, respectively, V, R, S, N, AS, ATM. (The last two tests, though both 

arithmetic, contain different content. We assume a good reason for including both of 

them in our little test battery.) After the tests are administered and scored, 

coefficients of correlation are calculated between each test and every other test. We 

lay out the rs in a correlation matrix (usually called R matrix). The matrix is given in 

Table 34.1. 
Recall that a matrix is any rectangular array of numbers (or symbols). Correla¬ 

tion matrices are always square and symmetric. This is because the lower half of the 

matrix below the main diagonal (from upper left to lower right) is the same as the 

upper half of the matrix. That is, the coefficients in the lower half are identical to 

those in the upper half, except for their arrangement. (Note that the top row is the 

same as the first column, the second row the same as the second column, and so on.). 

If we interchange the rows and the columns of the correlation matrix the resulting 

matrix will look identical to the original matrix. When this happens we know that 

the matrix is symmetrical. Also, when we interchange rows with the columns, the 
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GU Table 34.1 R Matrix: Correlation Coefficients among Six Tests 

V R 5 N AS ATM 

V .72 .6TS .09 .09 .00 
Cluster I R fJ2 .57/ .15 .16 .09 

S .57_- .14 .15 .09 
N .09 .15 .14 • JT~ ~6T\ 

AS .09 .16 .15 /57 .72) 
ATM .00 .09 .09 1^63 _J72____ 

Cluster II 

resulting matrix is called a transpose. If we have a matrix labeled A, the transpose is 
labeled AT. We will make use of this concept later. 

The problem before us is expressed in two questions: How many underlying 

variables, or factors, are there? What are the factors? They are presumed to be un¬ 

derlying unities behind the test performances reflected in the correlation coefficients. 

If two or more tests are substantially correlated, then the tests share variance. They 

have common factor variance. They are measuring something in common. 

The first question in this case is easy to answer. There are two factors. This is 

indicated by the two clusters of rs, circled and labeled Cluster I and Cluster II in 

Table 36.1. Note that Vcorrelates with R, .72; Fwith S, .63; and R with S', .57. V, R, 

and S appear to be measuring something in common. Similarly, N correlates with 

AS, .57, and with ATM, .63; and AS correlates with ATM, .72. N, AS, and ATM are 

measuring something in common. The tests in Cluster I, though themselves inter- 

correlated, are not to any great extent correlated with the tests in Cluster II. Like¬ 

wise, N, AS, and ATM, though themselves intercorrelated, are not substantially cor¬ 

related with the tests V, R, and S. What is measured in common by the tests in 

Cluster I is evidently not the same as what is measured in common by the tests of 

Cluster II. There appear to be two clusters or factors in the matrix. The reader 

should note that in this presentation, occasional oversimplifications and somewhat 

unrealistic examples are used. The R matrix of Table 34.1 is unrealistic. All the tests 

would be positively correlated, and the two factors would probably emerge. In addi¬ 

tion, clusters, while similar to factors, are not factors. For simplicity and pedagogy, 
however, we risk these oversimplifications. 

By inspecting the R matrix, we have determined that there are two factors 

underlying these tests. The second question (What are the factors?) is almost always 

more difficult. When we ask what the factors are, we seek to name them. We want 

constt ucts that explain the underlying unities or common factor variances of the 

factors. We ask what is common to the tests V, R, gnd 5, on the one hand; and to the 

tests N, AS, and ATM, on the other hand. V, R, and 5 are vocabulary, reading, and 

synonym tests. All three involve words, to a large extent. Perhaps the underlying 

factor is verbal ability. We name the factor Verbal, or V. N, AS, and ATM all involve 
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numerical or arithmetic operations. Suppose we named this factor Arithmetic. A 

friend points out to us that test N does not really involve arithmetic operations, since 

it consists mostly of manipulating numbers nonarithmetically. We overlooked this in 

our eagerness to name the underlying unity. Anyway, we now name the factor 

Numerical, or Number, or N. There is no inconsistency: all three tests involve 

numbers and numerical manipulation and operation. 

Both questions have been answered: there are two factors, and they are named 

Verbal, V, and Numerical, N. It must be hastily and urgently pointed out, however, 

that neither question is ever finally answered in actual factor analytic research. This 

is especially true in early investigations of a field. The number of factors can change 

in subsequent investigations using the same tests. One of the V tests may also have 

some variance in common with another factor, say K. If a test measuring K is added 

to the matrix, a third factor may emerge. Perhaps more important, the name of a 

factor may be incorrect. Subsequent investigation using these V tests and other tests 

may show that V is not now common to all the tests. The investigator must then find 

another construct, another source of common factor variance. In short, factor names 

are tentative; they are hypotheses to be tested in further factor analyses and other 

kinds of research. 

Factor Matrices and Factor Loadings 

If a test measures only one factor, it is said to be factorially pure. To the extent that a 

test measures a factor, it is said to be loaded on the factor, or saturated with the factor. 

Factor analysis is not really complete unless we know whether a test is factorially 

pure and how saturated it is with a factor. If a measure is not factorially pure, 

we usually want to know what other factors pervade it. Some measures are so com¬ 

plex that it is difficult to tell just what they measure. A good example is teacher 

grades, or grade-point averages, that could consist of a number of dimensions of stu¬ 

dent performance. If a test contains more than one factor, it is said to be factorially 

complex. 

Some tests and measures are factorially quite complex. The Stanford-Binet 

Intelligence Test, the Otis intelligence tests, and the F (authoritarianism) scale are 

examples. A desideratum of scientific investigation is to have pure measures of 

variables. If a measure of numerical ability is not factorially pure, how can we have 

confidence that a relation between numerical ability and school achievement, say, is 

really the relation we think it is? If the test measures both numerical ability and 

verbal reasoning, doubt is thrown upon relations studied with its help. 
To solve these and other problems, we need an objective method to determine 

the number of factors, the tests loaded on the various factors, and the magnitude of 

the loadings. There are several factor analytic methods to accomplish these purposes. 

We discuss one of these later. 
One of the final outcomes of a factor analysis is called a factor matrix, a table of 

coefficients that expresses the relations between the tests and the underlying factors. 

The factor matrix yielded by factor analyzing the data of Table 34.1 with the 

principal factor method, one of the several methods available, and subsequent factor 
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rotation (discussed later), is given in Table 34.2. The entries in the table are called 

factor loadings. They can be written atp meaning the loading a of test i on factor j. In 

the second line, .79 is the factor loading of test R on factor A. Some factor analysts 

label final solution factors I, II, . . . or I', II', and so on. In this chapter we label 

unrotated factors I, II, . . . and rotated (final solution) factors A, B ... In the fourth 

line, .70 is the factor loading of test N on factor B. Test AS has the following 
loadings: .10 on factor A and .79 on factor B. 

Factor loadings are not difficult to interpret. They range from —1.00 through 0 

to +1.00, like correlation coefficients. They are interpreted similarly. In fact, they 

express the correlations between the tests and the factors. For example, test V has the 

following correlations with factors A and B, respectively: .83 and .01. Evidently, test 

Vis highly loaded on A, but not at all on B. Tests V, R, and S’ are loaded on A but not 

on B. Tests N, AS, and ATM are loaded on B but not on A. All the tests appear to be 
“pure.” 

The entries in the last column are called communalities, or h2s. They are the 

sums-of-squares of the factor loadings of a test or variable. For example, the commu- 

nality of test R is (.79)2 + (.10)2 = .63. The communality of a test or variable is its 

common factor variance. This will be explained later when we discuss factor theory. 

Before going further, we should again note that this example is unrealistic. 

Factor matrices rarely present such a clear-cut picture. Indeed, the factor matrix 

of Table 34.2 was “known.” The author first wrote the matrix given in Table 34.3. 

If this matrix is multiplied by itself, the R matrix of Table 34.1 (with diagonal 

values) will be obtained. In this case, all that is necessary to obtain R is to multiply 

each row by every other row. For example, multiply row V by row R: (.90)(.80) + 

(.00)(.10) =.72; row V by row S: (,90)(.70) + (,00)(.10) = .63; row S by row AS: 

(-70)(. 10) + (,10)(.80) = .15; and so on. The resulting R matrix was then factor ana¬ 

lyzed. This matrix multiplication operation springs from what is called the basic 

equation of factor analysis: R = FFT, which says succinctly in matrix symbols what 

HI Table 34.2 Factor Matrix of Data from Table 34.1, 

Rotated Solution3 

Tests A B h2 

V .83 .01 .70 

R .79 .10 .63 

S .70 .10 .50 

N .10 .70 .50 

AS .10 .79 .63 

ATM .01 .83 \ .70 

See text for identification of the tests. “Significant” loadings are italicized. See 
also, footnotes to Table 34.5. 
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[Ml TABLE 34.3 Original Factor Matrix from which the R Matrix 

of Table 36.1 was Derived 

Tests A B h2 

V .90 .00 .81 

R .80 .10 .65 

S JO .10 .50 

N .10 .70 .50 

AS .10 .80 .65 

ATM .00 .90 .81 

was said more laboriously above. Sometimes this fundamental equation is written as 

R = AAT or R = P4>PT + U. The last equation is the most general of the three. A 

thorough understanding of factor analysis requires a good understanding of matrix 

algebra. 
It is instructive to compare Table 34.2 and Table 34.3. Note the discrepancies, 

which are small. That is, the fallible factor analytic method cannot perfectly repro¬ 

duce the “true” factor matrix. It estimates it. In this case the fit is close because of the 

deliberate simplicity of the problem. Real data are not so obliging. Moreover, we 

never know the “true” factor matrix. If we did, there would be no need for factor 

analysis. We usually estimate the factor matrix from the correlation matrix. The 

complexity and fallibility of research data frequently make this estimation a difficult 

business. 

me Factor Theory 

In Chapter 28 we wrote an equation that expresses sources of variance in a measure 

(or test): 

Vt=VC0+Vsp+Ve (34.1) 

where Vt equals total variance of a measure; Vco equals common factor variance, or 

the variance that two or more measures share in common; Vsp equals specific 

variance, or the variance of the measure that is not shared with any other measure, 

that is, variance of that measure and no other; Ve equals error variance. 

The common factor variance Vco was broken down into two sources of variance, 

A and B, two factors (see Equation 28.11): 

Ko =Va + Vb (34.2) 

VA might be verbal ability variance, and VB might be numerical ability variance. This 



832 Part Ten ■ Multivariate Approaches 

is reasonable if we think of the sums-of-squares of factor loadings of any test: 

hi = a} + bl + . . . . + kl (34.3) 

where al, bl, . . . are the squares of the factor loadings of test i, and hi is the commu- 

nality of test i. But hi = Vco. Therefore, V(A) = a2 and V(B) = b2, and Equation 34.2 

is tied to real factor analytic operations. 

But there may, of course, be more than two factors. The generalized equation is 

Ko=VA+VB + ... + Vk (34.4) 

Substituting in Equation 34.1, we obtain 

vt - vA + vB + ... + vk + Vsp + Ve 

Dividing through by Vt we find a proportional representation: 

h2 

v. 
= 1.00 

K K ■" ' Vt K vt 

(34.5) 

(34.6) 

rtt 

The h1 and rtt parts of the equation have been labeled as they were in Chapter 28. 

This equation has beauty. It ties tightly together measurement theory and factor 

theory, h2 is the proportion of the total variance that is common factor variance. rtt 

is the proportion of the total variance that is reliable variance. VJVt is the propor¬ 

tion of the total variance that is error variance. In Chapter 28 an equation like this 

enabled us to tie reliability and validity together. Now it shows us the relation 

between factor theory and measurement theory. We see, in brief, that the main prob¬ 

lem of factor analysis is to determine the variance components of the total common factor 

variance. 

Take test V in Table 34.2. A glance at Equation 34.6 shows us, among other 

things, that the reliability of a measure is always greater than, or equal to, its commu- 

nality. Test Vs reliability, then, is at least .70. Suppose r„ = .80. Since Vt/Vt = 1.00, 
we can fill in all the terms: 

v h2 = .69 V* Ve 

= EOO = (,83)2 + (,01)2 + 41+^20 

rtt =* .80 

Test V, then, has a high proportion of common factor variance and a low proportion 
of specific variance. 

« 
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H Figure 34.1 

The proportions can be seen clearly in a circle diagram. Let the area of the circle 

equal the total variance, or 1.00 (100% of the area), in Figure 34.1. The three vari¬ 

ances have been indicated by blocking out areas of the circle. Vco or h2, for example, is 

69%, Vsp is 11%, and Ve is 20% of the total variance. 

A factor analytic investigation including test Vwould tell us mainly about Vco, the 

common factor variance. It would tell us the proportion of the test’s total variance 

that is common factor variance and would give us clues to its nature by telling us 

which other tests share the same common factor variance and which do not. 

Graphical Representation of Factors 

and Factor Loadings 

The student of factor analysis must learn to think spatially and geometrically in order 

to grasp the essential nature of the factor approach. There are several good ways to 

do this. A table of correlations can be represented by the use of vectors and the an¬ 

gles between them. Here we use a more common method. We treat the row entries 

of a factor matrix as coordinates and plot them in geometric space. In Figure 34.2 the 

factor matrix entries of Table 34.2 have been plotted. 
The two factors, A and B, are laid out at right angles to each other. These are 

called reference axes. Appropriate factor-loading values are indicated on each of the 

axes. Then each test’s loadings are treated as coordinates and plotted. For example, 

test Rs loadings are (.79, .10). Go out .79 on A and up .10 on B. This point has been 

indicated in Figure 34.2 by a circled letter indicating the test. Plot the coordinates of 

the other five tests similarly. 
The factor structure can now be clearly seen. Each test is highly loaded on one 

factor but not on the other. They are all relatively “pure” measures of their respec¬ 

tive factors. A seventh point has been indicated in Figure 34.2 by a circled cross in or¬ 

der to illustrate a presumed test that measures both factors. Its coordinates are (.60, 

.50). This means that the test is loaded on both factors: .60 on A and .50 on B. It is 
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H Figure 34.2 

B 

not “pure.” Note that factor structures of this simplicity and clarity, where (1) the 

factors are orthogonal (the axes at right angles to each other), (2) the test loadings are 

substantial and “pure,” (almost no tests loaded on two or more factors), and (3) only 

two factors, are not common. Again, the reader should be aware that our example is 
not with real data. 

Most published factor analytic studies report more than two factors. Four, five, 

even nine, ten, and more factors have been reported. Graphical representation of 

such factor structures in one graph is, of course, not possible. Factor analysts cus¬ 

tomarily plot factors two at a time, though it is possible to plot three at a time. It 

must be admitted, however, that it is difficult to visualize or keep in mind complex n- 

dimensional structures. One therefore visualizes two-dimensional structures and 

generalizes to n dimensions algebraically. A fortunate aspect of computer factor 

analysis programs is that such factor plotting is easily possible. Comrey (see Comrey 

& Lee, 1992) has written a graphical computer program that allows the user to plot 
factors two at a time. 

Extraction and Rotation of Factors, Factor Scores, 
and Secon d-Order Fac tor Analysis 

Modern factor analysis as defined by Thurstone (1947) involves a number of steps. 

The first step is factor extraction. Many of the methods yield factors that are uhinter- 

pretable. Hence these unrotated factors are rotated for purposes of interpretation. 
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There are a number of methods of extracting factors from a correlation matrix 

including: principal factor, centroid, maximum likelihood, minimum residual, image, 

power vectored, and alpha. We cannot discuss all these methods here. Our purpose is 

elementary basic understanding. We therefore limit our discussion to one of the 

methods. The method that is used the most at present and widely available at com¬ 

puter installations is the principal factor method. 

The reader may ask: Why not use a comparatively simple cluster method like the 

inspection approach used earlier, instead of a complex method like the principal 

factor method? Cluster methods can be used (see Lee & MacQueen, 1980) and have 

been recommended. They depend on our identifying clusters and presumed factors 

by finding interrelated groups of correlation coefficients or other measures of 

relation. In Table 34.1, the clusters are easy to locate. In most R matrices, however, 

the clusters cannot be so easily identified. More objective and precise methods are 

needed. 

In this section we examine the major steps involved in factor analysis. We will be 

unable to present all the necessary details to be complete. Instead, we hope to give 

the reader the essence of factor analysis and refer the details to very good texts. We 

will give brief reviews of these texts in the Study Suggestions. 

The major steps in studies using factor analysis are summarized as follows: 

e Communality and Number of Factors Problems 

Prior to choosing which method to use in extracting the factors, the researcher must 

decide on what to put in the diagonal cells of the correlation matrix as communality 

estimates and how many factors to extract. Comrey (1978) points out that these are 

the two most difficult decisions a researcher must make when doing a factor analysis. 

What one uses as communality estimates and how many factors to extract, can have a 

major impact on the final solution (see Comrey & Lee, 1992; Lee & Comrey, 1979; 

Lee, 1979). If the correct communalities are known and used in the factor analysis, 

the correct number of factors will be obtained using the principal factor method 

described in the next section. Hence, when a researcher uses the principal factor 

method, the communality estimates play an important role in determining the 

obtained factor solution and should be chosen carefully. Computer programs have 

definitely made computing factor solutions easier. However, one of their major draw¬ 

backs is that there are default settings for the programs in terms of how the factor 

extraction is done. Hubbard and Allen (1989) have compared the factor solutions 

obtained from two popular computer programs using the default values. They found 

very different solutions. Some programs use the eigenvalue-one rule where unities 

are placed in the diagonal as communality estimates and all factors are extracted that 

have an eigenvalue equal to or greater than 1.00. Sometimes this method is referred 
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to as truncated principal components. This has both intuitive and mathematical appeal 

since it seems to present a solution to both problems. However, Comrey and Lee 

(1992) have warned against the use of this method indiscriminantly. It tends to over¬ 

inflate the communalities and the factor loadings. The distortions are then further 

amplified by factor rotation. Yet it is still one of the most heavily used procedures. 

Psychological and educational tests that were developed using this method, such as 

the Social Skills Rating Scale (Gresham & Elliot, 1990), should be interpreted with 

caution. Comrey and Lee (1992) as well as Gorsuch (1983) have warned against 

doing “blind” factor analysis and then interpreting the results as truth. Another pop¬ 

ular communality estimate is the squared multiple correlation, R2. Research by 

Guttman (1956) has shown that this statistic is the lower bound for the communality 

estimates and as such could underestimate the true communality values. Others have 

recommended the use of the largest correlation for the variable with other variables 

as the initial communality estimate. 

The Principal Factor Method 

The principal factor method is mathematically satisfying because it yields a 

mathematically unique solution of a factor problem. Perhaps its major solution fea¬ 

ture is that it extracts a maximum amount of variance as each factor is calculated. In 

other words, the first factor extracts the most variance, the second the next most vari¬ 

ance, and so on. The first factor consists of weights or coefficients that will maximize 

the squared correlations between the variables and the factor. The contribution of 

the first factor is then removed from the correlation matrix. This “new” correlation 

matrix is then used to find coefficients of a factor that maximizes the squared correla¬ 

tions between the variables and the second factor. Each subsequent extracted factor 

will have less and less variance than the one before it. The extraction of factors ceases 

when the variance becomes negligible, or when the extraction process reaches the 

number of factors set by the researcher. Every factor extracted will consist of coeffi¬ 

cients that are uncorrelated with the coefficients of the other factors. In other words, 
each factor is independent of the other factors. 

To show the logic of the principal factor method without considerable 

mathematics is difficult. One can achieve a certain intuitive understanding of the 

method, however, by approaching it geometrically. Conceive tests or variables as 

points in ra-dimensional space. Variables that are highly and positively correlated 

should be near each other and away from variables with which they do not correlate. 

If this reasoning is correct, there should be swarms of points in space. Each of these 

points can be located in the space if suitable axes are inserted into the space, one axis 

for each dimension of the m dimensions. Then any point’s location is its multiple 

identification obtained by reading its coordinates on the m axes. The factor problem 

is to project axes through neighboring swarms of points and to so locate these axes 

that they “account for” as much of the variances tof the variables as possible. 

We can demonstrate these ideas with a simple two-dimensional example, 

Suppose we have five tests. These tests are situated in two-dimensional space as 

indicated in Figure 34.3. The closer two points are, the more they are related. The 
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ID Figure 34.3 

problem is to determine: (1) how many factors there are; (2) which tests are loaded 

on which factors; and (3) the magnitudes of the test loadings. 

The problem will now be solved in two different ways, each interesting as well as 

instructive. First, we solve directly from the points themselves. Follow these 

directions. Draw a vertical line three unit's to the left of point 3. Draw a horizontal 

line one unit below point 3. Label these reference axes I and II. Now read off the 

coordinates of each point, for instance, point 2 is (.70, .50), point 4 is (.60, — .40). 

Write a “factor matrix” with these five pai rs of values. 
Rotate the axes orthogonally and clockwise so that axis I goes between points 4 

and 5. Axis II, of course, will go between points 1 and 2. (The use of a protractor is 

recommended: the rotation should be approximately 40°.) Label these “new” rotated 

axes A and B. Cut a strip of four-to-the-ilnch graph paper. (The points are plotted on 

this size graph paper.) Count the base of-each square as .10 (.10 = 1/4 inch; 10 units, 

of course, equal 1.00). Using the strip as a measuring device, measure the distances of 
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the points on the new axes. For example, point 2 should be close to (.22, .83), and 

point 5 should be close to (.71, -.06). (It does not make much difference if there are 

small discrepancies;.) The original (I and II) and rotated (A and B) axes and the five 

points are shown ini Figure 34.4. 
Now write both factor matrices, unrotated and rotated. They are given in Table 

34.4. The problem is solved: There are two factors. Points (tests) 1 and 2 are high on 

factor B, points 4 a nd 5 are high on factor A, and point 3 has low loadings on both 

factors. The three questions originally asked have been answered. 

This procedure is analogous to psychological factor problems. Tests are 

conceived as points; in factor m-dimensional space. The factor loadings are the 

coordinates. The problem is to introduce appropriate reference frames or axes and 

then to “read off” the factor loadings. Unfortunately, in actual problems we do not 

know the number lof factors (the dimensionality of the factor space and thus the 

number of axes) or the location of the points in space. These must be determined 

from data. 

H] Figure 34.4 
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fn Table 34.4 Unrotated and Rotated Matrices, Point-Distance Problem* 

Points Unrotated Points Rotated 

I II A B 

1 .50 .70 1 -.07 .86 

2 .70 .50 2 .22 .83 

3 .30 .10 3 .17 .27 

4 .60 -.40 4 .72 .08 

5 .50 -.50 5 .71 -.06 

aThe substantial rotated loadings are in italics. 

The above description is figurative. One does not “read off” factor loadings 

from reference axes; one calculates them using rather complex methods. The princi¬ 

pal factor method actually involves the solution of simultaneous linear equations. 

The roots obtained from the solution are called eigenvalues. Eigenvectors are also ob¬ 

tained; after suitable transformation, they become the factor loadings. The fictitious 

R matrix of Table 34.1 was solved in this manner, yielding the factor matrix to be 

given later in Table 34.5. Most computer analysis programs use principal factor solu¬ 

tions. The student who expects to use factor analysis to any extent should study the 

method carefully and at least understand what it does. There is nothing quite so dan¬ 

gerous and self-defeating as using computer programs blindly. This is especially true 

in factor analysis. 

tation and Simple Structure 

Most factor extraction methods produce results in a form that is difficult or impossi¬ 

ble to interpret. If we look at the unrotated factors in Table 34.4 we can see this. 

Thurstone (1947, pp. 508-509) argued that it was necessary to rotate factor matrices 

if one wanted to interpret them adequately. He pointed out that original factor 

matrices are arbitrary in the sense that an infinite number of reference frames (axes) 

can be found to reproduce any given R matrix (see Thurstone, 1947, p. 93). A princi¬ 

pal factor matrix and its loadings account for the common factor variance of the test 

scores, but do not in general provide scientifically meaningful structures. It is the 

configurations of tests or variables in factor space that are of fundamental concern. In 

order to discover these configurations adequately, the arbitrary reference axes must 

be rotated. In other words, we assume that there are unique and “best” positions for 

the axes, “best” ways to view the variables in ^-dimensional space. 
There is no intention here of reifying constructs, variables, or factors. Factors 

are merely structures or patterns produced by covariances of measures. What is 

meant by “best way to view the variables” is the most parsimonious, the simplest way. 
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A “best” way can be predicted from theory and hypotheses. Or a “best” way may be 

discovered from a structure so clear and strong as to almost compel belief in its valid¬ 

ity and “reality.” 
Among Thurstone’s important contributions, his invention of the ideas of simple 

structure and factor axes rotation are perhaps the most important. With them he laid 

down relatively clear guidelines for achieving psychologically meaningful and inter¬ 

pretable factor analytic solutions. In Table 34.2 we reported a factor matrix obtained 

from the R matrix of Table 34.1. This was the final rotated matrix and not the matrix 

originally produced by the factor analysis. The unrotated matrix originally produced 

by the principal factor method is given on the left side of Table 34.5. The rotated 

factors are reproduced on the right side of the table. The communalities (h2) are also 

given. They are the same for both matrices. 

If we try to interpret the unrotated matrix on the left of the table, we run into 

trouble. It can be said that all the tests load substantially on a general factor I; and 

the second factor, II, is bipolar. (A bipolar factor is one that has substantial positive and 

negative loadings.) This amounts to saying that all the tests measure the same thing 

(factor I), but that the first three measure the negative aspect of whatever the second 

three measure (factor II). But aside from the ambiguous nature of such an interpreta¬ 

tion, we know that the reference axes, I and II, and consequently the factor loadings, 

are arbitrary. Look at the factor plot of Figure 34.2. There are two clearly defined 

clusters of tests clinging closely to the axes A and B. There is no general factor here, 

neither is there a bipolar factor. The second major problem of factor analysis, there¬ 

fore, is to discover a unique and compelling solution or position of the reference 
axes. 

Plot the loadings of I and II, and we “see” the original unrotated structure. This 

has been done in Figure 34.5. Now swing the axes so that I goes as near as possible to 

the V, R, and S' points and, at the same time, II goes as near as possible to the N, AS, 

and ATM points. A rotation of 45° will do nicely. We then obtain essentially the 

HI Table 34.5 Unrotated and Rotated Factor Matrices, R Matrix from Table 36. T 

Unrotated Rotated 

Tests I II A B h2 

V .60 

00 
U

A
 

f .83 .01 .70 

R .63 -.49 .19 .10 .63 

S .56 -.43 .10 .10 .50 

N .56 .43 .10 .10 .50 

AS .63 .49 
V10 

.19 .63 

ATM .60 O
O

 

.01 .83 .70 

aSignificant loadings > 2.30 are italicized 
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[U Figure 34.5 

II 

structure of Figure 34.2. That is, the new rotated positions of the axes and the posi¬ 

tions of the six tests are the same as the positions of the axes and tests of Figure 34.2. 

The structure simply leans to the right. Turn the figure so that the B of the B axis 

points directly up and this becomes clear. It is now possible to read off the new 

rotated factor loadings on the rotated axes. Since the axes are kept at a 90° angle, this 

is called an orthogonal rotation. 
This example, though unrealistic, may help the reader understand that factor 

analysts search for the unities that presumably underlie test performances. Spatially 

conceived, they search out the relations among variables “out there” in multidimen¬ 

sional factor space. Through knowledge of the empirical relations among tests or 

other measures, they probe in factor space with reference axes until they find the 

unities or relations among relations—if they exist. 
Significant loadings (> .30) are italicized. Note that the A and B vectors are 

reversed in this table. The h2s calculated from the unrotated and rotated values are 

differ slightly, owing to errors of rounding, For example, .602 + .582 = .70 and 

,832 + .012 = .69. The correct computer values have been used in the table (and in 

Table 34.2). 
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To guide rotations, Thurstone laid down five principles or rules of simple 

structure. The rules are applicable to both orthogonal and oblique rotations, 

although Thurstone emphasized the oblique case. (Oblique rotations are those in 

which the angles between axes are acute or obtuse.) The simple structure principles 

are as follows: 

1. Each row of the factor matrix should have at least one loading close to zero. 

2. For each column of the factor matrix there should be at least as many 

variables with zero or near-zero loadings as there are factors. 

3. For every pair of factors (columns) there should be several variables with 

loadings in one factor (column) but not in the other. 

4. When there are four or more factors, a large proportion of the 

variables should have negligible (close to zero) loadings on any pair of factors. 

5. For every pair of factors (columns) of the factor matrix there should be only a 

small number of variables with appreciable (non-zero) loadings in both 
columns. 

In effect, these criteria call for as “pure” variables as possible; that is, each vari¬ 

able loaded on as few factors as possible, and as many zeros as possible in the rotated fac¬ 

tor matrix. In this way, the simplest possible interpretation of the factors can be 

achieved. In other words, rotation to achieve simple structure is a fairly objective way 

to achieve variable simplicity or to reduce variable complexity. 

To understand this, imagine an ideal solution in which simple structure is “per¬ 
fect.” It might look like this, say, in a three-factor solution: 

Tests A B c 
1 X 0 0 
2 X 0 0 
3 X 0 0 
4 0 X 0 
5 0 X 0 
6 0 X 0 
7 0 0 X 
8 0 0 X 
9 0 0 X 

The Xs indicate substantial factor loadings, Os near-zero loadings. Of course, such 

“perfect” factor structures are rare. It is more likely that some of the tests have load¬ 

ings on more than one factor. Still, good approximations to simple structure have 

been achieved, especially in well-planned and executed factor analytic studies. Com- 

rey (1978) points out that simple structure will wcyk well if the study is well-designed 

with several well-defined factors each measured by several pure factor measures that 

are normally distributed and with high reliability. However, Comrey also states that 
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undesigned or poorly designed studies will have complex variables. And as a result 

the solution will not fit simple structure very well. 

Before leaving the subject of factor rotations it must be pointed out that there 

are a number of rotational methods. The two main types of rotation are called “or¬ 

thogonal” and “oblique.” Orthogonal rotations maintain the independence of factors; 

that is, the angles between the axes are kept at 90°. If we rotate factors I and II 

orthogonally, for instance, we swing both axes together, maintaining the right angle 

between them. This means that the correlation between the factors is zero. The 

rotation just performed in Figure 34.5 was orthogonal. If we had four factors, we 

would rotate I and II, I and III, I and IV, II and III, and so on, maintaining right 

angles between each pair of axes. Some researchers prefer to rotate orthogonally. 

Others insist that orthogonal rotation is unrealistic, that actual factors are not usually 

uncorrelated, and that rotations should conform to psychological “reality.” 

Rotations in which the factor axes are allowed to form acute or obtuse angles are 

called oblique. Obliqueness, of course, means that factors are correlated. There is no 

doubt that factor structures can be better fitted with oblique axes and the simple 

structure criteria better satisfied. Some researchers might object to oblique factors 

because of the possible difficulty of comparing factor structures from one study to 

another. We leave this controversial subject with two remarks. First, the type of 

rotation seems to be a matter of taste. Second, the reader should understand both 

types of rotation to the extent that he or she can interpret both kinds of factors, and 

be particularly careful when confronted with the results of oblique solutions. They 

contain peculiarities and subtleties not present in orthogonal solutions. 

The factor rotation that we have seen so far is the graphic approach. Before 

high-speed digital computers, researchers who did factor analyses used this graphical 

or hand method of rotation. The imprecise nature of graphical rotations through 

visual approximation was one of the major criticisms of the method. However, when 

computers became more accurate and reliable in the mid-1950s, a number of analytic 

rotational methods emerged where the rotations were performed using a mathemati¬ 

cal formula. The most popular of these was the one developed by Henry Kaiser 

(1958) called Varimax. Virtually every computer package that performs factor analy¬ 

ses today uses this method of rotation. Many of those programs have Varimax as the 

default rotational method. In Kaiser’s obituary, Jensen and Wilson (1994) stated that 

Kaiser’s 1958 article is the third most cited article in the psychological literature. 

Varimax works very well in approximating simple structure in well-designed factor 

analytic studies. If a researcher is looking for a general factor, Varimax does not fare 

as well. The goal of Varimax is to disperse the maximum amount of variance across 

the factors while simultaneously trying to obtain simple structure. If the researcher 

includes too many factors for Varimax, then a possible result is the artificial inflation 

of some small factors. Hence, Varimax is sensitive to the number of factors used in 

rotation. 
If a researcher is interested in finding a general factor, the best orthogonal 

method available is Comrey’s (1967) Tandem Criteria. The Tandem Criteria consists 

of two steps and each step is based on a different principle. 



844 Part Ten Multivariate Approaches 

Principle 1: If two variables are correlated, they should appear on the same 

factor. (Criterion 1) 

Principle 2. If two variables are not correlated, they should not appear on the 

same factor. (Criterion 2) 

It is Criterion 1, or Principle 1, that is of interest to us if we seek a general factor. 

Criterion 1 attempts to spread out the variance from the larger factors to the smaller 

ones, while satisfying Principle 1 at the same time. If a general factor exists, the 

variables that are correlated with one another will be retained as much as possible on 

the same factor rather than being spread around. 

Just as there are many factor extraction methods, there are many rotational 

methods in addition to the ones we have mentioned thus far. There are different 

methods for orthogonal rotation as well as oblique. The reader can consult Gorsuch 

(1983) and Comrey and Lee (1992) for a list. 

Second-Order Factor Analysis 

Second-order factor analysis is a highly important but neglected approach to com¬ 

plex data analysis and hypothesis testing. When factors are rotated obliquely, there 

are correlations between factors. Earlier in this chapter we mentioned the fundamen¬ 

tal equation of factor analysis. One version of it was R = P<FPT + U. The matrix 

contains the correlations between factors. In orthogonal rotations, the 4> matrix is 

not used since the factors are uncorrelated. In doing second-order factor analysis in 

the traditional manner, this T matrix is factor analyzed. For the sake of complete¬ 

ness, the P matrix is the factor pattern matrix. It contains the factor loadings. PT is its 

transpose and U is the matrix containing the uniqueness of each variable. 

In a provocative factor analytic and canonical correlation study of the redun¬ 

dancy present in student test scores, Lohnes and Marshall (1965) extracted two 

factors from 21 ability and achievement tests. The unrotated factor loadings of eight 

of their measures, four ability tests and four grades (English, arithmetic, social stud¬ 

ies, science), have been plotted in Figure 34.6. The axes have been rotated obliquely 

so that they will go through the two clusters of loadings. There is an acute angle of 

about 39° between the rotated axes, now labeled I' and IF. Any angle other than 90° 

between axes means correlation between factors. In this case, the correlation is 
approximately .78, quite high. 

Imagine this situation multiplied over six, eight, or 10 factors: there would be a 

set of correlations among the factors. Factor analyze these correlations and we have 

second-order factor analysis, which is a method of finding the factors behind the 

factors. The famous g of intelligence testing is evidently a second-order factor or 

higher. Whenever large numbers of ability tests are factor analyzed, the correlations 

among the tests are usually positive. Factor analyze them and some such pattern, as 

in Figure 34.6, though more complex, emerges. Calculate the correlations between 

the factors and again factor analyze and a single factor, perhaps g, may emerge. 

Additional information on second-order and higher-order factor analysis can be 

found in Gorsuch (1983). The researcher can go through the process of finding 
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u Figure 34.6 

first-order oblique factors and then factor analyzing the correlation matrix of fac¬ 
tors, but there is an alternative approach. With the availability of computer pro¬ 
grams such as LISREL, EQS, and AAIOS, the researcher can perform a higher- 
order factor analysis rather easily and in one step. Comrey and Lee (1992) show 
how to do a second-order factor analysis using EQS. 

Factor Scores 

While second-order factor analysis is more oriented toward basic and theoretical 
research, another technique of factor analysis, so-called factor scores or measures, is 
eminently practical, though not without theoretical significance. Fuctov scoi ss are 
measures of individuals on factors. Suppose, like Lohnes and Marshall (1965), we 
found two factors underlying 21 ability and grade measures. Instead of using all 21 
scores of groups of children in research, why not use just two scores calculated from 
the factors? Lohnes and Marshall recommend just this, pointing out the redundancy 
in the usual scores of pupils. These factor scores are, in effect, weighted averages, 

weighted according to the factor loadings. 
Here is an oversimplified example. Suppose the factor matrix of Table 34.2 were 

actual data and that we want to calculate the A and B factor scores of an individual. 
The raw scores of one individual on the six tests, say, are: 7, 5, 5, 3, 4, and 2. We 
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multiply these scores by the related factor loadings, first for factor A and then for 

factor B, as follows: 

A: FA = (.83)(7) + (.79)(5) + (.70)(5) + (.10)(3) + (.10)(4) + (,01)(2) = 13.98 

B: FB = (.01)(7) + (.10)(5) + (.10)(5) + (.70)(3) + (.79)(4) + (.83)(2) = 7.99 

The individual’s “factor scores” are FA = 13.98 and FB — 7.99. We can, of course, 

calculate other individuals’ “factor scores” similarly. 

This is not the best way to calculate factor scores. Comrey and Lee (1992), Gorsuch 

(1983), and Harman (1976) present alternative methods for computing factor scores. 

They also discuss the pros and cons of each method. However, the example pre¬ 

sented here was invented just to convey the idea of such scores as weighted sums or 

averages, the weights being the factor loadings. In any case, the method, though not 

extensively used in the past, has great potential for complex behavioral research. 

Instead of using many separate test scores, fewer factor scores can be used. An excel¬ 

lent real example is described by Mayeske (1970) who participated in the reanalysis 

of the data from the highly influential Coleman, Campbell, Hobson, et al. (1966) 
report, Equality of Educational Opportunity. 

Research Examples 

Most factor analytic studies have factored intelligence, aptitude, and personality tests 

and scales, the tests or scales themselves being intercorrelated and factor analyzed. 

The Thurstone example discussed below is an excellent example; indeed, it is a 

classic. Persons, or the responses of persons, can also be factored. The variables en¬ 

tered into the correlation and factor matrices, in fact, can be tests, scales, persons, 

items, concepts, or whatever can be intercorrelated. The studies outlined below have 

been selected not to represent factor analytic investigations in general, but rather to 
familiarize the student with different uses of factor analysis. 

The Comrey Personality Scales 

Comrey’s (1970) work on personality research can serve as one of the best examples 

on the use of factor analysis. The Comrey Personality Scales, also known as the CPS, 

is an inventory of factored personality traits. This taxonomy of personality traits was 

developed over a period of 15 years. It was originally inspired by the discrepancies 

between well-known authors of personality tests and personality theorists. What be¬ 

gan as an endeavor to resolve the differences between the personality theorists ended 

with the emergence of the Comrey Personality Scales. The CPS shared some of the 
characteristics of the other tests but it is distinct from them. 

In order to obtain a stable factor solution and control of the factor hierarchy, 

Comrey developed a unit of measurement called the “Factored Homogeneous Item 

Dimension” (FHID), which was developed to alleviate some of the problems 

experienced in factoring items. One problem concerns the unreliability associated 

with single items. The other deals with the extraction of item factors that are low- 
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level factors consisting of items that may be similar in wording or other distinguish¬ 

ing feature. These low-level, item-factors don’t usually give the researcher much in¬ 

formation on the underlying personality trait. The FHID is no more than a sum of 

the scores for items that define the FHID. Since the FHID is a sum, it is more reli¬ 

able than any single item. 
A factor analysis of the FHIDs yields eight factors. The names of these factors 

are T—Trust versus Defensiveness; O — Orderliness versus Lack of Compulsion; 

C — Social Conformity versus Rebelliousness; A—Activity versus Lack of Energy; 

S—Emotional Stability versus Neuroticism; E — Extraversion versus Introversion; 

M—Mental Toughness versus Sensitivity; and P—Empathy versus Egocentrism. 

Additional information on the steps and procedures on developing the CPS can 

be found in Comrey and Lee (1992), Comrey (1980), and in Comrey (1988). Comrey 

and his associates have over the years from the 1970s to the 1990s validated this 

eight-factor structure in a number of different cultures and different countries. Com- 

rey’s ongoing research on the CPS demonstrates all the right steps a researcher takes 

in doing a factor analytic study. 

Tburstone Factorial Study of Intelligence 
Thurstone and Thurstone (1941), in their monumental work on intelligence 

factors and their measurement, factor analyzed 60 tests plus the three variables 

Chronological Age, Mental Age, and Sex. The analysis was based on the test 

responses of 710 eighth-grade pupils to the 60 tests. It revealed essentially the same 

set of so-called primary factors that had been found in previous studies. 
The Thurstones chose the three best tests for each of seven of the 10 primary 

factors. Six of these tests seemed to have stability at differing age levels sufficient 

for practical school use. They then revised and administered these tests to 437 

eighth-grade schoolchildren. The main purpose of the study was to check the factor 

structure of the tests. In other words, they predicted that the same primary factors of 

intelligence put into the 21 tests would emerge from a new factor analysis on a new 

sample of children. 

Fluid and Crystallized Intelligence 
One of the most active, important, and controversial problems of behavioral scien¬ 

tific and practical interest is the nature of mental abilities. Different theories with 

differing amounts and kinds of evidence to support them have been propounded by 

some of the ablest psychologists of the century: Spearman, Thurstone, Burt, 

Thorndike, Guilford, Cattell, and others. There can be no doubt whatever of the 

high scientific and practical importance of the problem. We have alluded, if only 

briefly, to the work and thinking of Thurstone and Guilford. We now describe, also 

briefly, one among the many factor analytic studies of Cattell (1963). 
The famous general factor of intelligence, g, can be shown to be a second-order 

factor that runs through most tests of mental ability. Cattell believes, in effect, that 

there are two gs, or two aspects of g: crystallized and fluid. Crystallized intelligence is 

exhibited by cognitive performances in which “skilled judgment habits” have become 

fixed or crystallized owing to the earlier application of general learning ability to 

such performances. The well-known verbal and number factors are examples. Fluid 
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intelligence, on the other hand, is exhibited by performances characterized more by 

adaptation to new situations, the “fluid” application of general ability, so to speak. 

Such ability is more characteristic of creative behavior than is crystallized intelli¬ 

gence. If tests are factor analyzed and the correlations among the factors found are 

themselves factored (second-order factor analysis), then both crystallized and fluid 

intelligence should emerge as second-order factors. 

Cattell administered Thurstone’s primary abilities tests and a number of his own 

mental ability and personality tests to 277 eighth-grade children, factor analyzed 

the 44 variables, and rotated the obtained 22 factors (probably too many) to simple 

structure. The correlations among these factors were themselves factored, yielding 

eight second-order factors. (Recall that oblique rotations yield factors that are 

correlated.) Although Cattell included a number of personality variables, we concen¬ 

trate only on the first two factors: fluid intelligence and crystallized intelligence. He 

reasoned that Thurstone’s tests, since they measure crystallized cognitive abilities, 

should load on one general factor, and that his own culture-fair tests, since they 

measure fluid ability, should load on another factor. They did. The two sets of factor 

loadings are given in Table 34.6, together with the names of the tests. The two fac¬ 

tors were also correlated positively (r = .47), as predicted. 

OH Table 34.6 Pan of Second-Order Factor Matrix (Cattell Fluid 

and Crystallized Intelligence Studyf 

Fi(gf) F2(gc) 

Thurstone Tests: 

Verbal .15 .46 

Spatial .32 .14 

Reasoning .08 .50 

Number .05 .59 

Fluency .07 .09 

Cattell Tests: 

Series .35 .43 

Classification .63 -.02 

Matrices .50 .10 

Topology .51 .09 

3gf general factor, fluid; gc — general factor, crystallized. Italics 

supplied by the author (FNK). These are only two of Cattell’s eight 
factors. 
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This study demonstrates the power of an astute combination of theory, test 

construction, and factor analysis. Similar to Guilford’s equally astute conceptualiza¬ 

tion and analysis of convergent, divergent, and other factors mentioned earlier, it is a 

significant contribution to psychological knowledge of an extremely complex and 

important subject. However, in order to get a complete view, one should also read 

Humphreys’s (1967) article that critiques CattelPs theory. 

Confirmatory Factor Analysis 

The methods of factor analysis described up to this point represent traditional 

procedures that are now commonly referred to as “exploratory factor analysis,’ or 

EFA. Newer methods with a stronger base in statistical hypothesis testing theory 

have been developed. These newer methods are referred to as “confirmatory factor 

analysis.” However, there are a few variations of confirmatory factor analysis. There 

are the earlier ones based on EFA and the newer ones based on a stricter statistical 

theory. We will refer to the newer approaches as CFA. 
Earlier in this chapter, it was emphasized that exploratory factor analytic 

methods are most powerful when employed in a hypothesis-testing manner. That 

is, hypotheses are developed about the factors to be found in a given domain and 

which variables measure them. Several variables are chosen for each hypothe¬ 

sized factor that should provide relatively pure factor measures of that factor. 

Data are collected for a large sample and factor analyzed to see how well the 

obtained factors and the variables loaded on them correspond to the originally 

hypothesized factor structure. On the basis of the first analysis, revisions are made 

in the hypothesis and in the variables designed to measure each factor, and the study 

is repeated. This process is continued programmatically until the factor structure 

that emerges corresponds reasonably well to the factor structure hypothesized in 

advance. 
This approach represents the earlier type of confirmatory factor analysis in 

which the number of factors that emerges from the analysis is not restricted to a 

preconceived number. If the “correct” number happens to be what was hypothesized, 

fine, but it is not prespecified. Further, the loadings are allowed to fall where they 

may, rather than being forced to conform as much as possible to a prespecified 

pattern. In particular, large numbers of parameters are not forced to zero. The 

proportion of variance attributed to unique factors for each variable emerges as an 

end result of the analysis rather than being a parameter to be estimated, per se. Thus, 

in EFA, one can evaluate how well the obtained solution fits a preconceived factor 

pattern but without using powerful optimization techniques to force a fit that may 

hold up poorly with new data. 
Some of these earlier EFA confirmatory factor analysis approaches are called 

Procrustean solutions, (see Comrey & Lee, 1992). This approach can take various 

forms. One can rotate a given unrotated matrix as closely as possible to a target 

matrix, either orthogonal or oblique. The target matrix could be a hypothesized 

matrix’based on theory or on expectations developed from previous research. Least- 

squares methods are typically employed to find the transformation matrix that will 
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accomplish the desired rotations. The Verba and Nie (1972) study is an example of a 

confirmatory factor analysis done using this approach. 

These earlier methods of confirmatory factor analysis probably will become less 

popular, now that the newer methods can perform the same kind of task in most 

cases and also provide a statistical test of goodness-of-fit, along with indications on 
how to improve the model. 

These newer methods, which we refer to as CFA, are based on the work of Law- 

ley (1940). Lawley introduced the method of maximum likelihood to factor analysis 

and later expanded it (see Lawley & Maxwell, 1971). Gorsuch (1983) points out that 

CFA has its roots in the Maxwell-Lawley Maximum Likelihood factor analysis 

method. These newer methods are generally noted by the absence of factor rotation. 

CFA is actually a special case of a more general set of statistical analysis methods that 

are called covariance structure analysis. This section provides an introduction to CFA 
and shows how it differs from EFA. 

In its present form, CFA is attributed by many to Joreskog and his associates 

(Joreskog, 1967, 1969, 1970; Joreskog & Goldberger, 1972) although Bock and 

Bargmann (1966) suggested something similar at an earlier date. The Bock and 

Bargmann procedure requires the researcher to specify all of the parameters in the 

factor-loading matrix, the matrix of correlations among the factors, and the unique 

variance matrix. Using these a priori specified matrices, an estimated correlation or 

covariance matrix is created. This matrix is then compared to the sample correlation 

or covariance matrix via a goodness-of-fit statistic such as the Bartlett test (see Mor¬ 

rison, 1967). This procedure is generally difficult to carry out unless the researcher 

knows what initial matrix values would be appropriate. Bernstein (1988) refers to this 
as the “weak constraint solution.” 

Joreskog (1969) recognized that only some, but not all, of the parameters could 

be estimated. Joreskog’s development allows the researcher to specify some of the 

parameters and allow the others to be estimated from the data. These modifications 

made Joreskog’s method an important improvement over previous procedures. The 

actual computational work for doing a confirmatory factor analysis is done via a 

computer program. Currently the programs of choice are LISREL, EQS, and 

AMOS. All three of these computer programs are used for covariance structure 

analysis. Each uses a slightly different algorithm for the computations. With each 
new program release, it gets easier to use. 

As with EFA, however, proper use of such CFA methods as LISREL, EQS, and 

require the researcher to have a thorough knowledge of the area being 

studied and what represents a “good” hypothesis concerning the underlying factor 

structure. It is not a method that can be applied successfully to a large body of data 

with many variables where the investigator has no idea about what the underlying 
factor structure might be. 

Earlier in this chapter we discussed the correlation matrix. This matrix or table 

contains the correlation coefficient of every variable with every other variable. In 

matrix notation this is written as R. In order to understand CFA, we need to reexam¬ 

ine the fundamental equation of factor analysis that we presented earlier. This 
equation was 

* 
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R = PTPT + U 

The P matrix or table contains the factor loadings. It is also referred to as the factor 

pattern matrix. If we rewrite this matrix so that the rows of the matrix are 

interchanged with the columns of the matrix, that transformed matrix is called the 

transpose of P and is written as PT. The matrix tells us how much the factors are 

correlated with one another. U represents the amount of uniqueness within each 

variable. 
The goal is to find the values for P, T, and U that best reproduces the correla¬ 

tion matrix R. The reproduced correlation matrix is denoted as R'. Hence we have 

our factor analysis equation: 

R' = P<DPT + U 

An acceptable solution for P, <F, and U will be one where R' and R differ by a very 

small amount. In other words, the values within these matrices are found so that R 
and R' have a good fit. One of the more popular goodness-of-fit indices is the 

normed fit index by Bender & Bonnet (1980). There are a number of goodness-of-fit 

statistics that are generally employed (see Comrey & Lee, 1992, chapter 12). 
In developing the CFA model, the researcher must choose which values within 

the P, T, and U matrices are to be fixed and those which are to be estimated. 

Constraints can be imposed on certain values, such as by specifying a range of values 

within which they must fall. These values are also called parameters. 

Structural equation approaches to confirmatory factor analysis as implemented 

through LISREL and EQS are powerful new factor analytic procedures that often 

may represent the method of choice in a given situation. They are not the only 

approaches, however, that could be employed; and in many cases, other methods may 

be preferred. 
Whatever method researchers may find to be the most appropriate for their data, 

it is clear that factor analysis has undergone a major revolution in recent years. Pow¬ 

erful new methods are now available that dramatically expand research workers’ ca¬ 

pacity to examine the implications of their data. It must be emphasized, however, that 

these newer methods should be viewed as complementing rather than supplanting 

older EFA methods that may continue to be the most effective procedures for dealing 

with many data analysis situations. For the foreseeable future, therefore, students of 

factor analysis will need to become familiar with both EFA and CFA methods. 

Research Example Using Confirmatory Factor Analysis 
The article by Keith (1997) provides a number of research examples where CFA 

is applied to problems within school psychology. This outstanding article is easy 

to read, well written, and highly recommended to those looking for good exam¬ 

ples of where confirmatory factor analysis can be used. Keith tests the structure of 

a number of psychological tests to determine if their claims are true using con¬ 

firmatory factor analysis. He gives a complete explanation of the model to be 

tested and the goodness-of-fit statistics provided by confirmatory factor analysis. 
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[b] Table 34.7 Theoretical Structure of the KAIT 

Fluid Intelligence Crystallized Intelligence Delayed Recall 

Rebus Learning Definitions Rebus Delayed Recall 

Logical Steps Auditory Comprehension Auditory Delayed Recall 

Mystery Codes Double Meanings 

Memory for Block Designs Famous Faces 

In one such demonstration, Keith tested the claims of the Kaufman Adult 

Intelligence Test (KAIT). The KAIT consists of 10 subtests. Four of the sub¬ 

tests are designed to measure the fluid part of intelligence (gf), another four 

measures the crystallized part of intelligence (gc) and two tests are designed to 

measure Delayed Recall. The fluid and crystallized components of intelligence 

were mentioned earlier when we discussed CattelPs theory of intelligence. That 

theory was later modified by John Horn (See Cattell, 1987; Horn & Cattell, 

1966) and is now called the Horn-Cattell theory of intelligence. The fluid 

and crystallized parts of intelligence are only two parts of the complete theory. 

Delayed recall measures the test-taker’s memory of material learned in the early 

parts of the test. Table 34.7 presents the theoretical structure or construct of 
the KAIT. 

Using the fundamental equation of factor analysis R = PcfiP^ + U, the parame¬ 

ters within these matrices can be designated as the following: 

FI F2 F3 

FI "l.OO 

T = F2 * 1.00 

F3 * 1.00 

FI F2 F3 

X: 

i 
* 

o
 

o
 

_
i 

x2 * 0 0 

x3 * 0 0 

X4 * 0 0 

p=x5 
0 * o 

X6 o
 * 

o
 

X7 0 * o 

X8 0 * o 

X9 0 0 

X,o 1 o
 

o
 * 
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X. 
x2 

X3 

X4 

Xs 

X6 

X7 

Xs X, 

X, 
* 

0 
0 
0 

0 

0 

0 

0 
* 

0 

X2 X3 X4 

0 

0 0 
0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

X5 X6 x7 x8 

0 

0 0 
0 0 0 * 

0 0 0 0 

0*00 

X, X 10 

0 

The asterisks in every matrix indicate the parameters to be estimated by the data. In 

the T matrix, the asterisks are the correlations between the factors. In the P matrix, 

the asterisks are the factor loadings; and in the U matrix, the asterisks are for the cor¬ 

relations between the variables. In the T matrix, the diagonal values are fixed at 1.00. 

In the P matrix, the desired solution would have simple structure. The nonmarker 

variables are forced to have values of zero. In the U matrix, there is a unique variance 

for each of the 10 variables. They receive asterisks also because they will be estimated 

by the data. In this particular model, Keith states that Rebus Learning (Variable 1) 

may be correlated with Rebus Delayed Recall (Variable 9) and that Auditory Delayed 

Recall (Variable 10) would be related to Auditory Comprehension (Variable 6). 

These correlations can also be estimated from the data and as such receive asteiisks 

in the U matrix for those values. When we refer to the data, we are talking about 

the scores from participants on the 10 variables and the matrix of intei correlations 

for those 10 variables. 

Once we have set up our model and what parameters are to be estimated, we can 

write the proper control commands for computer programs such as EQS, LISREL, 

and AMOS. Problems of this nature are far too laborious to be done by hand. 

Keith (1997) presents the model and the estimates in the form of a path diagram. 

Path diagrams, as we saw earlier, are useful conceptual and visual models for prob¬ 

lems in confirmatory factor analysis and structural equation modeling.1 

Keith found that the goodness-of-fit statistics indicate that the KAIT model fits 

the observed data. Keith presents six such statistics for goodness-of-fit and gives an 

explanation of them. The chi-square test that we have seen in past chapters can be 

used as a goodness-of-fit statistic; however, it is affected by changes in sample sizes. 

There are others that are more suitable. 

This is only one such model demonstrated by Keith. His paper goes on to show 

several different variations of models that can be tested. Keith states that there 

'Structured equation modeling is an alternative set of terms for analysis of covariance structure. 
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are many more models and problems that CFA can perform. Just as Comrey and 

Lee (1992) show how to test a hypothesized factor structure in two separate samples 

simultaneously, Keith shows how one can test the similarities of factors across differ¬ 

ent intelligence tests (e.g., Wechsler Intelligence Scale for Children or WISC and 

the Kaufman Assessment Battery for Children or K-ABC). 

Factor Analysis and Scientific Research 

Factor analysis has two basic purposes: to explore variable areas in order to identify 

the factors presumably underlying the variables; and, as in all scientific work, to test 

hypotheses about the relations among variables. The first purpose is well-known and 

fairly well accepted. The second purpose is not so well-known or so well accepted. 

In conceptualizing the first purpose — the exploratory or reductive purpose — 

one should keep construct validity and constitutive definitions in mind. Factor analy¬ 

sis can be conceived of as a construct validity tool. Recall that validity was defined in 

Chapter 28 as common-factor variance. Since the main preoccupation of factor 

analysis is common factor variance, by definition it is firmly tied to measurement 

theory. Indeed, this tie was expressed earlier in the section headed “Some Factor 

Theory,” where equations were written to clarify factor analytic theory. (See, espe¬ 

cially, Equation 34.6.) 

Recall, too, that construct validity seeks the “meaning” of a construct through 

the relations between the construct and other constructs. In early chapters of this 

book when types of definitions were discussed, we learned that constructs could be 

defined in two ways: by operational definitions, and by constitutive definitions. 

Constitutive definitions are definitions that define constructs with other constructs. 

Essentially, this is what factor analysis does. It may be called a constitutive meaning 

method, since it enables the researcher to study the constitutive meanings of 

constructs — and thus their construct validity. 

The measures of three variables, say, may share something in common. This 

something itself is a variable, presumably a more basic entity than the variables used 

to isolate and identify it. We give this new variable a name; in other words, we con¬ 

struct a hypothetical entity. Then, to inquire into the “reality” of the variable, we 

may systematically devise a measure of it and test its “reality” by correlating data ob¬ 

tained with the measure with data from other measures theoretically related to it. 

Factor analysis helps us check our theoretical expectations. 

Part of the basic life-stuff of any science is its constructs. Old constructs con¬ 

tinue to be used; new ones are constantly being invented. Note some of the general 

constructs directly pertinent to behavioral and educational research: achievement, in¬ 

telligence, learning, aptitude, attitude, problem-solving ability, needs, interests, cre¬ 

ativity, conformity. Note some of the more specific variables important in behavioral 

research: test anxiety, verbal ability, traditionalism, convergent thinking, arithmetic 

reasoning, political participation, and social class. Clearly, a large portion of scientific 

behavioral research effort has to be devoted to what might be called construct mvesti- 

gation or constvuct vuhdutiofi. This requires factor <in<ilysis. 
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When we talk about relations we talk about the relations between constructs: 

intelligence and achievement, authoritarianism and ethnocentrism, reinforcement 

and learning, organizational climate and administrative performance all these are 

relations between highly abstract constructs or latent variables. Such constructs usu¬ 

ally have to be defined operationally to be studied. Factors are latent variables, of 

course, and the major scientific factor analytic effort in the past has been to identify 

the factors and occasionally use the factors in measuring variables in research. Rarely 

have deliberate attempts been made to assess the effects of latent variables on other 

variables. With recent advances and developments in multivariate thinking and 

methodology, however, it is clear that it is now possible to assess the influence of 

latent variables on each other. This important development will be discussed and 

illustrated in Chapter 35 on analysis of covariance structures. We will find there that 

the scientist can obtain indices of the magnitudes and statistical significance of the 

effects of latent variables on other latent variables. If this is so, then factor analysis 

becomes even more important in identifying the latent variables or factors, and the 

scientist has to exercise great care in the interpretation of data in which the 

influences of latent variables are assessed. 
Many research areas, then, can well be preceded by factor analytic explorations 

of the variables of the area. This does not mean that a number of tests are thrown to 

gether and given to any samples that happen to be available. Factor analytic investi¬ 

gations, both exploratory and hypothesis testing, have to be painstakingly planned. 

Variables that may be influential have to be controlled sex, education, social class, 

intelligence, and so on. Variables are not put into a factor analysis just to put them in. 

They must have legitimate purpose. If, for instance, one cannot control intelligence 

by sample selection, one can include a measure of intelligence (verbal, perhaps) in 

the battery of measures. By identifying intelligence variance, one has in a sense 

controlled intelligence. One can learn whether one’s measures are contaminated by 

response biases, by including response-bias measures in factor analyses. 

The second major purpose of factor analysis is to test hypotheses. One aspect 

of hypothesis testing has already been hinted at: one can put tests or measures 

into factor analytic batteries deliberately to test the identification and nature of 

factors. The design of such studies has been well outlined by Comrey, Thurstone, 

Cattell, Guilford, and others. First, factors are “discovered.” Their nature is in¬ 

ferred from the tests that are loaded on them. This “nature” is set up as a hypothe¬ 

sis. New tests are constructed and given to new samples of subjects. The data are 

factor analyzed. If the factors emerge as predicted, the hypothesis is to this extent 

confirmed, the factors would seem to have “reality.” But this certainly does not end 

the matter. One still has to test, among other things, the factors’ relations to other 

factors. One still has to place the factors, as constructs, in a nomological network 

of constructs. , ^ , 
A less well-known use of factor analysis, described by Fruchter (1966), involves 

using factor analysis in testing experimental hypotheses. For example, one may hy¬ 

pothesize that a certain method of teaching reading changes the ability patterns of 

pupils, so that verbal intelligence is not as potent an influence as it is with other 

teaching methods. An experimental study can be planned to test this hypothesis. The 
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effects of the teaching methods can be assessed by factor analyses of a set of tests 

given before and after the different methods were used. Woodrow (1938) tested a 

similar hypothesis when he gave a set of tests before and after practice in seven tests: 

adding, subtracting, anagrams, and so on. He found that factor loading patterns did 

change after practice. 

In considering the scientific value of factor analysis, the reader must be 

cautioned against attributing “reality” and uniqueness to factors. The danger of reifi¬ 

cation is great. It is easy to name a factor and then to believe there is a reality behind 

the name. But giving a factor a name does not give it reality. Factor names are merely 

attempts to epitomize the essence of factors. They are always tentative, subject to 

later confirmation or disconfirmation. Then, too, many things can produce factors. 

Anything that introduces correlation between variables “creates” a factor. Differences 

in sex, education, social and cultural background, and intelligence can cause factors 

to appear. Factors also differ—at least to some extent—with different samples. 

Response sets or test forms may cause factors to appear. Despite these cautions, it 

must be said that factors do emerge repeatedly with different tests, different samples, 

and different conditions. When this happens, we have fair assurance that there is an 

underlying variable that we are measuring successfully. 

As we mentioned at the beginning of this chapter, there are serious criticisms 

of factor analysis. The major valid criticisms center around the indeterminancy of 

how many factors to extract from a correlation matrix, and the problem of how to 

rotate factors. Another difficulty that bothers critics and devotees alike is what can 

be called the “communality problem,” or what quantities to put into the diagonal 

of the R matrix before factoring. In an introductory chapter, these problems cannot 

be discussed in detail. The reader is referred to the discussions of Cattell (1978), 

Comrey and Lee (1992), Cureton and D’Agostino (1983), Gorsuch (1983), Guilford 

(1954), Harman (1976), and Thurstone (1947). A criticism of a different order 

seems to bother educators and sociologists and some psychologists. This takes two 

or three forms that seem to boil down to distrust, sometimes profound, combined 

with antipathy toward the method, due to its complexity and, strangely enough, its 

objectivity. 

The argument runs something like this. Factor analysts throw a lot of tests 

together into a statistical machine and spit out factors that have little psychological 

or sociological meaning. The factors are merely artifacts of the method. They are av¬ 

erages that correspond to no psychological reality, especially the psychological reality 

of the individual, other than that in the mind of the factor analyst. Besides, you can’t 

get any more out of factor analysis than you put into it. 

The argument is basically irrelevant. To say that factors have no psychological 

meaning and that they are averages is both true and untrue. If the argument were 

valid, no scientific constructs would have any meaning. They are all, in a sense, aver¬ 

ages. They are all inventions of the scientist. This is simply the lot of science. The 

basic criterion of the “reality” of any construct, any factor, is its empirical, scientific 

reality. If, after uncovering a factor, we can successfully predict relations from 

theoretical presuppositions and hypotheses, then the factor has “reality.” There is no 

more reality to a factor than this, just as there is no more reality to an atom than its 

empirical manifestations. 
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The argument about only getting out what is put into a factor analysis is mean¬ 

ingless as well as irrelevant. No competent factor analytic investigator would ever 

claim more than this. But this does not mean that nothing is discovered in factor 

analysis. Quite the contrary. The answer is, of course, that we get nothing more out 

of factor analysis than we put into it, but that we do not know all we put into it. 

Neither do we know which tests or measures share common factor variance; nor do 

we know the relations between factors. Only study and analysis can tell us these 

things. We may write an attitude scale that we believe measures a single attitude. A 

factor analysis of the attitude items, naturally, cannot produce factors that are not in 

the items. But it can show us, for example, that there are two or three sources of 

common variance in a scale that we thought to be unidimensional. Similarly, a scale 

that we believe measures Authoritarianism may be shown by factor analysis to 

measure Intelligence, Dogmatism, and other variables. 

If we examine empirical evidence rather than opinion, we must conclude that 

factor analysis is one of the most powerful tools yet devised for the study of complex 

areas of behavioral scientific concern. Indeed, factor analysis is one of the creative 

inventions of the 20th century, just as are intelligence testing, conditioning, 

reinforcement theory, the operational definition, the notion of randomness, measure¬ 

ment theory, research design, multivariate analysis, the computer, and theories of 

learning, personality, development, organizations, and society. 

It is fitting that this chapter conclude with some words of a great psychological 

scientist, teacher, and factor analyst, Louis Leon Thurstone (1959, p.8): 

As scientists, we have the faith that the abilities and personalities of people are 

not so complex as the total enumeration of attributes that can be listed. We 

believe that these traits are made up of a smaller number of primary factors or 

elements that combine in various ways to make a long list of traits. It is our 

ambition to find some of these elementary abilities and traits. 

All scientific work has this in common, that we try to comprehend nature in the 

most parsimonious manner. An explanation of a set of phenomena or of a set of ex¬ 

perimental observations gains acceptance only insofar as it gives us intellectual con¬ 

trol or comprehension of a relatively wide variety of phenomena in terms of a limited 

number of concepts. The principle of parsimony is intuitive for anyone who has even 

slight aptitude for science. The fundamental motivation of science is the craving for 

the simplest possible comprehension of nature, and it finds satisfaction in the discov¬ 

ery of the simplifying uniformities that we call scientific laws. 

Chapter Summary 

1. Factor analysis examines a set of variables and determines which ones belong 

together. The variables that are grouped together are called a factor 

2. A factor is a construct, a hypothetical entity, or a latent variable that under¬ 

lies measurements of any kind. 
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3. Charles Spearman developed factor analysis, but it was Louis Thurstone 

who expanded and enhanced it. Thurstone is called the “father of modern 

factor analysis.” 

4. Some of Thurstone’s contributions include the centroid method of extrac¬ 

tion, factor rotation, and simple structure. Both rotation and simple struc¬ 

ture are used to make factors more interpretable. 

5. The fundamental equation of factor analysis is R = P<FPT + U. 

6. The fundamental equation shows how the correlation matrix R is parti¬ 

tioned into a factor loading matrix P, correlation between factors, <f> and 

uniqueness, U. R is the observed data. All the others are estimated from the 

data. 

7. There are a number of different factor extraction methods. The most popu¬ 

lar has been the principal factor method. 

8. The principal factor method requires the researcher to supply communality 

estimates and state the number of factors to extract. 

9. The communality estimates and the number of problems have been difficult 

problems to solve in factor analysis. There is no clear-cut set of rules for ei¬ 

ther. Comrey has, however, developed a method that does not use commu¬ 

nality estimates. 

10. Communality refers to the proportion of total variance that is common fac¬ 

tor variance. A goal of factor analysis is to find the variance components of 

the total common factor variance. 

11. Factor scores involve combining the values of those variables that defined 

the factor. It is a new transformed score. If a battery of 10 tests yield three 

factors, then each test-taker would have three factor scores. 

12. Factor analysis currently has two methodologies. The traditional method is 

now called Exploratory Factor Analysis or EFA, and the newer method is 

called Confirmatory Factor Analysis or CFA. 

13. Exploratory factor analysis is usually used to learn or to discover which fac¬ 

tors underlie the data. Some researchers that are experienced users of this 

method know how to test hypotheses about the factors. 

14. Confirmatory Factor Analysis is used to test hypotheses about the factor 

structure. In CFA a model is developed, based on theory or past findings, 

and then tested against empirical data. 

15. Confirmatory factor analysis is just a special case of a group of analyses 

called covariance structure analysis. 

Study Suggestions 

1. The more advanced student will find the following selected articles valuable: 

Comrey, A. L. (1978). Common methodological problems in factor analytic 

studies ■ Journal of Consulting and Clinical Psychology, 46, 648-659. [Anon- 

mathematical review of the problems found in factor analytic studies.] 
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Comrey, A. L. (1985). A method for removing outliers to improve factor ana¬ 

lytic results. Multivariate Behavioral Research, 20, 273-281. [Shows how to 

detect and remove outliers that have a negative effect on a factor analysis 

solution.] 

Comrey, A. L., & Montag, I. (1982). Comparison of factor analytic results 

with two-choice and seven-choice personality item formats. Applied Psy¬ 

chological Measurement, 6, 285-289. [Compared two results of a factor 

analysis on the Comrey Personality Scales, one analysis with a two-choice 

response format, and another with a seven-choice format. Results indicate 

a superiority for the seven-choice over the two-choice item format for 

personality inventories.] 

Dunlap, W. P., & Cornwell, J. M. (1994). Factor analysis of ipsative measures. 

Multivariate Behavioral Research, 29, 115-126. [Discusses factor analysis 

with ipsative measures. The authors show analytically the fundamental 

problems that ipsative measures impose for factor analysis. These re¬ 

searchers recommend that factor analysis should not be done on data that 

are known to be ipsative.] 

Fleming, J. S. (1981). The use and misuse of factor scores in multiple regres¬ 

sion analysis. Educational and Psychological Measurement, 41, 1017-1025. 

[Discusses when and where factor analysis may be used along with 

multiple regression for prediction purposes.] 

Lee, H. B., & Comrey, A. L. (1979). Distortions in a commonly used factor 

analytic procedure. Multivariate Behavioral Research, 14, 301-321. [A study 

comparing the most popular method of factor extraction and rotation 

with other methods. It shows how distorted some solutions can get using 

the most popular methods.] 

Montanelli, R., & Humphreys, L. (1976). Latent roots of random data 

correlation matrices with squared multiple correlations on the diagonal: A 

Monte Carlo study. Psychometrika, 41, 341-348. [Excellent random corre¬ 

lation and regression method on the number-of-factors problem.] 

Overall, J. (1965). Note on the scientific status of factors. Psychological Bulletin, 

61, 270-276. [Excellent, even brilliant, analysis of basic factor analytic 

notions.] 

Peterson, D. (1965). Scope and generality of verbally defined personality fac¬ 

tors. Psychological Review, 12, 48-59. [Very convincing on the number-of- 

factors problem.] 

2. As usual, there is no substitute for the study of actual research uses of meth¬ 

ods. The student should, therefore, read two or three good factor analytic 

studies. Select from those cited in the chapter or from the following: 

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. 

New York: Cambridge University Press. [An analysis and reanalysis of in¬ 

telligence studies that used factor analysis. Gives a very good history of 

the psychology of individual differences.] 
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Daniel, L. G., & Siders, J. A. (1994). Validation of teacher assessment instru¬ 

ments: A confirmatory factor analytic approach. Journal of Personnel 

Evaluation in Education, 8, 29-40. [Examined construct validity of the 

Mississippi Teacher Assessment Instrument used for certification of 

beginning teachers. An exploratory factor analysis found four factors, 

however, confirmatory factor analyses failed to yield an acceptable 

structural model.] 

Fleming, J. S., & Whalen, D. J. (1990). The personal and academic self-con¬ 

cept inventory: Factor structure and gender differences in high school 

and college samples. Educational and Psychological Measurement, 50, 

951-961. [Applied confirmatory factor analysis to several competing 

structural models of the Personal and Academic Self-Concept Inventory, 

an expansion of the Self-Rating Scales.] 

Isaacson, R. F., McKeachie, W. J., Milholland, J. E., & Fin, Y. G. (1964). 

Dimensions of student evaluations of teaching. Journal of Educational Psy¬ 

chology, 55, 344-351. [A competent study of the factors behind student 

evaluations of instructors. The first factor is important.] 

Mitrushina, M., & Satz, P. (1991). Changes in cognitive functioning associ¬ 

ated with normal aging. Archives of Clinical Neuropsychology, 6, 49-60. 

[Used factor analysis on memory and psychomotor tests to find cognitive 

functioning factors in elderly participants. Factor scores were computed 

and used in analysis of variance.] 

Thurstone, F. F. (1944). A factorial study of perception. Psychometric Monographs, 

no. 4. Chicago: University of Chicago Press. [Another Thurstone pio¬ 

neering and classic study.] 

3. Here is a small fictitious correlation matrix, with the tests labeled. 

1 2 3 4 5 6 

1. Vocabulary .70 .22 .20 .15 .25 

2. Analogies .70 .15 .26 .12 .30 

3. Addition .22 .15 .81 .21 .10 

4. Multiplication .20 .26 .81 .31 .29 

5. Recall First Names .15 .12 .21 .31 .72 

6. Recognize Figures .25 .30 .10 .29 .72 

a. Do an “armchair” factor analysis. That is, by inspection of the matrix 

determine how many factors there probably are and which tests are on 

which factors. 

b. Name the factors. How sure are you of your names? What can you do to 

be more sure of your conclusions? 
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4. Some excellent books on factor analysis that one may want to read for more 

information: 

Cattell, R. B. (1978). The scientific use of factor analysis in the behavioral and life 

sciences. New York: Plenum. [This is an outstanding book covering all that 

had happened in factor analysis since Cattell’s publication of his 1952 

book. It is composed of two parts and introduces mathematical concepts 

gradually.] 

Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd ed.). 

Hillsdale, NJ: Lawrence Erlbaum. [Instead of introducing the student to 

matrix mathematics within a chapter, this book gradually introduces 

matrices and their use in factor analysis. The topics within this book sup¬ 

plement the coverage given in other factor analysis books. Chapter 11 is 

especially valuable because it shows the reader how the Comrey Personal¬ 

ity Scales were developed using factor analysis. This book presents valu¬ 

able methods not normally found in other textbooks.] 

Cureton, E. E., & D’Agostino, R. B. (1983). Factor analysis: An applied 

approach. Hillsdale, NJ: Lawrence Erlbaum. [A book that present models 

and theories of exploratory factor analysis without the use of advanced 

mathematics such as calculus. It contains a good chapter on matrix 

algebra and gives good coverage on using principle-axis methods for 

common factor analysis. Also provides some comparisons between 

different methods of factor extraction and rotation.] 

Gorsuch, R. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence 

Erlbaum. [This book is scholarly, authoritative, informative. One of its 

great virtues is that it thoroughly explores the most difficult and 

troublesome problems of factor analysis. Gorsuch not only explains the 

technical ideas but also cites theoretical contributions and empirical 

investigations of the problems. Highly recommended as a reference work 

for behavioral researchers.] 

Mulaik, S. A. (1972). The foundations of factor analysis. New York: McGraw- 

Hill. [A mathematically sophisticated treatment of factor analysis. 

Definitely not for those without extensive mathematical training such as 

multivariable calculus. This book is now out of print but may be available 

though Books-on-Demand.] 

Rummel, R. J. (1970). Applied factor analysis. Evanston, IL: Northwestern Uni¬ 

versity Press. [A comprehensive book on exploratory factor analysis with 

a political science emphasis. It requires some knowledge of mathematics. 

Contains some good chapters on matrix algebra and its use in explaining 

factor analysis. A good explanation is provided for the various factor 

models. However, it does not discuss extensively the issues involved in us¬ 

ing and interpreting factor analytic solutions.] 

Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of 

Chicago Press. [This is a classic work by the creator of modern factor 

analysis. Although this book is over 50 years old, the material covered is 

still relevant.] 
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Chapter 35 

Analysis of Covariance 
Structures 

■ Covariance Structures, Latent Variables, and Testing Theory 

■ Testing Alternative Factor Hypotheses: Duality versus Bipolarity of 
Social Attitudes 

■ Latent Variable Influences: The Full EQS System 

m Setting Up the EQS Structure 

■ Research Studies 

» Conclusions—and Reservations 

In this long and involved dissertation on the foundations of behavioral research, we 

have often talked of the importance of theory and the testing of theory. We have 

from time to time stressed the purpose of scientific research as formulating explana¬ 

tions of natural phenomena and submitting implications of the explanations to 

empirical test. In this chapter, we study and try to understand a highly developed and 

sophisticated conceptual and analytic system to model and test scientific behavioral 

theories: analysis of covariance structures. Analysis of covariance structure also has 

another name; it is sometimes called structural equation modeling (SEM). In order to 

understand this methodology, we focus largely on some powerful mathematical- 

statistical systems and computer programs. There are at least three well-known ones 

that exist at this time. In the mid-1970s, LISREL (Linear Structural Relations) was 

conceived and developed by Joreskog and his colleagues (Joreskog & Sorbom, 1993) 

to set up and analyze covariance structures. The early versions of this computer 

program required setup statements that were difficult. However, later generations 

became much easier. Until recently it was a part of the statistical package called SPSS 

863 
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and is still the method of choice for some modelers. In the late 1970s and early 

1980s, the computer program called EQS by Bender (1986) was developed. 

Researchers interested in covariance structure analysis found Bender’s program 

much easier to use. The program statements and the modeling symbols were easier 

to understand than those in LISREL. However, LISREL has improved its user inter¬ 

face tremendously with the release of LISREL version 8. Although somewhat dated 

now, Brown (1986) compared LISREL and EQS in terms of parameter estimation 

for confirmatory factor analysis. We will use EQS because many have found it easier 

to understand. It uses standard labeling whereas LISREL modeling uses a lot of 

Greek letters. However, once a researcher is familiar with covariance structure or 

structural equation modeling, the differences are less important. 

Researchers now have a third computer program and system to contend with. 

It is called Analysis of Moment Structures (AMOS) published by SmallWaters 

Corporation (Arbuckle, 1995). They have a demo version of their program on their 

Internet Website. The most current version allows the user to specify, view, and 

modify the structural model graphically, using drawing tools. Each of these programs 

and approaches has consistently made it easier for researchers to capitalize on using 

structural equation modeling or analysis of covariance structure. 

Unfortunately, even with improved computing programs and numerous books 

and manuals on the subject (see Schumacker & Lomax, 1996), analysis of covariance 

structures or structural equation modeling is still not easy to learn for those without 

a mathematics background. The difficulty, it must be confessed, is to explain the 

system in language comprehensible to nonmathematical readers and, at the same 

time, to stay within the purposes and confines of this book. So the discussion is 

limited to presenting and explaining the bare mathematical skeleton of the system 

and how and why it is used. Fortunately, our subject is closely related to the 

discussions of multiple regression analysis and factor analysis of chapters 32, 33, 

and 34. 

Covariance Structures, Latent Variables, 

and Testing Theory 

Analysis of covariance structures can be viewed as a combination of factor analysis 

and multiple regression analysis. In fact, Lee and Jennrich (1984) have shown how 

one can use nonlinear regression analysis to analyze covariance structure data. Its 

most important strength is that the effects of latent variables on each other and on 

observed variables can be assessed. A latent variable, recall, is a construct or hypothet¬ 

ical “entity”: intelligence, verbal ability, spatial ability, prejudice, anxiety, achieve¬ 

ment. Latent variables are, of course, unobserved variables whose “reality” we as¬ 

sume or infer from observed variables or indicators. Factors are latent variables, 

constructs we invent to help explain observed behavior. 

We introduced confirmatory factor analysis in Chapter 34, and this is one form 

of covariance structures. The reader may remember that a path diagram was most 

useful in conceptualizing what the model looked like. In the analysis of covariance 
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structures, we will use path models a lot. Once the path model is laid out correctly, 

EQS, LISREL or AMOS can be used. Throughout this chapter, path models will be 

used to describe the covariance structure model. 

There are 10 key points that a modeler must consider when writing a path 

diagram that will be analyzed using EQS. By following these points, the path analysis 

diagram will fit the program statements of EQS. We will list these points and then 

discuss each one. These 10 points are relevant for the simplest covariance structure 

to the most complex. 

1. There is a one-way arrow from each independent variable pointing toward 

the dependent variable. 

2. Every variable that has a one-way arrow pointing toward it generates one 

linear regression equation in the covariance or structural equation model. 

3. There is an asterisk (*) embedded in each arrow from the independent 

variables to the dependent variable. These tell us that there are free 

parameters to be estimated for these paths. 

4. The asterisk identifies a free parameter in the model. 

5. All covariances (correlation) between independent variables are also free 

parameters in the model. Free covariance parameters are indicated by two- 

way arrows with an asterisk in the middle. 

6. Variances of the measured independent variables are also free parameters. 

These variables are underlined in their boxes with an asterisk next to their 

symbol. 

7. All independent variables have variances as parameters in the model. 

8. Dependent variables do not have variances as parameters in the model. 

9. All latent (unmeasured) independent variables in the model must have their 

scale fixed in one of two ways: 

a. Set the regression coefficient to a fixed value. It is usually set to 1.0. 

b. Fix its variance at some known value, usually 1.0. 

10. In most cases, E values (measurement error) have their regression 

coefficients fixed at 1.0, and so no asterisk appears in the arrow pointing to 

the dependent variable. 

In EQS, modeling calls for independent and dependent variables. Either one or 

both can be measured or latent. Occasionally, latent variables are also called unmea¬ 

sured variables. For dependent variables that are measured, an “E” symbol is used to 

represent its measurement error. A “D” symbol is used to represent the measurement 

error for latent dependent variables. Depending on the numbering of the dependent 

variables, a number is attached to the “E” or “D.” 

The simplest covariance structure is regression analysis. If we let x1 be the 

dependent variable, and x2, x3, and x4 be the independent variables, we can write the 

model equation as: 

X\ — B2x2 + R3X3 + E4X4 + e (35.1) 

The scores in this equation are in deviation score form. This makes it unneces¬ 

sary to have the intercept term. The B values are the standardized regression 
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M Figure 35.1 

weights. The single equation regression model shown in Equation 37.1 can be repre¬ 

sented by the path diagram in Figure 35.1. 

Measured data variables are represented in boxes or rectangles and contain 

within them identifying numbers, such as VI, V2, V3, V4, or more, as required. That 

is, squares or rectangles are used to enclose a variable that is observed and not latent. 

In the case of linear regression analysis, all of the variables are considered observed 

or measured. As we mentioned in the previous chapter in discussing confirmatory 

factor analysis, circles or ellipses are used to enclose variables that are latent or 

unmeasured. In our regression example there are four variables in the equation: xh 

x2, x3, x4. Hence, EQS requires that we call them VI, V2, V3, and V4. There is a 

one-way arrow from each of the independent variables V2, V3, and V4 pointing 

toward variable VI. From point two given above, every variable that has a one-way 

arrow pointing to it generates one linear regression equation in the model. There is 

only one such variable here, VI, and hence only one equation. 

There is an asterisk or star (*) embedded in each of the arrows from V2, V3, and 

V4 to VI indicating that there are free parameters to be estimated in connection 

with these paths, one for each star. There is also a one-way arrow pointing from El 

toward VI, indicating that the regression equation contains an error variable, El, 

which is also an independent variable in the model. The star (*) notifies the program 

that the preceding value is an estimate and not a fixed value. The star also identifies a 

free parameter in the model. Counting the number of stars enables the researcher to 

determine the total number of free parameters bding estimated for the model. El is 

presumed to be uncorrelated with V2, V3, and V4; hence, no two-way arrows appear 

between these variables in the path diagram. Also note that the coefficient for El has 
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been set to 1.0. We have put the 1.0 in to be consistent with key point #10. The 1.0 is 

usually implied (not written). 

Other free parameters in the model include all the covariances among the 

independent measured variables, V2, V3, and V4. Two-way arrows with a star in the 

middle indicate free covariance parameters. This adds three more free parameters. 

Additional free parameters include the variances of the independent measured 

variables: V2, V3, and V4. The fact that these variances are free parameters is 

indicated in the model by shading V2, V3, and V4 in their boxes and placing stars (*) 

next to their symbols. It is easy to lose sight of the fact that the variances of these 

independent variables are parameters in the model. The shading makes it easier to 

remember that the EQS program setup must contain either estimates or fixed values 

for these variance parameters. This adds three more free parameters (indicated by 

the *s). 

One more variance must be estimated in the model because the general rule is 

that all independent variables have variances as parameters in the model, which 

includes all the error variables as well as the independent measured variables. Depen¬ 

dent variables, however, do not have variances as parameters in the model. A star (*) 

is placed beside El in the path diagram in Figure 35.1 to show that its variance is a 

free parameter in the model. This now gives a total of 10 stars in the path diagram, 

indicating that there are 10 free parameters to be estimated. 

There is one additional parameter in the model that is fixed at 1.0 — the regres¬ 

sion coefficient for El. To be redundant with key point #9, all independent unmea¬ 

sured variables in the model must have their scale fixed in one of two ways: (a) set a 

regression coefficient at a fixed value, usually 1.0, which was done here for El; or 

(b) fix its variance at some known value, usually 1.0. In most cases, the E values have 

their regression coefficients fixed at 1.0 and consequently in the path diagram no star 

(*) appears within the arrow pointing to the dependent variable with which that error 

variable is associated. 

It is not possible to fix both the regression weight and the variance for an E 

variable because the product of these two numbers must be free to accommodate the 

amount of error in predicting the dependent variable correctly. Thus, one or the 

other is fixed, but not both. 

There are 10 free parameters to be estimated for the regression model in Figure 

37.1 from a total of 10 data points. The data points consist of the variances and 

covariances of the measured variables, VI, V2, V3, and V4, or (n{n 4- l))/2 where n is 

the number of variables. That is, there are six covariances and four variances. The 

number of degrees of freedom for estimating the model is given by the number of 

data points minus the number of free parameters in the system, which in this case is 

10 — 10 or zero. 

When there are no degrees of freedom, the model is said to be “saturated”; that 

is, values can be obtained for the free parameters that will reproduce the input data 

exactly. Thus, there is no question about the model fitting the data, and no chi- 

square test or other statistical test needed to see how good the fit is because the fit is 

perfect. For this reason, regression models are not considered to be of much interest 

in covariance structure analysis. In general, those who choose to use covariance 
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structure analysis wish to develop a model that has considerably more data points 

than free parameters to be estimated. In such cases, it is a challenge to find an 

unsaturated model and a set of parameters that will reproduce the data reasonably 

well, that is, give a good fit. Only this type of model (one with a number of degrees 

of freedom greater than zero), will be able to convey any scientific information of 

theoretical significance. 

If all of this is still too abstract, let’s examine an example from actual research. 

This research was conducted by Kerlinger (1972). It has the virtues of familiarity and 

relative simplicity. 

Testing Alternative Factor Hyp o theses : 

Duality Versus Bipolarity of Social Attitudes 

Recall that there are two general views of the social attitudes we generally associate 

with liberalism and conservatism. One view—the much more commonly held one 

among both scientists and laypeople—is that liberal and conservative issues and 

people are opposed to each other: What the liberal is for, the conservative is against, 

and vice versa. This was earlier expressed as a bipolar theory. It implies one dimension 

of attitudes, with liberal issues and people at one end and conservative issues and 

people at the other end: 

Liberalism Conservatism 

The contrasting theory, hypothesis, or conception, of social attitudes says, in ef¬ 

fect, that liberal issues and ideas are in general different and virtually independent of 

conservative issues and ideas. Liberalism and Conservatism, to use the abstract 

names of the latent variables, are not necessarily opposed to each other: They are 

two separate and independent ideologies or sets of related beliefs that can be 

expressed as orthogonal dimensions: 

Conservatism 

Liberalism 

This conception of the structure of social attitudes is a dualistic one. 
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The two contrasting “theories” of the structure of social attitudes can be 

expressed by the two factor matrices, A and B, given in Table 35.1. These can be 

called “target” matrices because they are set up to express contrasting analyses. 

Suppose we have administered six social attitude scales to a large heterogeneous 

sample of individuals. Scales 1,2, and 3 are Conservative scales; and scales 4, 5, and 6 

are Liberal scales. The responses of the sample to the six scales were correlated and 

factor analyzed, say. The results of the factor analysis that the duality and bipolarity 

theories imply are given in the table. The +s indicate substantial and positive load¬ 

ings, the — s indicate substantial and negative loadings, and the Os indicate near-zero 

loadings. The dualistic theory (A) implies, of course, two orthogonal factors, and the 

bipolarity theory (B) implies one factor with substantial positive and negative 

loadings. A and B of the table succinctly express the two models implied by the two 

theories. If we plotted the “loadings” of the duality theory, they would look like those 

of Figure 34.7 in Chapter 34. The plot of the bipolarity theory loadings can be 

plotted on a single axis, with the positive loadings at one end of the axis and the 

negative loadings at the other end. 

As we mentioned before and reiterate here, researchers who use analysis of 

covariance structures like to develop models in path diagrams. The path diagrams for 

the two factor models are given in Figure 35.2. (See Chapter 33 for a discussion of 

path diagrams.) At this time only we will write the path model in terms of EQS nota¬ 

tion. The beginner will find EQS notation much easier to understand than LIS- 

REL’s. EQS modeling uses only four symbols: V for measured variables, F for latent 

variables, E for errors, and D for disturbances. E is used to represent measurement 

error for the V variables and D is used to represent measurement error for the latent 

variables. LISREL is more complicated. 

In light of the nature of this book, it makes better sense for the uninitiated to use 

the modeling notation given by EQS. LISREL modeling uses a lot of Greek letters 

[Ml Table 35.1 Factor Analytic Structures Implied by the Dualistic Hypothesis (A) 

and the Bipolar Hypothesis (B)3 

(A) Dualistic 
Scales I II Type 

(B) 
Scales 

Bipolar 
I Type 

1 + 0 C 1 + C 

2 + 0 c 2 + C 

3 + 0 c 3 + c 

4 0 + L 4 - L 

5 0 + L 5 - L 

6 0 1 L 6 2 L 

a+ = indicates positive factor loadings; - = indicates negative factor loadings; 0 = zero loadings. L = Liberal scales; 

C — Conservative scales. 
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HD Figure 35.2 xh x2, , x6, observed measures (scales); f, f: XV 1: 
Conservatism, (C); Xsi 2: Liberalism (L); Xlb A?/, X3h 
lambda's, factor loadings; 82, . . -.delta 1, delta 2, . . : error 
terms 

for certain component or parameter designation. This can terrify some students 
and prevent them from learning about an outstanding research methodology and 
analysis. 

For our example, xu x2, . . . , x6 are the observed variables; xu x2, and x3 measures 
of Conservatism; and x4, x5, and x6 measures of Liberalism. These would be written 
as VI, V2, V3, V4, V5, V6 in EQS, where VI, V2, and V3 measure Conservatism 
and V4, V5, and V6 measure Liberalism. In both notations, observed variables are 
indicated by boxes (i.e., squares or rectangles); unobserved, latent variables, or factors 
by circles or ellipses. In the duality model F3 and F2 are used to represent conser¬ 
vatism and liberalism. The error terms in EQS are written El, E2, E3, E4, E5, and 
E6. In the path model given in Figure 35.3, an asterisk is placed next to each E value. 
This says that the errors or unique values will be estimated by the data. The correla¬ 
tion between the latent variables is to be estimated, so it is also specified with an as¬ 
terisk. Since the theory says that conservatism and liberalism are separate and distinct 
factors, we predict ru = 0. 

The bipolarity theory diagram is easier to explain. We have, of course, the same 
six vs, or observed variables and the same six efiror terms. We also have six factor 
loadings. There is only one factor, or Fb In the duality model, there are twelve fac¬ 
tor loadings, but six of them are predicted to be positive and substantial and the rest 
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are constrained to be zero. “Constrained,” or “fixed” values are maintained during 

the computations. In the bipolarity model, there are six factor loadings: three posi¬ 

tive (the path arrows are marked +) and three negative (marked —). In other words, 

we predict the two factor matrices of Table 35.1, except that in the table we only use 

+s and — s rather than factor loadings. 

To determine which of the two models is closer to empirical “reality,” we 

must test each separately and then test one against the other. This is done using the 

information or the data we have: the correlations among the observed variables xu x2, 

. . . , x6. This matrix of correlations, R, is a covariance matrix. Variables (or attitude 

scales) 1,2, and 3 are measures of Conservatism; variables 4, 5, and 6 are measures of 

Liberalism. The duality hypothesis predicts substantial and positive correlations 

among 1,2, and 3; and substantial and positive correlations among 4, 5, and 6. The 

duality hypothesis also predicts zero or near-zero rs between the C variables (1, 2, 

and 3) and the L variables (4, 5, and 6). We call these cross-correlations. 

The method actually used in analysis of covariance structures is as follows. The 

data are analyzed according to the model setup, in this case the duality model: two 

orthogonal factors (see Figure 35.2a). From the parameters estimated by the data 

analysis, factor analysis in this case, an R matrix is calculated by using the estimated 

parameters of the theoretical model. This is done by writing equations for each of 

the Vs. 
To help us clearly understand what is done and why, we first set up the two 

theories in path diagrams. The reader may find the following explanation to be 

redundant, but we have found this to be helpful in learning and understanding this 

method. Behavioral researchers who use “modeling” or “causal modeling,” as it 

is called, use path diagrams to help conceptualize the research problems they are 

studying and, almost more important, to learn the empirical implications of theories 

under test. We strongly recommend that students try to set up any research problem 

under study in a path diagram. It forces one to conceptualize and bring out the basic 

structures of problems. In any case, the duality and bipolarity “theories” of social 

attitudes have been set up in the two path diagrams, A and B, of Figure 35.3. It is 

customary in such path diagrams to use squares for observed variables and circles for 

unobserved or latent variables. Single-headed arrows are used to indicate influences, 

double-headed arrows to indicate correlations. If we do a principal factor factor 

analysis of the present problem, for instance, 12 factor loadings would be estimated: 

an, a 12, a2h a22, • • • , a6U a62. The problem in the EQS or covariance structure frame¬ 
work, however, is different because we have specified that six factor loadings, or as, 

are to be estimated; the remaining loadings are constrained to be Os under the duality 

hypothesis. To be sure we see and understand the difference, we set out the two fac¬ 

tor matrices in Table 35.2. Note that there are 12 factor loadings to be calculated in 

A, ordinary factor analysis, and only six loadings to be calculated in B, the covariance 

structure solution constrained by the Os because of the duality hypothesis. 

The difference between the two approaches is striking—and very important. 

In ordinary factor analysis all the factor loadings are estimated, but in analysis of 

covariance structures only those factor loadings germane to the hypothesis are 

estimated. All the rest are constrained to be zero —a perfect simple structure. To 
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HO Table 35.2 Factor Matrices of (a) Ordinary Factor Analysis and 

(b) EQS Constrained Factor Analysis* 

Variables 

a. Ordinary Factor 
Analysis 

I II Variables 

b. EQS Constrained 
Factor Analysis 

I II Type3 

1 au a\2 1 an 0 C 

2 a2\ a22 2 a2l 0 c 
3 an a32 3 an 0 c 
4 a41 a\2 4 0 #42 L 

5 asi a52 5 0 #52 L 

6 a6l a62 6 0 a62 L 

aC = Conservative; L = Liberal. 

emphasize the points being made, the actual estimated parameters are given in Table 

35-4. The final rotated factors of an ordinary factor analysis are given in a, and the 

covariance structure constrained solution is given in b. You may well ask: What 

happens to the factor loadings where the Os are in b? The point is that b expresses the 

pure form of the duality hypothesis. As said earlier, the computer is instructed to 

do the calculations keeping the Os of Table 35.2 and Table 35.3 intact. But how about 

the fairly large negative loadings, —.44 and —.36 in a, the conventional factor 

U Table 35.3 Obtained Factor Matrices (a) Conventional (Rotated) and 
(b) EQS Constrained Factors* 

Variables 
a. Conventional Factor b. EQS Constrained Factors 
I II Variables I II Type 

1 .69 .19 1 .65 0 C 
2 .70 .33 2 .87 0 C 
3 .68 .14 3 .63 0 c 
4 -.44 .51 4 0 .71 L 
5 -.05 .64 5 0 \ .54 L 
6 -.36 .55 6 0 .63 L 

was maxi- i-i 1-u j An , r , r —r- “1VU1UU vvlUi vdimidA iULiniuii; me jcaj;* metJ 

°f * SBriSt,Ca,ly S‘SnifiCaM' The ** -» was -15, no, 
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analysis? Both are substantial, negative, and statistically significant, contrary to the 

duality hypothesis. They are deviations from the duality model. The key question, 

then, is: Are the deviations large enough to invalidate the hypothesis, which specifies 

Os? We will return to this point shortly. 

The model of Figure 35.2 A requires calculation of the error terms, E. The six 

error terms were calculated, but we are not interested in the method of calculation. 

Much more interesting and relevant to the duality hypothesis is the estimation of 

variances and covariances, because it expresses the relations between the FI and F2 

factors. Remember that the duality hypothesis included the correlation between the 

two factors: it will be zero or close to zero. Look back at Figure 35.2 A, and note 

that, in accordance with the duality hypothesis r12 = 0. While r12 can be constrained 

to be zero, we chose, instead, to let EQS estimate the correlation between factors 

for reasons to be given later. To reflect this in Figure 35.2 A, we would change the r12 

to an asterisk. The variances of FI and F2 are set equal to 1.00, the variances of 

El, E2, . . . , E6 are to be estimated and ru is specified as “free.” (Remember, when a 

parameter is “free,” the program estimates its value.) 
In the analysis, r12 = —.157 is not statistically significant. So, in effect, the two 

factors are orthogonal, which is consistent with the duality hypothesis. Recall that 

the theory says that Conservatism and Liberalism are separate and independent 

dimensions of social attitudes. This means, of course, that the correlation between 

them is zero (or close to zero). 
The crucial question, however, is: Is the whole model congruent with the data? 

The whole model of the duality hypothesis is expressed by Figure 35.2 A. Following 

the rules of EQS, we instruct the computer to estimate the six factor loadings, an, a2l, 

an, a^2, a52, «62 while maintaining the zero constraints in the matrix. We also specify 

that the error terms of the six equations be calculated. We must also specify what 

the relations between the two factors will be. We must therefore tell EQS what to 

do with the variances of the factors, FI and F2. We do this by instructing EQS to 

estimate r12, the correlation between FI and F2. In traditional factor analysis this 

would involve estimating the values in the cfi matrix (see Chapter 34). Following an 

iterative procedure, the computer program estimates the 13 values we have specified 

to be estimated, using the correlations among the six variables (Table 35.2) as input 

data. It also constrains the zeroes of Table 35.2 and sets the latent variables (or fac¬ 

tors) variances equal to 1.00. The factor loadings are given in Table 35.3 B, and ru 

= —.157. The six error terms are .76, .50, .78, .71, .84, and .77. Are these values 

congruent with the data, or alternatively, does the duality model “fit” the data? Be¬ 

fore we answer these questions we need to mention that there are a number of other 

important methodological points we are not discussing here, like the assumptions 

behind the analysis. One of the assumptions is that the distribution of the observed 

or measured variables is multivariate normal. Another assumption or requirement is 

identification: The covariance structure problem must be set up so that all estimated 

parameters can be identified. There are research problems where these assumptions 

may not be true. The core idea behind the assessment of the “goodness of fit” of a 

theoretical model is simple and powerful. Use the estimated parameter values and 

the constrained values to calculate a predicted or reproduced or fitted correlation 
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matrix, R*. The matrix R* can in this case be generated by multiplying the rows of 

Table 37.4: r12* = (.65)(.87) + (0)(0) = .57; r13 = (.65)(.63) + (0)(0) = .41; r23 = 

(.57)(.41) + (0)(0) = .55; and so on. This R* is then compared to the obtained or ob¬ 

served correlation matrix, R, which can be done by subtracting R* from R, or R - 

R*. This matrix of differences is called a residual matrix. In covariance structure 

analysis the residuals are usually analyzed with one of three models or fitting func¬ 

tions: 

1. Unweighted least-squares 

2. Generalized or weighted least-squares 

3. Maximum likelihood 

As we saw in Chapter 34, there are a number of different goodness-of-fit 

statistics. The oldest of these — chi-square — is sometimes reported but not used as 

the only statistic because its evaluation is based on sample size. As the sample size 

gets larger, small differences will become statistically significant, indicating a lack-of- 

fit. Bender (1980) gives an excellent review of goodness-of-fit statistics and suggests 

the use of statistics that do not depend on sample size. The program EQS, developed 

by Bender (1986), originally used such a fit statistic called the Bentler-Bonett 

normedft index or NFI. The NFI is now obsolete. The current fit index of choice is 

the Comparative Fit Index (CFI), and a value of 0.95 or higher is representative of a 

good fit between model and data. Values of CFI less than 0.95 tell the researcher that 

there is room for improvement in how the model is specified. It essentially says the 

model does not fit the data very well. If one gets values around 0.95 or higher, the fit 

of the data to the model is quite good and it is unlikely that any further respecifica¬ 

tion of the model will alter the index very much. LISREL, developed by Joreskog 

and Sorbom (1993) originally used a different goodness-of-fit statistic called the 

Root Mean Square Residual or RMR. However, all popular programs now have all of 

the common fit statistics such as the Goodness-of-Fit Index or GFI and the Adjusted 

Goodness-of-Fit Index (AGFI) (see Comrey & Lee, 1992; or Keith, 1999, for further 
explanations of these indices). 

From the EQS results, the chi-square statistic for duality model is 121.253 based 

on 8 degrees of freedom. The probability value for the chi-square statistic is less than 

0.001. This tells us that the data did not fit our model. The Bentler-Bonett Normed 

Fit Index was .840, telling us that improvements can be made for a better fit. 

We are after the ideas behind the method. The principle is: The smaller the 

residuals, the better the fit; the larger the residuals, the poorer the fit. If the hypothesis or 

model is valid empirically, the less the model-generated covariance (correlation) 

matrix, R* will differ from the observed correlation matrix R. Both situations are 

reflected in the matrix of residuals, R - R*, arnj in measures, like NFI that reflect 

the magnitudes of the residuals. Again, the larger the residuals, the poorer the fit. 

(AH three covariance structure computer programs obligingly print the residual 
matrix.) 

The empirical implications of the bipolarity hypothesis are depicted in Figure 

35.2 B. There is, of course, only one factor: FI. The conservatism measures VI, V2, 
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and V3 (or X\, x2, and x 3) are marked “ + and those for V4, V5, and V6 (or x4, x5, 

and x6 ) are marked “ —which is consistent with the bipolarity hypothesis. That is, 

we expect one bipolar factor with the Conservative measures having positive signs 

and the Liberal measures negative signs (or vice versa). The six EQS estimated factor 

loadings on one factor were .67, .83, .65, —.25, .12, and —.15. y2 = 313.143 based on 

9 degrees of freedom. The probability value for the chi-square statistic is less 

than 0.001. The Bentler-Bonett NFI = .586. These values indicate that the 

goodness-of-fit for the bipolar model was considerably worse than the one for the 

duality model. 

The factor loadings are interesting and informative. Those of the three Conserv¬ 

ative measures, VI, V2, and V3, are positive and substantial; those of the Liberal 

measures are all low. Evidently, the one-factor model is inadequate: the three liberal 

measures are “lost.” The y2 is also significant, indicating a lack of fit. Now look at 

the residuals in the top half of Table 35.5. Note carefully that the residuals for r45, 

r46, and r56 are substantial: .416, .393, and .389. The correlations among the liberal 

measures, V4, V5, and V6, were “missed” by the one-factor solution, the model for 

the bipolarity hypothesis. It appears that the bipolarity model has not succeeded very 

well. The duality model, on the other hand, performed better on all counts. 

We now make a final test: we directly compare the two models. This is done 

through the y2 tests. The y for the bipolarity model was 313.143, at 9 degrees of 

freedom, whereas the y2 for the duality model was 121.253, at 8 degrees of freedom. 

Recall that earlier we had the computer estimate r12, , even though, strictly speaking, 

we should have “fixed” it at zero, or r21 = 0. This is because the pure duality model 

predicts orthogonal factors. One of the main reasons for doing this was to “use up” 

one degree of freedom so that the y2s of the two models could be compared. The di¬ 

rect test is y2 + 2 hip - xdu- 121.253 = 191.89. The degrees of freedom are also sub¬ 

tracted: 9 - 8 = 1. Elad we not estimated r12, the degrees of freedom for both mod¬ 

els would have been the same, making a y2 comparison impossible, y2 = 191.89, at 

df= 1, is evaluated. It is highly significant. This indicates the superiority of the dual¬ 

ity hypothesis (since the bipolarity model y2 is significantly larger than the duality 

model y2). If there is no significant difference between the y2s of the two models, 

then the bipolarity hypothesis is as “good” (or as “poor”) as the duality hypothesis. 

One cannot then infer that one hypothesis is more satisfactory than another. Re¬ 

member, a model that is congruent with the data will have a y2 that is not statistically 

significant. If, however, the difference between the y2s is significant, one can then 

infer that the model with the larger y2 is less satisfactory than the model with the 

smaller y2. Another way of putting it is that the difference y2s, if significant, tests the 

importance of the parameters that differentiate the models. 

This is difficult to show and explain the way the problem has been done. A more 

elegant approach is as follows. Set up the duality model as has been done above. 

Then set up the bipolarity model exactly the same except for the r12 term. For the 

duality model, estimate r12, as above. This will yield a y2 with df = 8. Now set up the 

bipolarity model fixing rn = 1.00, with df = 9. This will yield exactly the 

same parameter estimates as if the program had been told that there was only one 

factor, except that the one-factor loadings will appear on two factors. Since the 
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correlation between the two factors is 1.00, the net effect is the same as with one 

factor. The test of the alternative hypotheses, Xbip ~ Xdual will be the same as 

that given above. However, it is now clear that the two models differ only in the 

one parameter: </>21. This is one of the reasons for estimating <j>2\, or r]2, in the 

duality model: For a test of alternative hypotheses, there must be a difference in 

degrees of freedom. Moreover, one model must be a subset of the other model. This 

means that both models estimate the same parameters except (in this case) for one 
parameter. 

Latent Variable Influences: The Full EQS System 

In the above attitude example only one part of the covariance structure or structural 

equations modeling system was used. If ordinary first-order factor analysis was the 

intended solution, then what was performed is all that was necessary. The most 

interesting problems, however, study the relations between independent variables 

and dependent variables. Before discussing the formal properties of the system, 

let’s examine a simple fictitious example. We lay out the path diagram of the example 

to have something concrete to refer to. It is given in Figure 35.3. The example 

is a small model of Ability and Achievement. We say, in effect: Verbal 

Ability and Numerical Ability influence Achievement positively. Although 

perhaps not very interesting, the example has the virtue of being obvious and easily 

understood. No attempt is made to test alternative hypotheses here even 

though there are a number of possibilities. We seek only to convey the essence of the 
system. 

ID Figure 35.3 Influence of Ability on Achievement: (fictitious example) 
....,.. 
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Look at this system and its function from a regression point of view. First, regard 

the left side of Figure 35.3. We have four tests: Verbal Test 1, Verbal Test 2, Numeri¬ 

cal Test 1, and Numerical Test 2, VI, V2, V3, and V4 using EQS notation. They are 

measured dependent variables. We calculate the 4X4 correlation matrix, factor 

analyze it, and obtain the two factors, FI and F2, as in Figure 35.3. The arrows with 

asterisks pointing toward the dependent variables from FI and F2, contains the 

factor loadings: #n, a2i, #32, and #42. The other loadings will be set at zero as we did 

earlier with the attitude duality hypothesis: 

Tests I II 

1 an 0 

2 a21 0 

3 0 #32 

4 0 #42 

We can perceive the as as regression coefficients. The regression equation for V1 is: 

VI = #„F1 + El 

We seek the regression of VI on FI, just as we sought the regression ofy on x, ory 

on xh x2, . . . We can think of the factor loadings, #, as serving the same function as 

the regression coefficients, b or /3, of Chapter 32. The same reasoning applies to the 

right side of Figure 35.4: we can write the regression of V5 on F3 as: 

V5 = #jF3 + E5 

There are in this covariance structure two separate factor analyses or regression 

systems: one is on the left side, and one on the right side. Either side can be used for 

confirmatory or hypothesis testing factor analysis, as when we tested the duality and 

bipolarity hypotheses. What is more interesting and innovative, however, is to ask 

and answer research questions about the regression of the latent variable on other 

latent variable(s). We ask, in effect, about the relations between and FI, F2, and F3, 

or the regression of F3 on FI and F2, considering FI and F2 as independent vari¬ 

ables and F3 as dependent variables. This is what the structural equation or analysis 

of covariance structure does. 

The research problem of Figure 35.3 can be expressed as the multivariate 

relation between the independent variables and the dependent variables. It might be 

approached, for instance, using canonical correlation, which would express the 

overall relation between the Vs on the left side (i.e., VI, V2, V3, and V4); and the Vs 

on the right side (V5, V6, and V7). But canonical correlation is not capable of 

refining the relations. It pursues the relation between two sets of variables using all of 

the variables. Ordinarily, it is not concerned, with the latent variables. The model 

and hypotheses implied by Figure 35.3 say, in effect, that the left side measured 
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dependent variables reflect two factors, Verbal Ability (VI = Verbal Test 1, and V2 = 

Verbal Test 2) and Numerical Ability (V3 = Numerical Test 1, and V4 = Numerical 

Test 2). The latent variables are Verbal Ability, FI, and Numerical Ability, F2. The 

three Achievement variables are Reading, V5; Mathematics, V6; and Social Studies, 

V7. They are presumed to measure one factor, Achievement—in other words, a one- 

factor hypothesis. Note carefully that hypotheses that are not satisfactory, in the 

sense that they are not congruent with the data, can be stated easily, invalidating the 

entire model. For example, the variables V5, V6, and V7, which we said measured re¬ 

flections of one factor or latent variable, might be incorrect. Perhaps two factors are 

necessary. That is, Figure 35.3 has one factor, F3, for Achievement. But there may 

really be two factors, F3 and F4. After all, V5 is a reading test and V6 is a mathemat¬ 

ics test, and we know that these are usually two different factors. If so, then the 

model of Figure 35.3 is deficient in this regard. 

Setting Up the EQS Structure 

We finally arrive at the crucial relation: that between and FI and F2, the latent inde¬ 

pendent variables; and F3, the latent dependent variable. Our substantive hypothesis 

may state that Verbal Ability FI, and Numerical Ability F2, both influence 
Achievement F3. 

This hypothesis is not too fascinating but one amenable to example and explana¬ 

tion. In order to test it, we must set up the problem and model of Figure 35.3 in 

EQS structure and statements. This is a crucial and difficult step in EQS. At the risk 

of provoking boredom, let us pursue the ideas and set them up in equations and ma¬ 

trix equations, after spelling out the individual variable equations. First, the equa¬ 

tions for the left side of Figure 35.3: 

VI = ,3*F1 + El 

V2 = -3*F1 + E2 (35.2) 

V3 = + .3*F2 + E3 

V4 = + ,3*F2 + E4 

The “.3*” says that there are coefficients that will be estimated from the data. These 

will be the factor loadings. The value “.3” is an arbitrary “best guess” starting value 
for estimating. 

For EQS specification, we write the same equations in matrix form: 

Vy 

V;i 

Vi 

V.4. 

1 

o
 

_
1

 

'Ey' 
#21 0 >r e2 

0 «32 f2_ Ey 

0 #42 E<_ 

(35.3) 

Where the as are estimated from the data. (Students should pause here, study Figure 

35.4 and Equations 35.2 and 35.3, and try to understand their meaning.) 
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The right side is a bit easier: 

V5 = 3*F3 + E5 

V6 = 3*F3 + E6 (35.4) 

V7 = 3*F3 + E7 

In matrix form: 
- - 

Vs Cl •[ Es 
v6 = #2 Fs + e6 

Vi Cl 3 

-
1

 

K
l 

_
i

 

A fictitious correlation matrix was synthesized so that the EQS solution would 

support the model of the path diagram of Figure 35.3 and the equations written on 

the basis of the diagram. The results were satisfactory. The chi-square statistic was 

statistically significant. This indicates a possible lack-of-fit. However, as we 

mentioned earlier in this chapter, there are other indices that may be better indica¬ 

tors of fit. The Bender-Bonett Normed Fit Index (NFI) was .94. This is a very good 

value. It is generally considered that any value 0.9 or above indicates a good-fitting 

model. Other indices calculated by EQS such as the comparative fit index (CFI = 

.95) supports the conclusion that the model was satisfactory. 

Although the parameters of the factor analyses (or regression analyses) for the 

left side and right side of Figure 35.3 are also satisfactory, they are not reported. This 

is because our interest is in testing the model for congruence with the data, in this 

case a correlation matrix. Plus we are also interested in assessing the relations be¬ 

tween the latent variables Verbal Ability and Numerical Ability, on the one hand, and 

Achievement, on the other hand. The values expressing these influences are pre¬ 

sented in Figure 35.4. This is the same as Figure 35.3 except the estimated parame¬ 

ters are shown. 
It was said earlier that analysis of covariance structures and the computer pro¬ 

gram used to do the necessary complex computations, are not easy to learn. Even us¬ 

ing the simpler approach of EQS, it can be difficult for the inexperienced. The 10 

points mentioned earlier are important for those who want to use this extremely 

powerful method. However, even they are not easy to understand. So then why 

bother with it? Can’t the factor analyses and the regression analyses be done sepa¬ 

rately with far less wear and tear on the behavioral scientist? Yes and no. The sepa¬ 

rate factor analyses of the left side and right side variables of Figure 35.3 can indeed 

be done separately. In fact, psychometric and factor analytic studies should be done 

before EQS or structural equation modeling is used. But the general regression 

analysis just described obviously cannot be done for research problems that are com¬ 

plex, involving latent variables, indirect and direct measures. One may, of course, try 

various approaches to the analysis of the data. But there appears to be no simple way 

to study sets of complex relations and to test the congruence of theoretical models 

with observed data. The ideas of analysis of covariance structures are mathematically 
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H Figure 35.4 Same Path Diagram as Figure 35.3 with Parameter Estimates 

and statistically powerful, conceptually penetrating, and aesthetically satisfying The 

conception of EQS, LISREL, AMOS and other similar computer programs are 

highly ingenious, productive, and creative achievements. They are, at the present 

writing, the highest development of behavioral scientific and analytic thinking, a 

development that brings psychological and sociological theory and multivariate 

mathematical and statistical analysis together into a unique and powerful synthesis 

that will probably revolutionize behavioral research. It is in this sense that analysis of 

covariance structures is said to be the culmination of contemporary methodology. 

Research Studies 

In the relatively short time that analysis of covariance structures and computer 

programs for doing covariance structure analysis have been functional and 

available since the early and middle 1970s — the approach has been used in a 

number of fields fruitfully. Some of these studies are reanalyses of existing data; 

others are studies that were conceived with analysis of covariance structures in mind 

(see Study Suggestion 2). The first study of attitude structure discussed in this chap¬ 

ter was only one of 12 sets of attitude data that were reanalyzed using structural 

equation models or covariance structure analysis. Most of the evidence supported the 

duality hypothesis (see Kerlinger, 1980). Joreskog and his colleagues have reanalyzed 

t e ata of a number of psychological and sociological studies (see Magidson, 1979). 

e rst study described in detail below is a covariance structure reanalysis of the 
data of a large study of political participation in America. 
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Bender and Woodward (1978) used covariance structure analysis to reanalyze 

Head Start data—with depressing results. They found that the Head Start program 

had no significant effects on the Head Start children’s cognitive abilities. Judd and 

Millburn (1980) studied the attitude structure of the general public of the United 

States. Using panel data from surveys done in 1972, 1974, and 1976, they investi¬ 

gated the Campbell, Converse, Miller, and Stokes (1960) contention that the general 

public does not have meaningful and stable social attitudes. They found that the 

noneducated public does have consistent ideological predispositions. 

Verba and Nie: Political Participation in America 
In a study of political participation, Verba and Nie (1972) reasoned from political 

theory that there should be four factors behind 13 variables of political participation. 

These factors and variables are given in Figure 35.5. This study was conformatory 

factor analysis. It seemed that they were correct in their structural hypothesis, and we 

applauded their careful and competent work. But factor analysis has been criticized 

for, among other things, its lack of rigor. Can we put Verba and Nie’s structural hy¬ 

pothesis to a more rigorous test? Let’s use EQS on the problem. Note, however, that 

Verba and Nie did not use structural equations. Hence, the results we present here 

are from our reanalysis of their data. 

The path analytic diagram model that follows from the theoretical discussion of 

Verba and Nie is given in Figure 35.5. VI, V2, V3, . . . , VI3 are the measured de¬ 

pendent variables. The error component, associated with each dependent variable 

are El, E2, E3, . . . , E13. There are four hypothesized factors. FI, F2, F3, and F4. 

These are the latent independent variables. All four factors are hypothesized to be 

correlated with one another. Remember that when the factors are correlated, the so¬ 

lution is oblique. Verba and Nie found the following factors: A Campaign Activity 

(variables 1 — 5); B—Voting (variables 6, 7, and 8); C —Cooperative Activity (vari¬ 

ables 9-11); D — Contacting (variables 12 and 13). 

EQS was instructed to calculate the estimates of the parameters of Figure 35.5 

and then to use the parameters to calculate a predicted correlation matrix R*. Finally, 

to assess the adequacy of the fit of the model of the four oblique factors of Figure 

35.5, R - R*, the differences or residuals, and various “fit” statistics were calculated. 

The overall results support Verba and Nie’s model of four oblique factors, even 

though the y2 = 406.648, at df = 59, is highly significant. The large y2 is clearly due 

to the very large N of 3,000, and is thus not a good measure of fit. (An identical solu¬ 

tion with a reduced N of 300 produced a y2 = 40.54, which is not significant.) The 

root mean square residual (RMS) was 0.03. This small index merely reflected the 

generally small residuals. A Ben tier—Bonnet Normed Fit Index (NFI) calculated by 

EQS was .961, which is very high. The Comparative Fit Index (CFI) was a very 

high .966. These indices point to a very good fit. In short, the fit of the model of Fig¬ 

ure 35.5 is good. Verba and Nie’s theoretical reasoning and measurement procedure 

appears to have been sound. They have contributed to understanding of the political 

process and to the nature and meaning of participation in the political process signif¬ 

icantly. 
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HD Figure 35.5 Path Diagram (Verba & Nie Study). 

• 1. Persuade others how to vote; 2. Actively work for party or candidate; 3. Attend political meeting 

or rally; 4. Contribute money to party or candidate; 5. Membership in political clubs; 6. Voted in 

1964 presidential election; 7. Voted in 1960 presidential election; 8. Frequency of voting in local 

elections; 9. Work with others on local problems; 10. Form a group to work on local problems; 

11. Active membership in community problem-solving organizations; 12. Contact local officials- 
13. Contact state and national officials. 

bFactor I: Campaign Activity (Variables 1-5); Factor II; Voting (Variable 

tive Activity (Variables 9-11); Factor IV: Contracting (Variables 12-13). 
6-8); Factor III: Coopera- 

Brecht, Dracup, Moser, and Riecjel: Relationship of Marital Quality 
and Psychosocial Adjustment 

In ,a. paSt chaPter we discussed nonexperimental research, which includes those 
studies with no manipulation of the independent variables. Generally, the variation 

between existing variables is studied and in some cases a causal inference is implied 

weakly Such studies are prevalent in research done in applied settings. Researchers 

doing studies in applied settings do not usually have the luxury of random 

assignment or random selection. Keith (1999) states specifically that a large number 

of research studies done in school psychology are nonexperimental in nature. 

Another area where nonexperimental research is the dominant methodology is in the 

health sciences We refer particularly to nursing research. Nursing databases are 

hrge but complex and nonexperimental. However, key information can be obtained 
from such data and research. 
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One fruitful method of analyzing nursing’s nonexperimental data is covariance 

structure analysis or structural equation modeling (SEM). One such study that prop¬ 

erly and successfully used this method and as such demonstrated the value of such a 

method was by Brecht, Dracup, Moser, and Riegel (1994). 
Here the researchers studied the psychosocial adjustment of patients suffering 

from heart disease. Past research on this topic had been suggestive of relations 

between certain variables and psychosocial adjustment, but the precise nature of the 

relationship of variables and adjustment has not been defined. Brecht et al. attempted 

to define this by addressing the finding that some patients recover faster from cardiac 

surgery than others and experience less emotional distress. 
Brecht et al. hypothesized that the quality of the marital relationship, dysphoria 

(anxiety, depression and hostility), age, and time since surgery have possible indirect 

and direct effects on psychosocial adjustment. The sample consisted of 198 male car¬ 

diac patients. Measurements on the variables were taken at two different times. The 

first was at the beginning of the study (Time 1), and the second (Time 2) was done 

three months later. The primary dependent variable was Psychosocial Adjustment. It 

was measured using the Psychosocial Adjustment to Illness Scale (PAIS). High scores 

on this scale indicated poorer adjustment. The quality of marital relationship was 

measured using the Spanier Dyadic Adjustment Scale, and dysphoria was measured 

using the Multiple Affect Adjective Checklist (MAACL). 
The original complete Brecht, et al. model was not given in the article. This is 

common practice for published articles where the model is extensive and space 

is limited. What is generally reported is the final model. During the model test¬ 

ing process, statistically nonsignificant paths were eliminated using the Wald 

test, which is one of two popular tests for finding which parameters are not necessary 

in the model (for more details, see Bender, 1995; Ullman, 1996). The final Brecht, 

et al. model is given in Figure 35.6. It demonstrates some of the things that covari¬ 

ance structure analysis can do. For one, the structure of the model can be tested over 

time. In other words, it is capable of analyzing complex data collected longitudinally. 

The data or model at Time 1 can be considered a baseline measure of the relations. 

Also, these researchers allowed for the correlation between error measured across 

time. 
The final structural model was supported by the data. The goodness-of- 

fit statistic, x2 was 109.41, with 90 degrees of freedom. This chi-square value was 

not significant. Also the Bender—Bonnet NFI was 0.95. Both statistics point to a 

good fit of the empirical data to the hypothesized model. All of the coefficients 

shown in Figure 35.6 were estimated from the EQS program and were statistically 

significant. 
Brecht et al.’s findings imply that developing a better marital relationship would 

promote healthier psychosocial adjustment to illness, if we can accept the notion that 

we are dealing with “causal” modeling. With this information, cardiac nurses or 

counselors can focus on supporting a healthy marital relationship between male heart 

patients and their wives. They can teach the dyad strategies for achieving a positive 

marital relation. By doing so, it gives the patient the chance of significant improve¬ 

ment in emotional stress. 
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H Figure 35.6 Covariance Structural Model (Brecht et al. data) 

Conclusions — and Reservations 

It would be wrong to create an impression in the reader’s mind that all problems 

attacked with analysis of covariance structures or structural equation modeling work 

out as well as those described in this chapter, or that it should be used with all multi¬ 

variate research problems. Quite the contrary. The purpose of this final section of 

the chapter is to try to put the subject into reasonable perspective. 

Lets ask the most difficult question first: When should this procedure be used5 

As usual with such questions, it is hard to say clearly and unambiguously when it 

should be used. One fairly safe precept is that it should not be used routinely or for 

ordinary statistical analysis and calculations. For instance, it should not be used to 

actor analyze a set of data to “discover” the factors behind the variables of the set. It 

is simply not as well suited to exploratory factor analysis and may be an “overkill” in 

testing mean differences between groups or subgroups of data. If it is possible to use 

a simpler procedure-like multiple regression, logistic regression, multiway conti- 

gency tables, or analysis of variance —and obtain answers to research questions, then 

using structural equation modeling is pointless. That inappropriate use will be 

attempted is obvious. LISREL, EQS, and AMOS computer programs have been 

made easier and easier for researchers to use. Many state in their advertisement that 

no experience is necessary to do structural equation modeling.” What this means, 
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among other things, is that structural equation modeling will be used more often. 

Unlike many other procedures, using analysis of covariance structure requires rather 

difficult conceptualization, technical understanding of measurement theory, multiple 

regression, and factor analysis. The ready availability of “easy-to-use” computer 

programs could lead to the inappropriate use of analysis of covariance structure. The 

same was true, if to a lesser extent, of the use of factor analysis. Yet, factor analysis 

has been integrated “successfully” into the body of behavioral research methodology, 

but too often poorly used (see Comrey, 1978). The nature of computer packages 

almost makes this inevitable. One of their purposes is to make easy what is essentially 

not easy. So we will be seeing the publication of many studies that have used 

LISREL, EQS, AMOS and other similar programs inadequately. In short, these 

covariance structure programs should only be used at a relatively late stage of a 

research program when “crucial” tests of complex hypotheses are needed. 

Analysis of covariance structures are most suited to the study and analysis of 

complex structural theoretical models in which complex chains of reasoning are used 

to tie theory to empirical research. Under certain conditions and limitations, the 

system is a powerful means of testing alternative explanations of behavioral phenom¬ 

ena. To solve a covariance structures’ problem adequately usually requires a good 

deal of preliminary thought and analysis — away from the computer and its pro¬ 

grams. 
Another use to which covariance structure computer programs can be well put is 

checking on complex results from other analyses. In the past, for example, path 

analysis has been used to analyze the data of many research problems. While path 

analysis is a useful approach to research problems—it is particularly helpful in 

conceptualizing the problems—it cannot accomplish what computer programs like 

LISREL can. Maruyama and Miller (1979) made this point when they discussed why 

they used LISREL to reanalyze the desegregation data of Lewis and St. John (1974). 

Structural equation modeling programs like EQS and LISREL often have the capa¬ 

bility of neatly settling research hypotheses issues when other methods cannot. Yet it 

is not a generally applicable methodology. It is definitely not a panacea for badly 

designed studies. 
There are often technical difficulties in using these methods. We have already 

discussed large and significant ;Qs with large numbers of subjects, and have suggested 

remedies, especially study of residuals and the use of other goodness-of-fit indices, 

like the Bender NFI or the CFI, that do not depend on sample size. Another remedy 

is the testing of alternative hypotheses when the problem permits such testing. 

One of the most difficult problems is that of identification. A model being tested 

must be overidentified. This means that there must be more data points, usually vari¬ 

ances and covariances, than parameters estimated. If there are n measured dependent 

variables then there can be no more than t parameters estimated from the data, 

where t = n(n + l)/2. If n = 5, then t = 5(5 + l)/2 = 15, and no more than 15 para¬ 

meters can be estimated in a model. There are other conditions that can make a 

model not identifiable, but it is extremely difficult to specify them in advance. 

The most common technical difficulty is closely related to identification. For any 

one or combination of reasons, the computer program may not run and may 
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announce that “something” is wrong. But what? On the other hand, the computer 

run may be completed, but some of the parameters may not make sense. For exam¬ 

ple, negative variances may be reported. Why? Anyone who has used “canned” com¬ 

puter programs to any extent is familiar with the lugubrious messages the computer 

announces. When an expert is consulted, the answer is invariably: “There is some¬ 

thing wrong with the model.” Yes, of course! But what? And, naturally, theoretical 

models often do not fit: “There is something wrong with the model!” And, too, there 

is the frequent occurrence of the computer analysis that works beautifully, but the 

statistics indicate that the researcher’s model doesn’t fit. Is the theory wrong? If one 

is strongly committed to a theoretical position, it may be difficult to admit this. In 

any case, one has to check several possibilities. First, the model doesn’t fit because it 

was poorly or incorrectly conceptualized. Second, it doesn’t fit because the user of 

the computer programs made a mistake (or two, or three) in using the system. Third, 

the computer analysis won’t work because there are flaws in the data (strong multi- 

colhnearity in a correlation matrix, for example). And fourth, the model doesn’t fit 

because the theory from which it was derived is wrong or inapplicable. 

Inadequate measurement is a limitation of much behavioral research. The 

technical difficulty of measuring psychological and sociological variables is still not 

appreciated by researchers in psychology, sociology, and education. It is not easy to 

devise tests and scales to measure psychological and sociological constructs. It is also 

not easy to do the psychometric research necessary to establish the reliability and 

validity of the measures used. It is even more difficult, evidently, to admit that one’s 

measures are deficient. Refer back to Comrey’s research on personality in Chapter 

34. The development of the Comrey Personality Scale required 15 years of work. 

Too often in behavioral research, measures in common use are accepted and used 

without question. And rarely are assumptions about study variables questioned. If we 

are measuring, say, Authoritarianism, we assume that part of the latent variable 

Authoritarianism is Antiauthoritarianism (whatever that is). Early in this chapter and 

in Chapter 34 we studied research that sprang from questioning the commonly held 

assumption that Conservatism and Liberalism are logical and empirical opposites. 

Unfortunately, a number of studies have been done —and marred —by measurement 

of social attitudes based on this asumption (see Kerlinger, 1984). Similarly other 

studies have been marred, perhaps ruined, both by incorrect assumptions and 
inadequate measurement. 

An analytic methodology, no matter how well conceived and powerful, cannot 

make up for measures whose reliability and validity are unsatisfactory. Validity by 

assumption is a particularly severe threat to scientific conclusions, because measure¬ 

ment procedures are not questioned or tested: Their reliability and validity are 

assumed It is a poor factor analysis that emerges from factoring what is in effect 

sloppy choice or construction of tests and scales. Similarly, it is poor use of analysis 

of covariance structures when some or all of the measures used have little sound 

technical basis in psychometric theory and empirical research. The point' being 

made should be strongly emphasized: Elegant procedures applied to poor data, 

Sentific value>Ut ^ ^ l0glCal anal^sis’ cannot produce anything of 
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Another difficulty for users of analysis of covariance structure is that modern 

multivariate structural analysis is quite different from most earlier statistical analysis. 

The preoccupation of classical statistics was assessing whether observed mean 

differences (in an analysis of variance) or the joint and separate contributions of 

independent variables (in a multiple regression analysis) were statistically signifi¬ 

cant. With structural modeling, however, implications of a theory are built into 

a model that reflects the theory and its implications: latent variables are included, 

their relations and effects assessed, and the whole structure of relations subjected 

to simultaneous testing. The test or tests are based on the congruence of the 

hypothesized model with the obtained data. It is not surprising that researchers 

experience logical, technical, and theoretical failures. Indeed, it is surprising that 

models can be and are successfully tested, given the complexity and even delicacy of 

the undertaking. 

There seems to be no reasonable alternative, however. Science requires the 

formulation of theories and their empirical testing. Behavioral science and research 

deal with psychological and sociological explanations of complex human and social 

phenomena. They therefore require both complex theories in which sets of observed 

and latent variables are related to each other and complex methods of conceptualiz¬ 

ing and analyzing the data that are produced by controlled observation and measure¬ 

ment of the sets of variables. To date, multivariate analysis and analysis of covariance 

structures seem to be the most promising ways to accomplish the goals of behavioral 

science. That they will pose many difficult, even intractable, methodological 

problems is obvious. That they will yield both theoretical and practical advances and 

benefits has already been demonstrated in this chapter. 

Despite the difficulties and reservations mentioned above, there can be little 

doubt that analysis of covariance structures and the computer programs that 

implement it are outstanding, highly valuable, and useful contributions to scientific 

behavioral research. We conclude this chapter by saying that their use and influence 

will have strong and salutary effects on the development of psychological and socio¬ 

logical theory and its testing, and on the material advance of scientific behavioral re¬ 

search in general. 

Chapter Summary 

1. Analysis of covariance structure is also called structural equation modeling 

(SEM). At one time it was called causal modeling, but that term was later 

dropped since causality cannot be inferred from correlations. 

2. Modern covariance structure analysis was introduced by Bock and 

Bargmann and developed byjoreskog. 

3. Analysis of covariance structure is considered to be the highest form of 

analysis for social and behavioral science data. It is a complex combination of 

multiple regression and factor analysis. 
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4. Path diagrams are often used to develop pictorially the structural model to 

be tested. There are certain rules to follow when developing path diagrams 

in order to ease the translation into computer program analyses. 

5. There are essentially three different types of variables in covariance struc¬ 

ture analysis: 

• Independent variables (measured or latent) 

• Dependent variables (measured or latent) 

• Error measurements 

6. Latent variables are often called factors or unmeasured variables. 

7. The computer program used by the authors to perform analysis of covari¬ 

ance structure is Bender’s EQS. 

8. EQS is (in the opinion of the second author) an easier method for beginners 
to understand. 

9. LISREL byjoreskog is also used in many studies reported in journals. 

AMOS is another program which many claim is easy to use. 

10. Analysis of covariance structure computer programs are capable of doing 

confirmatory factor analysis. 

11. Identification is among the problems encountered in structural modeling co- 

variance structures. The model needs to be overidentified. 

12. There need to be more data points than parameters estimated, in order for 
the model to work properly. 

13. Analysis of covariance structure is best used in later stages of research where 

the researcher has gathered sufficient information on the relations between 
variables. 

14. The availability of computer programs, such as EQS, LISREL, and AMOS, 

and their growing ease in use, bring with them the possibility of bad re¬ 
search studies. 

15. Regardless of the statistical methodology employed by the researcher, valid¬ 

ity remains an important goal in research studies. 

Study Suggestions 

1. The subject of covariance structure analysis presupposes knowledge of matrix 

algebra, factor analysis, and multiple regression analysis. Almost all of 

Joreskogs papers are difficult to read. His earlier works are contained in the 

book by Magidson (1979). Here is a list of references that discuss analysis of 

covariance structure. Some are quite readable. 

Bentlep P. M. (1980). Causal modeling. Annual Review of Psychology, 31, 

419-456. [One of the early clearly written discussions on analysis of 

covariance structures. Bentler and others doing research in this area at 
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that time used the word causal. This was later criticized by Freedman 

(1987) (see Freedman citation below).] 

Cliff, N. (1987). Comments on Professor Freedman’s paper. Journal of 

Educational Statistics, 12, 158-160. [An update of his 1983 paper with 

some information provided by Freedman’s paper.] 

Freedman, D. A. (1987). As others see us. A case study of causal modeling 

methods. Journal of Educational Statistics, 12, 101-128. [This article 

pointed out that causal inferences cannot be made from the use of corre¬ 

lations. This led many to avoid using the word causal when dealing with 

covariance structure analysis. Freedman also states that there are a num¬ 

ber of assumptions that are difficult to check and may be false in specific 

applications.] 

Hayduk, L. A. (1987). Structural equation modeling with LISREL: Essentials 

and advances. Baltimore: Johns Hopkins University Press. [A well-written 

book with excellent explanations of the LISREL model for analyzing 

structural equations. It is, however, not for the beginner because it re¬ 

quires knowledge of matrix algebra.] 

Loehlin, J. C. (1998). Latent variable models: An introduction to factor, path, and 

structural analysis (3rd ed.). Mahwah, NJ: Lawrence Erlbaum. [Provides a 

good definition of path analysis and latent trait analysis. Points out the 

caution that a researcher should take in analysis of covariance structures. 

A heavy emphasis on path diagrams in discussing structural equations. 

Topics discussed can be applied to any of the many computer programs 

for covariance structure analysis.] 

Ullman, J. B. (1996). Structural equation modeling. In B. G. Tabachnick & L. 

S. Fidell, Eds., Using multivariate statistics (3rd ed.). New York: Harper & 

Row, pp. 709-811. [A popular book; Chapter 14 is well written covering 

the “nuts-and-bolts” of structural equation modeling. Provides a good 

comparison of the computer programs that perform covariance structure 

analysis. The material in this book with the exception of Chapter 14 was 

written entirely by Tabachnick and Fidell; Ullman is the only contribu¬ 

tor.] 

2. Six research studies that have profitably used analysis of covariance structures 

follow. 
Holahan, C. J., Moos, R. H., Holahan, C. K., & Brennen, P. L. (1995). Social 

support, coping, depressive symptoms in a late-middle-aged sample of pa¬ 

tients reporting cardiac illness. Health Psychology, 14, 152 — 163. [Using 

LISREL, developed a predictive model of depressive symptoms. The arti¬ 

cle contains the correlation matrix of nine observable variables. It is ideal 

for students who want to try out EQS, LISREL, or AMOS programs.] 

Keith, T. Z. (1999). Structural equation modeling in school psychology. In 

C. R. Reynolds & T. B. Gutkin, Eds. Handbook of school psychology (3rd. 

Ed.). New York: Willey, pp. 78-107. [An outstanding chapter written by 

one of the leading research methodologists in school psychology. Keith 
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provides an overview of how covariance structure analysis or structural 

equation modeling is used to handle complex non-experimental studies in 

school psychology. Easy to read. Highly recommended.] 

Musil, C. M., Jones, S. L., & Warner, C. D. (1998). Structural equation 

modeling and its relationship to multiple regression and factor analysis. 

Research in Nursing and Health, 21, 271-281. [Uses a conceptual and 

nontechnical approach to explain how structural equations can be used 

in nursing research. The authors show how the method was used to 

study the relationships among stresses, strains, and physical health in el¬ 
der adults.] 

Nyamathi, A., Stein, J. A., & Brecht, M.-L. (1995). Psychosocial predictors of 

AIDS risk behavior and drug use behavior in homeless and drug addicted 

women of color. Health Psychology, 14, 265-273. [Developed a structural 

model relating personal and social resources, coping styles, risk reduction 

and AIDS risk. These researchers obtained a set of factors (latent vari¬ 

ables) and then modeled the factors.] 

Wolfle, L., & Robertshaw, D. (1982). Effects of college attendance on locus of 

control .Journal of Personality and Social Psychology, 43, 802-810. [Interest¬ 

ing and well-done study of data from a national longitudinal study of the 
high school class of 1972.] 

Wyllie, A., Zhang, J. F., & Casswell, S. (1998). Positive responses to televised 

beer advertisements associated with drinking and problems reported by 

18- to 29-year-olds. Addiction, 93, 749-760. [Used structural equation 

modeling to study the relation between responses to alcohol advertise¬ 

ments and drinking behavior and alcohol-related problems. Researchers 

hypothesized that positive responses to televised beer advertisements at¬ 

tributed to the quantity of alcohol consumed on drinking occasions, 

which in turn contributed to the level of alcohol-related problems. The 

model was consistent with the hypothesis.] 

\ 
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Appendix A 

Guide for Writing 

Research Reports 

The principal means of scientific communication is the research paper. Over the 

years, the format of such reports has become standardized in a way to best meet the 

requirements of scientific communication. The conventions for writing a scientific 

report are concerned with the organization of the report and the style of presenta¬ 

tion. Report writing must be both brief and clear. Typographical errors, strikeovers, 

cross-outs, and badly written statements detract from the presentation of the report. 

When writing the report of an experiment, it is necessary that the experimenter 

include everything relevant to the problem under study. The theoretical basis of the 

study must be emphasized. The reader of the report must be able to understand how 

prediction follows from theory. The report must be clear in every detail concerning 

the manner in which the study was carried out. The report must show precisely how 

conditions were set up to permit manipulation or the study of the variables in the 

order demanded by the hypothesis. The report must be sufficiently detailed to 

permit the exact duplication of the study by another independent researcher. Finally, 

the report must state what results were obtained and what interpretation of these can 

be made within the context of the theory. An experimental report is a complete cycle 

beginning with theory and ending with theory. 

There are a number of popular styles for writing research reports. They are all 

similar as far as what the researcher should put into the paper. However, the details 

within the styles themselves differ. Among one of the more popular and easier 

styles is the one by the American Psychological Association. This style is often 

referred to as “APA Style.” Although it was originally developed for psychology 

journals published by the American Psychological Association, it has made its way 

into non-APA journals and also non-psychology journals. 

It is this style that we will present here since it is the most often used style of 

writing found in the social and behavioral sciences. Even many education journals 

have adopted this style. However, our descriptions are brief and one of the goals is to 

give the reader a general idea of how research papers are organized. This is no 

A3 



A4 Appendix ■ 

substitute for the actual Manual of the American Psychological Association (1994). 

From its origin as a brief size manual, the manual has grown considerably in size and 

detail. The most current edition published in 1994 consists of 368 pages. Obviously, 

a brief section in a textbook cannot possibly capture all of the details contained in the 

current full-sized manual. The brief presentation here will be enough to give the 

reader some information that will help that person when consulting the actual man¬ 

ual itself. Also, there are several publications geared toward helping the beginner 

learn and understand this style of presentation (see Gelfand & Walker, 1990; 

Hubbach, 1995; Parrott, 1994; Pyrczak & Bruce, 1992). The Hubbach (1996) book 

includes special sections on scientific papers, APA style and excellent examples.1 

The outline of the research paper for APA style is: 

1. Title Page 

2. Abstract 

3. Introduction 

4. Method 

a. Participants 

b. Apparatus/Materials 

c. Procedure 

5. Results 

6. Discussion 

7. References 

8. Tables 

9. Figures 

Title Page 

The title page is a separate page that contains the title of the study. It also contains 

the running head and the name of the author or authors with their institutional affili¬ 

ation. The running head is a one to two key word description of the study and 

appears on every page of the manuscript. If your manuscript is submitted for publica¬ 

tion, it serves as a useful identification tool for the editor. 

The purpose of a title is to provide a miniature description of your study. To 

convey the most information, titles typically include the independent and the depen¬ 

dent variables of the experiment. A simple model of a title is as follows- THE 

DEPENDENT VARIABLES AS A FUNCTION OF THE INDEPENDENT 

VARIABLES. To write a title for your experiment you could simply substitute the 

dependent variable(s) and independent variable(s\into the simple model. This might 

give you something like, Sexual Stimulation as a Function of Caffeine or Reduction 

The authors thank Roberta J. Landi for calling our attention to the Hubbach book. 
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of Anxiety by Use of Filmed Modeling. Titles such as “Psychology Experiment” or 
“Course Project” are NOT acceptable. The title should generally be 15 words or less. 

Abstract 

The purpose of an abstract is to provide a summary of the research paper. It must 
contain enough information to tell the reader the purpose and results of the research. 
It must contain the major points from each section of the paper: 

• a statement of the problem 
• a very brief description of the method 
• a definition of all abbreviations and acronyms 
• the most important results, and 
• the conclusions. 

The abstract is typed as a single paragraph with no paragraph indentation. Like the ti¬ 
tle page, the abstract appears on a page by itself. It should not exceed 15 single-spaced 
type-written lines or 200 words. It must not include any data or extensive inter¬ 
pretation. This section is labeled “Abstract” and the label is centered on the page. 

Introduction 

a. The introduction must begin with the background of the experiment or study. 
This is an account of the theory and previous research relevant to your study. 
The introduction tells the reader the importance of the study by giving a brief 
review of the literature of papers that are relevant to this research study. 
Using APA style, this is the only section of the paper that does not receive a 
label. In different words, no label such as “Introduction” is to appear in the 
paper written in APA style. One must be accurate in reporting of previous 
work that was relevant to the research study. All direct copying must be en¬ 
cased in quotation marks, and proper reference to the source must be made. 
Be sure the studies cited are relevant to the experiment. Referrals to articles 
done by other researchers in the introduction (or any section of the paper) are 
done by giving the last name of each author and the year of publication. The 
year of publication is encased in parentheses. The complete reference for any 
citation must be given in the Reference section that is at the end of the paper. 

Example 

Smith and Martin (1953) reported that the performance of their participants im¬ 
proved under these conditions, while a decrement in performance was observed 
by other investigators (Burns, 1950; Stevens & White, 1943). 
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Specific references to information in a book or journal article is indicated as follows: 

Thomas (1983, p. 304) reported that. . . . 

The results of an earlier study (Carter, 1942, pp. 279-285) led to . . . 

A researcher should never list a reference that has not been read personally. In 

reporting information obtained from a secondary source, cite the secondary source in 

the text and list it in the references. 

Example 

An experiment by Jones as reported by McGeoch (1952), found that. . . 

b. After the reader has been given the background for the study, the introduc¬ 

tion proceeds with the purpose or theoretical base for your experiment. The 

specific problem under study is stated along with a theoretical or literary 

statement of the hypothesis to be tested and general predictions and expecta¬ 
tions of the outcome of the research. 

Example 

Dysphoria may serve as a significant confounding variable. . . . Therefore, we 
conducted a study to examine the relationships among . . . 

c. The hypothesis must then be translated into operational terms. The re¬ 

searcher must specify what variables are to be manipulated (independent), if 

any and which are to be observed (dependent). The independent and depen¬ 

dent variables should be made clear without using a sentence that says: “The 

independent variable was_and the dependent variable was 

-. Rather, one might say something like: “In this experiment (study), 

the number of correct answers to test questions was investigated as a function 

of the rate of presentation of the questions,” or “We hypothesized that the in¬ 

direct effects of marital relationship on psychosocial adjustment are mediated 
through. . . .” 

d. Finally use the Introduction to define any terms that are used for the first 

time. If the researcher wants to refer to the Comrey Personality Scales as the 
CPS, a sentence such as: 

The Comrey Personality Scales (Comrey, 19?0), hereafter referred to as the 
CPS was used to . . . 

A word like learning is probably too general to use in exact technical writing. 

Say exactly which learning paradigm is meant. This would be the same for 
words like personality or anxiety. 
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There is a tendency to write too much detail in the Introduction. The details of the 

experiment or study are not to be presented in the introduction section of the paper. 

The details of the experiment or study are presented in the Method section. It is 

allowable to have an outline or the general methodology to be followed in the intro¬ 

duction, but no details given. The results of the study should not appear in the Intro¬ 

duction. There is a separate section for that. 

Method 

The Method section has three subheadings: Participants, Apparatus/Materials, and 

Procedure. Each are described separately below. The Method section as a whole, de¬ 

scribes the experimentation or the conduct of the study. It must be written in suffi¬ 

cient detail so that other investigators could take the description and repeat what has 

been done exactly. 

Participants 

The Participants section constitutes a description of the characteristics of the partici¬ 

pants used in the study or experiment. It tells who the participants were, how many 

there were, and any details that might be relevant. It also includes how the partici¬ 

pants were selected. Among the description of the participants, most studies describe 

the participants in terms of gender, age, education level, ethnicity, and any other such 

relevant descriptors. 

Example 

The participants (Ss) were 48 people chosen from a sample of those seated by 

the fountain in front of City Hall at 10 to 11 AM on a Monday in the month of 

July 1998. The 18 males and 30 females, ranging in age from 15 to 35, repre¬ 

sented every third person that stopped at the fountain for a period of at least 5 

minutes. Ten other people who were contacted refused to fill out the question¬ 

naire. 

When groups of participants are used, a description must be provided telling 

the reader how the participants were assigned to the various groups or treatment 

conditions. 

Apparatus and Materials (Instrumentation) 

All nontrivial materials and apparatus used in the experiment must be described in 

sufficient detail for someone to set up the identical situation. If the experiment 

required pencils, they need not be defined here unless they were unusual pencils 

that have a specific effect on the study. If you are using standardized materials or 
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apparatus, such as a personality test, they are not usually referenced here unless they 

had some special features that were most important in your experiment. Standard 

existing instruments such as the Comrey Personality Scales is referenced in the 

procedure section. If you construct or use new materials or apparatus, such as those 

of your own creation, you must describe them fully. Include information about 

materials used to time and/or record responses. If certain special equipment was used 

in the experiment such as “the Smith-Johnson Oscillator Coil Model 9” the reader 

should be informed as to where such a device can be obtained. 

Procedure 

The Procedure section is a description or account of the sequence of events that took 

place during the execution of the study or experiment. In short, this tells what was 

done by the experimenter(s) and to the participant(s). You should describe what was 
done, in what order, for how long, et cetera. 

Example 

The data were collected on each participant using a drug frequency question¬ 

naire during the fourth period in a school day. The participants were asked to 
indicate the amount of alcohol they consumed. 

The statistical methods used to analyze the data collected from the study and/or the 

design of the research study may be presented in the procedure section. 

It is possible that at some time you will discover you have deviated from the 

procedure that you should have followed. If this happens, describe the procedure 

exactly as it was conducted—not as it should have been conducted. This is usually 
carelessness, but it is ultimately excusable. 

Dishonesty is not excusable. Procedure sections may tend to get too complicated 

in experiments where there are several phases or conditions. In this case, it is fre¬ 

quently helpful to adopt labels for the phases or conditions. For example, with a 

teaching machine you might divide a trial into the “study phase” and the “test phase” 
for purposes of distinctive and simplified reference later. 

Results 

The data obtained in the study or experiment and the analysis performed on them 
are reported in the Results section. 

a. It begins with a description of the dependent variable measures that were 

recorded during the experimental session. With a teaching machine example, 

you would record the number of errors and the length of time to answer the 
questions. 
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b. Next, describe the data from the experiment. The data you report will 

generally be some type of summary of the raw data. For example, perhaps you 

are going to report the results in terms of the means and standard deviations 

of the raw data recorded during the session. You might say, “The mean and 

standard deviation of the number of errors were calculated for each series of 

20 questions.” 

c. Then refer to the place where these data can be found. Data can be presented 

in either tables or figures (graphs). They are labeled using numbers and re¬ 

ferred to by number. As an example, you might say, “The mean errors for 

each series of 20 questions is shown in Table 1 (or Figure 1).” If you have sev¬ 

eral dependent variables, the results for each variable may require a separate 

table or figure. Rules for the preparation of tables and figures are given in a 

later section of this appendix. 

d. After you refer to a table or figure, you should describe the important fea¬ 

tures of the data shown in the figure or table. There is much information 

presented in a table or figure and it is your job to aid the reader in compre¬ 

hending it. You must point out the important features, the general trends, and 

any inversions or peculiarities that seem to you to be important; that is, which 

seem to be more than chance occurrences. 

You should support your analysis of the information in a table or figure by giving 

some appropriate data values to illustrate your point. Do not, however, attempt 

to cite all of the data. That is what tables and figures are for. If you have 25 pages 

of a computer output, this output must be summarized and put into a table or 

figure. If the output is to be included, it will only be an attachment to the paper. 

Large attachments are generally unacceptable if the manuscript is submitted for 

publication. 

Example 

As shown in Figure 1, the functions for reward and non-reward conditions begin 

at the same level. The mean number of errors on the first trial was approxi¬ 

mately 4.5 for both conditions. After the first trial, the errors for the reward 

condition began to drop at a fairly steady rate, while the errors for the non¬ 

reward condition remained relatively constant. For instance, on the second trial, 

.50 fewer errors were made in the reward condition, but by the sixth trial this 

difference had increased until 3.39 fewer errors were made in the reward 

condition. Overall, the mean number of errors decreases as a function of trials in 

the reward condition, but not in the non-reward condition. 

One final rule for writing the Results section is that there must be no discussion in the 

Results section. That is, there is no personal opinion or interpretation of the data 

summaries. Only the facts of the findings are presented in the Results section of the 

paper. This is more fully explained in the next section. 
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Discussion 

The purpose of the Discussion section is to interpret the results and to explain the 

conclusions to which they led. It is here that the contribution or value of your experi¬ 

ment or study is made clear. 

a. The discussion generally begins with a concise statement of the important 
results. 

Example 

The results of the present study are in agreement with other studies comparing 
alcohol to drug abuse in Latin American youths. 

b. Next is the interpretation of the results. An inference is made from the 

particular dependent measures of the experiment to the psychological process 
of interest. 

Example 

Asian youths have consistently reported lower drug use because they may feel 

more threatened by the perceived consequences of their acknowledged drug 
use. 

Apparendy there is a difficult distinction between Results and Discussion 

sections involved here. In the Results section you adhere strictly to the particular 

dependent variables of the study. All inferences, interpretations, extrapolations, and 
reasonable opinion belong in the Discussion section. 

For example, in the Results section, the research study talks about a decrease in 

errors as a function of trials in the reward condition, while errors remain constant in 

the non-reward condition. In the Discussion section, this might be interpreted to 

mean that acquisition (or learning) took place in the reward condition, but not in the 

non-reward condition. The interpretation that learning has been affected differen¬ 

tially involves and inference made from the error data, and therefore belongs in the 
Discussion and not in the Results section. 

c. The results of your experiment or study should then be related to the results 

of other studies on the same or similar problems, and/or to any relevant theo¬ 

ries with which you are familiar and can document. Point out how your re¬ 

sults agree or disagree with previous workAhow they extend the body of 

knowledge, support or disagree with theory, and so on. The relation of your 

results to other results or theories must also be rationalized. If there is agree¬ 

ment, it is sufficient to simply state exactly what the agreement is. In the case 

of disagreement, you should offer some possible reasons for the discrepancy. 

Typically, the first explanation that will occur to you is that there was some- 
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thing wrong with your experiment. This may or may not be true. If it is true, 

point out exactly what the weakness was and why. 

d. Any weaknesses or flaws in your experiment that limit the usefulness or gen¬ 

erality of the conclusions that can be drawn should be discussed. When you 

report a weakness, also explain why it is a weakness, and indicate how it can 

be corrected. Do not create a lengthy list of criticisms, this will only create a 

bad impression to the reader/reviewer. 

e. A good way to end a discussion is to suggest what the next experiment on the 

same topic might be. If you attempt to do this, be sure to explain the experi¬ 

ment in enough detail for it to be meaningful, and explain the reasoning that 

makes it the logical step. Statements like the following examples must be 

avoided because they waste space and time. 

Examples 

Bigger rewards should be used in the next experiment. 

Better participants should have been used. 

You would need to explain why the current set of participants were deficient 

and how the newer participants would be different. 

References 

Only references cited in the body of the paper must be given in the reference list. All 

citations must appear in the reference list. The listing is in alphabetical order by first 

author’s last name. The author’s first and middle initials follow the last name. The 

names of journals are written out in full. 
For journal articles, page numbers for the entire article are cited. Do not cite the 

total number of pages in a book. In an edited book, list only the page numbers that 

pertain to that part of the book (chapter) written by the author(s) you are citing. 

Examples of the style to be used for the most frequent types of references are given 

below. The type of publication is noted inside brackets only to help you to identify 

each—you would not do this in your paper’s reference section. 

Note that American Psychological Association style of writing references has the 

year of publication encased in parentheses, following the authors’ names. The article 

title follows the date. Only the first letter of the first word in each sentence of the 

article title is capitalized. The first letter of the first word following a colon is also 

capitalized. The name of the journal, volume number of journal and page numbers of 

the article within that journal are listed next. The name of the journal and the 

volume number is either underlined or set in italics. The beginning letters of the 

journal title are capitalized (initial capitalization). 
For books, the author’s name is followed by the date of publication encased in 

parentheses. The title of the book is given next. Note that only the first letter of the 
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first word in each sentence of the book title is capitalized. The title of the book is 

also underlined or set italics. The title of the book is followed either by the edition 

number of the book (2nd edition [no italics]), or by the volume number (vol. 3 [no 

italics]). If no special edition or volume number is needed, then follow the title with a 

period. The city followed by a colon (:), and the name of the publisher followed by a 

period (.) concludes the entry. 
V 

Examples 
Erlich, O., & Lee, H. B. (1978). Use of regression analysis in reporting test results for 

accountability. Perceptual and Motor Skills, 47, 879-882. [Journal article, two authors] 
Hollenbeck, A. (1978). Problems of reliability in observational research. In G. Sackett, Ed., 

Observing behavior: Vol. 2. Data collection and analysis methods (pp. 79-98). Baltimore: Uni¬ 
versity Park Press. [Chapter in an edited volume, with volume also having a special title] 

Jeffrey, W. E. (1969). Early stimulation and cognitive development. In J.P. Hill, Ed., Min¬ 
nesota Symposia on Child Development (vol. 31 (pp. 46-61). Minneapolis: University of 
Minnesota Press. [Chapter in an edited volume] 

Kerlinger, F. N. (1986). Foundations of behavioral research (3rd ed.). Fort Worth, TX: Harcourt 
Brace. [Book] 

Stevens, S. S. (Ed.). (1951). Handbook of experimental psychology. New York: John Wiley & 
Sons. [Book with editor as author] 

Yi, S. (1977). Some implications of Jeffrey’s serial habituation hypothesis: A theoretical basis of 
resolving one-look versus multiple-look attentional account of discrimination learning. 
Journal of General Psychology, 91, 89-99. [Journal article, one author] 

The Prep aration of Figures 

Figures must contain the basic information necessary for comprehension without 

detailed reference to the text. This requires careful labeling of coordinates and a com¬ 

plete caption (title). When more than one curve is shown on the same set of 

coordinates, you must use a legend as in Figure A.1, or label the curve directly. The 

figure caption appears below the art and consists of a very brief summary of what is plot¬ 

ted on the graph. Avoid captions like “Graph of the Results” or “A Graph of . . .” 

Only the first word in the caption is capitalized and a period is placed at the end. 

Number the figures successively with Arabic numerals. Use a ruler to connect the data 

points. Do not smooth the curve by drawing it freehand. If possible, use one of the 

many computer programs for generating graphs. Microsoft Excel, for example, is ca¬ 

pable of producing some very nice-looking graphs suitable for presentation in an 

article. Some word-processing programs such as Microsoft Word are also capable of 

producing graphs. There are, of course, other very elaborate programs for construct¬ 
ing graphs. 

The P reparation of Tables 

As with figures, tables must contain sufficient information to be understood largely 

independent of the text. The title must state concisely what is contained in the table. 

Make the title as specific as possible. Avoid titles like: “Data Table,” “Table of 
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Example 

[Ml FIGURE A. 1 Mean number of errors as a function of trials under conditions of 

reward and non-reward. 

Results,” or “Table showing . . In general, avoid uncommon abbreviations. If 

they are necessary, they should be explained in a footnote to the table. 

Arrange the table in a form that is easy for the reader to interpret. If necessary, 

more than one table should be used. The title is centered above the table. Headings, 

capitalization, and other important features of a table can be derived from a study of 

Table A.1 (page 1042) in this document. Note that computer word-processing pro¬ 

grams such as Microsoft Word have built-in capabilities for generating tables. Be 

sure the data included in your table is aligned properly; that is, percent signs, deci¬ 

mals, and columns. This makes it easier for the reader to view and follow the data. 

Although no exact limitation is set for the number of figures and tables, many 

journals will have limited space for articles and as such request that only the most 

necessary tables and figures be included in the actual paper. A researcher with a large 

number of tables, figures, computer output, and such can make them available to 
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Example 

HI Table A.l Mean Errors as a Function of Trials under 
Conditions of Reward and Non-reward. 

Mean Errors 

Trials Reward Non-reward 

1 4.49 4.51 

2 3.80 4.30 

3 2.62 4.45 

4 2.31 3.87 

5 1.46 4.37 

6 1.12 4.51 

interested readers. There is an organization that will accept these materials and for a 

nominal fee make them available to any one interested in seeing the additional data. 

If the researcher chooses to use this service, a reference or a footnote should be made 
in the actual paper. That footnote might look like the following. 

Example 

The correlation matrices on which this study was based have been deposited 

with the National Auxiliary Publications Service. See NAPS Document No. 

- for - Pages of supplementary material from NAPS, c/o Microfiche 
Publications, 248 Hempstead Turnpike, West Hempstead, NY 11552. Remit in 

advance, in U.S. funds only, $_for photocopy or $_for microfiche. 

Outside of U.S. and Canada add postage of $_or $_for microfiche 
postage. 

This material would be prepared and submitted with the article for publication. The 

material would be labeled for deposit with NAPS. If the manuscript is accepted for 

publication, the additional information is sent to NAPS. NAPS will return to the au¬ 
thor and journal editor the document number and charge amounts. 

The Use of Abbreviations 

When a word or term is used very frequently in a report, it may be abbreviated. 

Abbreviations for participant(s) and experimenter(s) are standard and are almost 
always used: 
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Examples: 

participant = S participants = S s participant’s — S’s participants’ — Ss’ 

experimenter = E experimenters = E s experimenter’s = E’s experimenters’ = Es’ 

Other abbreviations are not standard and must be defined the first time they are 

used. 

Example 

The apparatus was a visual test module (VTM). 1 he VTM was programmed to 

. . . The test instrument was the Comrey Personality Scales, hereafter referred 

to as the CPS, consisted of eight scales. 

Style, Tenses, Et Cetera 

The activity described in the research report took place in the past and is described 

in the past tense. Personal pronouns are very rarely used, and so are statements about 

E’s desires, wishes, conclusions, and so on. 

Examples 

Poor: The E wanted to find out . . . 

Better: The purpose of the study was . . . 
Poor: We decided that the experiment showed . . . 

Better: The conclusion of the study was . . . 

Avoid excessive use of parenthetical expressions. There is a tendency to refer to 

figures and tables parenthetically, which should be avoided. For example, avoid 

saying: “The mean errors decreased as a function of trials (Table 1).” For long sen¬ 

tences, however, readability may be improved through the use of parenthetical 

expressionsm keep in mind that you must write for the general reader. This means 

that you must explain things. However, you should not take on the task of teaching 

the reader about certain areas of basic understanding. For example, it is fine to refer 

to Skinner’s theory of learning without going into the details of Skinner’s theory. 

However, DO NOT ASSUME THE READER knows the study to which you are 

referring. 

References 
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Sample Student Report 

Karen Siegel who is currently a doctoral student at California School of Professional Psy¬ 

chology, San Diego, wrote the following report as an undergraduate at California State Uni¬ 

versity, Northridge. It clearly illustrates how a paper is written using APA style. The report is 

reproduced with permission from Karen Siegel. 
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Abstract 

This study predicted that prosocial (helping) behavior between female participants and ex¬ 

perimenter would be enhanced by a casual, intentional touch of short duration. Also investi¬ 

gated was the effect of the participants’ psychological gender (androgynous feminine or 

masculine) on their helping behavior. Forty volunteer female student participants filled out a 

questionnaire (the Bern Sex-Role Inventory) which measured their psychological gender, 

and were then either touched or not touched in a 2 x 3 combined, between-subjects de¬ 

sign. The measured variable was whether the subject helped retrieve “accidentally” dropped 

pencils. Results showed that participants who were touched displayed more helping behav¬ 

ior than those who were not touched, but that their psychological gender had no effect. 
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Prosocial Behavior as Affected by Touch and Psychological Gender 

There exists a large body of literature regarding the effect of various forms of touch on hu¬ 

man behavior and health. Touch is considered by many researchers to be one of the most 

basic and earliest forms of communication (Frank, 1957; Montagu, 1971) and to be crucial 

for healthy emotional, social, and physical development (Harlow, 1958). Another facet of this 

atavistic manifestation of nonverbal communication is its manipulative property. Touch in the 

service of social control (defined by Edinger & Patterson, 1983, as “a more deliberate, pur¬ 

poseful response designed to promote a change in the other person’s behavior”) has been 

examined in a number of studies employing many modalities. In an influential 1973 study, 

Henley (1973) argued that touch communicates a message of power and status. She re¬ 

ported an asymmetry in the touches exchanged between the sexes (men touched women 

more than vice versa in public). Nguyen, Heslin, and Nguyen (1975) reported that types of 

touch are associated with the same meanings by men and women, but feelings differ, and 

accurate decoding of a tactile message depends not only on how it is transmitted, but also 
on where it is applied. 

A later analysis examining the generality of asymmetry between the sexes in the use of 

intentional touch revealed complexities precluding a simplistic understanding of this issue. 

Certain of Hall and Veccia’s (1990) findings differed from Henley's, and they asserted that it 

is not clear what different touches mean to the sexes and whether dominance/status can 

explain the sex effects. Major, Schmidlin, and Williams (1990) explored another of the many 

variations on the asymmetry theme. They found that gender patterns in touch vary markedly 

by setting and age, which underscores the situational specificity of gender-linked behaviors. 

In a less complex context, other studies have been done relating touch (nonverbal inti¬ 

macy) and increased compliance to requests made (Kleinke, 1976). Willis and Hamm 

(1980) found that touch is particularly important in obtaining same-sex compliance. Paulsell 

and Goldman (1984) examined the influence of touching different body locations (shoulder, 

upper and lower arm, and hand) in helping behavior. They learned that female confederates 

obtained varying helping responses, while for the male confederates little variation in help 

occurred, whether the participants were or were not touched. 

High levels of nurturing and supportive behaviors are arguably a function of what is con¬ 

sidered in American culture to be stereotypically feminine behavior. According to Bern 

(1975) an individual’s psychological gender dictates his or her style and range of behavior. 

A narrowly masculine self-concept may inhibit so-called feminine behavior (such as being 

affectionate or gentle) and vice versa, whereas an androgynous self-concept, incorporating 

but not excluding masculine and feminine attributes, widens \bh range of behaviors that 

may be chosen from situation to situation. 

In this experiment, the basic manipulative quality of touch in a limited interaction was 

studied. The effect of an innocuous, casual touch, within the context of a verbal interaction, 
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on the helping behavior of female college student volunteers were tested. In addition, the 

participants were measured for psychological androgyny, femininity or masculinity with 

Bern’s Sex-Role Inventory (1974). 

It was conjectured that the condition leading to the most consistent helping response 

would be the touched subject with a feminine and/or androgynous profile. Conversely, it was 

predicted that those with a masculine profile who did not receive the touch treatment would 

proffer the least assistance. 

Method 

A 2 x 3 combined, between-subjects design was used with touch/no touch serving as one 

independent variable and the participants’ psychological gender serving as the other inde¬ 

pendent variable. The helping behavior that was recorded was whether the participants 

helped retrieve pencils dropped by the experimenter immediately after instigating the 

touch/no touch variable. 

Participants 
Forty female California State University Northridge students, ranging in age from approx¬ 

imately 18 to 28 years, served as volunteers. In an attempt to eliminate any extraneous, 

possibly confounding variables concerning cultural dissimilarities in attitude toward touch 

and personal body space, only participants raised in the United States were used. 

Procedure 
This experiment employed a touch condition and a no-touch control situation, with the 

“touch” consisting of a light pat to the upper arm (the area that obtained the highest level of 

helping behavior in Paulsell & Goldman’s [1984] study). 

Each subject was given the Bern Sex-Role Inventory on an individual basis after being 

told they would be filling out a questionnaire. The experimenter supplied a pencil from a box 

of 20, which later served as a prop. Most participants completed the inventory, consisting of 

60 adjectives and phrases printed on a single sheet, in 10 minutes or less. They were also 

instructed to ask for the definition of any unfamiliar phrase or word. After the subject had 

completed the questionnaire, the experimenter—who remained in the room the entire 

time—walked over to the seated subject, picked up the form and thanked the subject for 

participating, during which time the touch to the upper arm was or was not introduced. Im¬ 

mediately subsequent to this the experimenter dropped pencils from the box and quickly 

bent over to pick them up. The subject either got up to help (and was given a score of 1) or 

did not (and was given a score of 0). Prior to filling out the Bern Inventory, the subject was 

advised to keep seated after she was done to make helping a less accessible choice, in an 

attempt to render more effective the touch/no touch variable. 
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Results 

The proportion of participants who helped and were touched (.708) was significantly greater 

than those who were not touched (.438), as determined by a one-tailed z-test for propor¬ 

tions (z = 1.71, p < .05). The significance of psychological gender was also analyzed in 

this manner comparing the helping behavior scores of androgynous with feminine, androgy¬ 

nous with masculine and feminine with masculine participants separately, as well as com¬ 

paring the touch/no touch variable in each psychological gender, with no significant differ¬ 

ence between proportions found. 

A chi-square comparing the effects of the touch/no touch variable with the psychologi¬ 

cal gender of each subject on her helping behavior was not significant [x2 (2) = 0.97, p > 
.05]. 

Discussion 

As predicted, the results of this study indicated that the helping behavior of female par¬ 

ticipants toward a same-sex experimenter was increased by an intentional, casual touch, of 
short duration, to the upper arm. 

Female participants were used for two reasons. First, there was no male confederate, 

and it was highly likely that almost all male participants would help a female experimenter 

(Paulsell and Goldman [1984] reported that 90% of male participants touched on the upper 

arm by female confederates helped pick up items dropped by those confederates.) Second, 

utilizing female participants controlled for any possible asymmetry in perceived gender-re¬ 
lated status (Henley, 1973). 

Though care was taken to eliminate any other explanations for this significant finding, 

any future investigations of this nature might be better designed as a double-blind study, 

since researcher expectations can be transmitted in nonverbal manners such as directness 

of gaze (Kleinke, 1977) or tone of voice (Goldman & Fordyce). (Similarity in communication 

involving these particular expressions were maintained as much as was controllable by this 
experimenter.) 

The recent popularity of the topic of prosocial behavior has spawned a number of com¬ 

binations of manipulations for the prediction of helping behavior, with significant results. Ma¬ 

jor, Schmidlin, and Williams (1990) studied the impact of age of the participants, along with 

the setting in which the touch occurred, on gender patterns of intentional touch. Another 

study by Hewitt and Feltham (1982) combined location of touch (six spots from hand to 

back) with gender of experimenter and subject Nguyen, Heslin, and Nguyen (1975) looked 

at the interpretations of different types of touch and body locations by men and women. 

This study was conducted in light of the focus on the modern paradigm of the (prefer¬ 

able) condition of psychological androgyny. Psychological androgyny is the individual’s abil¬ 

ity, as defined by Bern (1974), to be not dichotomous in sex role, but both masculine and 
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feminine, both assertive and yielding, both instrumental and expressive, in order to have ac¬ 

cess to an entire range of behaviors that include “masculine” and “feminine.” Though no sig¬ 

nificant relationship was found between prosocial behavior and psychological gender in this 

particular study, this could still be a variable of interest in future experiments specifically de¬ 

signed to measure behaviors as affected by a subject’s psychological gender. One variation 

might be a female experimenter with male participants measured in the same manner as 

this study, but using a different measurable variable, one that ideally would not involve 

courtly behavior. Other combinations of gender of experimenter and subject would merit ex¬ 

amination, as well as combining the effect of psychological gender with other variables. In 

any case, further study does seem warranted. 
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[s] Table A Table of Random Numbers 

1 53 95 67 80 79 93 28 69 25 78 13 24 100 62 62 21 11 4 54 44 59 90 78 83 4 97 61 52 75 91 

2 62 12 27 41 5 4 19 34 84 78 71 45 73 79 33 57 29 58 75 20 79 78 68 31 25 30 97 31 82 51 

3 90 16 47 72 20 60 70 71 2 67 21 65 7 39 58 81 64 11 70 4 79 44 47 7 74 34 55 28 90 19 

4 10 59 4 76 80 6 82 20 60 92 33 61 76 83 73 12 84 43 90 71 82 28 21 61 31 92 100 75 22 31 

5 32 17 36 64 8 30 80 95 61 33 65 5 39 88 36 44 42 43 5 88 81 13 63 15 47 92 20 62 5 60 

6 54 71 27 89 41 53 60 10 2 91 76 95 98 91 64 65 23 57 16 0 90 52 26 90 49 31 68 29 58 10 

7 10 60 18 77 34 59 28 99 15 11 70 34 27 78 67 19 97 30 23 60 0 22 11 12 54 50 93 25 69 54 

8 42 20 24 36 78 58 82 81 49 91 35 53 30 92 57 19 97 40 58 13 39 42 25 3 97 64 100 55 24 7 

9 73 55 87 48 49 97 60 92 27 78 2 55 29 76 99 21 45 72 56 24 16 33 50 84 12 65 4 30 48 56 

10 21 56 41 23 58 57 49 49 70 33 6 79 95 3 70 38 26 26 5 89 49 0 68 57 53 91 66 81 53 83 

11 9 60 37 99 6 41 69 97 18 44 100 18 46 3 90 57 22 82 15 38 73 97 74 9 35 82 66 34 84 14 

12 63 26 41 8 21 38 15 63 38 100 68 89 24 39 19 29 93 97 40 91 70 41 95 83 33 25 33 94 44 39 

13 98 72 9 45 69 50 7 86 5 80 0 8 28 96 45 0 0 13 95 24 92 51 11 11 37 91 21 87 89 89 

14 87 89 65 22 98 55 86 9 66 43 64 55 80 30 15 99 26 25 71 87 22 39 97 26 50 12 86 22 65 70 

15 5 91 68 44 67 2 71 96 15 73 78 3 12 87 53 9 11 12 21 32 57 72 16 35 27 51 91 43 58 61 

16 75 93 62 49 95 82 30 81 24 4 11 36 71 96 49 47 65 48 28 8 91 58 40 55 32 7 86 84 95 59 

(continui 

1 The statistical tables for the Z, t, x2 and F were generated using the computational algorithms found in the following 

references: 

Craig, R. J. (1984). Normal family distribution functions: FORTRAN and BASIC programs Journal of Quality Technol- 

Kirch^A. (1973). Introduction to statistics with FORTRAN. New York: Holt, Rinehart & Winston. 

B1 
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17 76 ; 15 55 38 29 0 8 20 71 42 81 51 44 76 i 93 42 87 89 38 : 51 88 65 ’ 83 80 66 ; 9i 9 68 ; 30 i 63 

18 26 ; 76 93 84 8 i 4C 1 96 69 84 82 85 1 5 16 43 34 37 64 39 14 • 77 ' 95 10C l 52 99 > 86 i 81 65 85 21 9 

19 8 35 6 83 76 . 8 87 81 13 33 14 86 38 23 33 22 58 47 60 36 97 89 20 59 52 9 76 75 52 82 

20 59 1 73 37 6 26 . 44 • 0 24 89 24 78 80 20 8 19 31 32 53 40 32 32 23 57 74 49 17 97 49 71 0 

21 87 94 75 45 72 15 39 100 46 99 59 12 22 95 76 18 27 73 88 41 31 99 1 37 31 24 ■ 89 35 14 14 • 73 

22 5 74 8 91 37 5 13 55 13 7 19 24 76 4 25 93 78 9 50 85 98 71 37 53 67 75 9 56 95 71 

23 49 82 39 40 51 15 71 53 68 86 50 93 31 22 64 77 46 17 28 25 2 17 69 68 56 44 100 55 80 26 

24 2 25 92 97 41 39 98 100 99 67 44 0 99 93 31 69 26 72 56 25 71 42 28 22 96 76 19 63 97 5 

25 59 41 49 100 13 0 15 33 82 61 28 59 83 8 17 76 24 58 91 25 3 2 76 87 10 18 23 69 93 27 

26 40 13 20 51 81 15 12 45 16 57 47 54 92 60 70 55 98 12 90 27 95 66 23 91 78 86 27 98 16 30 

27 80 25 91 36 83 59 19 9 47 61 84 89 98 18 11 56 99 3 26 67 21 24 80 60 44 42 48 77 84 63 

28 48 33 7 70 61 95 51 32 89 87 72 6 40 88 52 44 19 96 95 62 12 100 82 5 17 62 65 100 63 9 

29 89 5 7 93 48 60 69 97 61 21 87 68 20 4 61 63 75 8 76 92 37 35 40 70 25 86 34 54 53 95 

30 97 64 36 36 99 98 23 18 66 28 58 48 34 18 64 71 48 90 63 57 15 14 24 26 65 29 38 85 99 17 

31 59 73 71 62 66 34 17 41 32 65 50 73 82 7 20 85 1 65 74 85 23 19 45 61 48 98 84 51 63 70 

32 88 75 43 66 66 38 56 31 25 36 26 91 36 100 88 42 74 27 36 40 33 92 18 9 54 51 40 24 82 6 

33 34 16 43 38 50 28 34 14 41 2 6 97 56 73 75 17 56 31 100 84 32 25 33 52 26 78 83 44 0 81 

34 14 61 81 2 69 73 3 89 79 64 67 80 75 5 66 77 97 30 88 82 52 87 25 63 11 67 93 99 61 39 

35 15 39 5 99 29 36 25 40 46 28 34 63 75 18 21 23 13 85 15 43 88 70 92 44 23 73 62 47 60 45 

36 68 49 1 55 11 6 63 23 50 33 80 34 82 20 66 48 27 16 86 78 74 89 9 23 66 62 83 28 34 87 

37 1 72 18 84 84 86 61 41 22 61 45 36 37 16 20 28 98 36 72 39 67 100 71 8 19 29 0 24 95 26 

38 58 73 55 11 9 96 81 84 21 34 50 92 65 91 69 33 23 4 77 93 3 37 95 14 84 27 67 46 61 88 

39 ' 91 63 i 65 63 70 90 57 20 9 13 28 77 72 0 12 30 48 6 28 89 94 6 58 72 73 16 86 19 95 49 

40 : 39 ■ 45 : 31 74 91 85 29 45 98 15 11 50 26 16 36 76 1 40 76 1 88 15 60 27 55 0 83 96 36 53 

41 94 12 62 59 14 42 32 75 41 41 0 58 5 78 89 48 35 1 78 70 20 98 38 93 67 35 35 40 38 44 

42 3 : 33 41 22 45 37 i 65 3 96 ; 27 i 62 77 16 97 81 78 . 26 48 94 59 77 82 54 1 63 24 64 31 31 14 

43 58 2 83 10 100 50 1 98 57 32 i 65 31 87 84 45 0 90 ■ 42 78 9 17 21 92 92 47 5 29 6 27 62 72 

44 29 73 79 48 66 ' 72 : 32 1 100 3 2 61 : 35 0 1 88 100 45 42 
\ 

16 18 48 67 36 37 57 12 97 12 95 8 

45 55 9 63 66 31 5 8 72 4 85 5 44 4 98 2 79 40 44 96 ’ 75 1 91 59 i 56 15 ■ 41 19 100 33 ' 23 64 

46 52 13 44 91 39 85 22 33 4 29 52 6 82 77 25 0 46 100 41 35 ■ 46 93 11 9 56 82 97 53 18 86 

(continued) 
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47 31 52 65 63 88 78 21 35 28 22 91 84 4 30 14 0 97 92 63 87 46 73 55 82 18 76 67 43 76 22 

48 44 38 76 99 38 67 60 95 67 68 17 18 46 76 83 5 8 20 87 87 2 42 65 27 16 22 60 18 78 33 

49 84 47 44 4 67 22 89 78 44 84 66 15 56 0 90 21 25 88 99 100 32 86 30 50 92 48 55 70 35 20 

50 71 50 78 48 65 74 21 24 2 23 65 94 51 82 67 16 35 91 100 35 61 31 75 8 81 58 67 50 28 17 

51 42 47 97 81 10 99 40 15 63 77 89 10 32 92 86 32 9 33 79 69 50 7 61 78 15 60 79 47 73 51 

52 3 70 75 49 90 92 62 0 47 90 78 63 44 60 13 55 38 64 60 63 92 17 100 2 40 93 83 89 88 20 

53 31 6 46 39 27 93 81 79 100 94 43 39 79 2 18 82 40 30 56 31 81 84 62 41 59 4 46 56 100 58 

54 69 27 97 71 52 38 45 35 14 74 40 96 40 88 38 67 44 81 5 12 13 98 21 39 36 74 39 83 77 79 

55 2 76 36 72 7 28 55 13 31 78 67 98 50 25 94 39 71 28 0 39 31 69 14 22 50 40 54 12 71 98 

56 3 4 20 8 63 33 69 31 69 32 35 18 23 84 69 64 13 43 86 53 10 28 46 41 29 74 46 64 39 4 

57 79 55 89 1 25 68 100 58 44 92 73 29 70 47 3 51 37 24 24 29 95 79 80 35 0 9 65 42 99 69 

58 99 6 65 35 66 98 66 47 47 22 1 54 94 13 0 31 40 55 69 20 59 12 35 63 52 35 2 56 40 85 

59 46 98 1 46 43 86 42 91 63 1 93 84 51 8 79 47 54 85 90 2 19 26 78 95 1 4 72 81 80 60 

60 6 14 71 51 7 10 79 41 58 3 27 33 74 67 18 94 4 57 99 37 40 96 68 6 95 55 82 16 36 58 

61 92 31 31 40 12 19 74 73 20 94 33 41 40 74 79 42 23 41 29 1 0 13 31 19 63 90 75 17 33 49 

62 87 8 68 74 61 66 94 27 71 81 37 82 83 7 8 46 65 63 37 63 88 20 20 75 16 70 26 75 22 48 

63 50 48 52 100 68 75 38 65 59 57 78 24 29 52 24 98 78 48 77 64 93 100 50 95 76 94 84 25 67 98 

64 67 96 52 88 76 79 16 12 42 33 35 50 54 69 21 57 62 21 84 95 13 66 49 11 48 20 54 51 65 63 

65 54 42 22 99 28 90 74 46 26 13 48 45 99 3 38 94 86 53 41 18 35 10 64 79 70 5 55 92 41 92 

66 99 51 72 2 75 81 92 71 85 26 77 73 23 14 2 46 7 13 2 40 62 28 72 82 81 51 7 45 9 26 

67 35 63 58 46 91 44 56 26 59 56 21 91 19 83 6 61 47 53 10 33 7 97 68 76 44 73 73 0 80 55 

68 81 98 63 17 77 45 47 96 25 38 23 26 80 20 47 40 39 14 71 15 60 83 28 56 78 9 27 52 79 68 

69 90 47 44 40 40 96 0 62 13 79 39 0 99 57 37 39 2 8 42 58 1 28 1 64 50 28 8 69 70 96 

70 29 30 16 54 83 76 50 0 61 100 51 74 78 15 91 61 72 24 44 71 94 59 17 43 50 34 12 14 45 30 

71 47 94 70 80 51 26 11 78 34 29 10 55 90 42 4 6 83 72 95 73 24 19 13 98 0 64 44 90 20 13 

72 69 14 17 73 79 25 71 14 52 98 77 82 15 25 8 34 38 80 82 97 82 87 98 29 97 69 24 62 100 12 

73 54 58 47 9 0 63 6 94 27 3 18 5 36 98 74 36 30 8 87 2 23 76 42 76 87 64 99 5 7 13 

74 24 63 57 91 8 58 38 29 72 5 56 71 81 50 67 59 41 9 17 17 85 42 29 80 53 92 6 44 100 18 

75 14 24 69 85 97 51 68 80 16 92 59 72 97 23 89 44 16 71 19 83 42 53 54 93 63 19 59 30 80 75 

76 86 21 31 59 72 17 77 45 43 29 34 97 67 45 23 88 91 68 12 30 3 41 73 63 76 18 82 8 13 30 

(continued) 
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77 5 28 80 31 99 77 39 23 69 0 15 49 100 2 22 64 73 92 53 64 7 19 80 64 4 34 30 65 63 11 

78 29 71 48 4 87 32 17 90 89 9 99 34 58 8 61 73 98 48 89 90 24 25 98 38 79 45 84 30 49 64 

79 90 94 19 80 70 36 2 17 48 63 82 39 85 26 65 27 81 69 83 20 40 25 87 45 88 52 19 33 17 63 

80 62 66 48 74 86 6 66 41 15 65 6 41 85 57 84 64 70 39 64 87 62 78 25 71 57 6 98 59 79 34 

81 67 54 3 54 23 40 25 95 93 55 59 46 77 55 49 82 26 8 87 54 10 53 29 37 82 5 77 54 4 69 

82 75 27 62 15 81 36 22 26 69 42 44 91 55 0 84 48 68 65 5 45 35 11 73 30 16 3 75 56 58 98 

83 70 19 7 100 94 53 81 76 73 40 22 58 49 42 96 18 66 89 8 69 17 54 7 86 29 18 86 98 5 56 

84 75 7 9 20 58 92 41 42 79 26 91 44 63 87 45 21 23 15 6 72 60 78 88 27 45 80 66 25 37 73 

85 55 70 10 23 25 73 91 72 29 47 93 58 21 75 80 52 9 12 36 93 9 58 84 88 90 73 47 49 53 95 

86 83 42 62 53 55 12 11 54 19 2 45 43 67 13 5 74 30 93 11 74 75 27 81 28 48 4 65 87 69 32 

87 94 20 76 23 65 72 55 27 44 19 10 72 50 67 83 18 67 22 49 36 42 53 92 96 19 52 38 2 22 47 

00 
00 51 10 72 9 59 47 66 32 17 6 75 8 54 22 37 3 46 83 95 93 76 77 19 31 74 40 5 0 23 61 

89 99 50 22 2 92 9 98 9 40 23 34 8 63 58 49 31 70 39 83 54 75 23 75 34 69 93 93 20 29 78 

90 9 12 3 23 2 0 82 75 36 63 71 19 78 26 66 63 16 75 7 72 99 15 97 27 48 50 88 2 89 57 

91 20 40 50 29 51 82 81 47 73 69 74 100 80 37 14 67 1 90 92 99 6 34 98 33 77 44 86 95 0 30 

92 90 92 54 52 74 0 88 71 45 49 38 54 80 2 85 42 75 47 20 94 13 95 44 22 63 18 88 37 89 95 

93 25 6 92 30 19 31 22 41 0 22 79 87 84 61 6 19 67 97 60 48 56 64 63 75 27 69 63 29 51 59 

94 13 12 94 76 29 61 50 67 29 76 27 70 97 16 83 88 100 22 48 7 66 52 91 70 34 54 25 71 91 12 

95 91 77 51 3 92 85 46 22 0 58 84 64 87 93 94 94 13 98 41 77 83 71 83 68 55 85 11 69 32 10 

96 29 12 39 35 32 47 30 81 40 32 37 8 48 81 50 77 18 39 7 95 28 92 53 63 46 36 45 62 24 39 

97 43 96 86 14 91 24 22 85 16 51 42 37 41 100 94 76 45 50 67 54 59 91 34 52 75 87 95 30 97 33 

98 57 44 72 45 87 21 7 29 26 82 69 99 10 39 76 29 11 17 85 76 13 93 41 42 27 80 85 61 11 42 

99 63 10 10 76 7 75 19 91 2 31 45 94 54 72 10 48 52 7 12 59 84 46 41 29 7 44 63 27 29 41 

100 34 28 11 95 4 82 51 7 69 53 93 36 81 66 93 88 15 73 54 15 91 53 78 85 78 77 80 36 89 88 

[Ml Table of Random, Num.bers (continued) 

76 98 40 41 2 56 78 v 62 79 16 

72 23 58 27 17 69 94 75 68 79 

35 15 27 66 20 26 81 37 61 63 

(continued) 
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4 11 5 74 38 84 78 69 70 24 77 

5 44 83 22 50 59 80 29 12 71 11 

6 13 8 54 63 58 7 29 25 38 80 

7 2 60 4 53 16 80 45 30 72 51 

8 30 58 96 5 30 55 23 39 53 27 

9 97 74 33 90 0 5 99 3 60 53 

10 15 81 17 65 0 47 8 65 77 61 

11 28 36 24 87 76 96 89 34 9 29 

12 43 23 53 15 54 81 74 31 17 94 

13 9 68 26 79 43 16 19 89 66 82 

14 94 86 38 11 60 57 16 41 46 20 

15 6 62 50 24 11 19 73 14 42 48 

16 53 70 54 25 96 38 43 5 2 4 

17 28 75 64 90 11 80 94 99 35 54 

18 68 57 34 30 29 61 33 49 0 11 

19 45 65 89 88 39 93 71 55 29 67 

20 73 11 78 58 58 34 20 30 43 40 

21 26 59 10 35 75 4 34 38 0 63 

22 58 15 70 36 19 49 45 18 36 2 

23 87 85 52 76 40 61 50 68 72 7 

24 98 44 82 35 0 33 26 68 75 7 

25 35 39 8 70 79 48 30 65 65 63 

26 79 82 7 23 41 81 8 32 8 8 

27 0 30 98 86 100 14 55 86 71 13 

28 88 88 48 70 64 81 29 71 62 67 

29 45 62 32 83 60 48 0 44 94 22 

30 63 8 87 100 28 82 67 65 10 81 

31 33 6 49 38 55 78 94 26 4 29 

32 79 51 52 9 38 18 13 16 86 42 

33 63 29 23 97 64 6 63 74 29 77 

(continued) 
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34 94 16 38 87 3 25 25 49 22 68 

35 32 6 90 100 29 26 31 39 32 93 

36 92 99 60 23 79 82 6 62 2 75 

37 46 1 2 68 40 8 3 99 19 6 

38 65 55 20 58 89 100 74 77 28 30 

39 37 58 49 5 51 55 90 22 3 37 

40 80 47 63 53 58 95 55 25 67 58 

41 2 48 66 86 47 74 48 87 7! 21 

42 49 71 92 36 55 72 74 13 99 31 

43 35 48 56 92 76 75 45 23 91 15 

44 77 61 32 6 66 47 66 0 24 26 

45 50 83 57 78 38 55 48 97 5 62 

46 83 94 8 40 14 39 93 51 42 80 

47 82 1 78 19 94 56 38 8 37 28 

48 73 74 13 2 42 64 89 86 72 9 

49 54 43 20 13 39 76 59 7 51 19 

50 77 32 56 82 56 60 98 80 21 49 

51 99 27 39 7 32 7 85 14 22 76 

52 1 14 43 75 65 65 63 53 81 57 

53 26 51 32 8 24 99 30 36 32 59 

54 37 89 4 20 21 91 98 90 37 49 

55 25 26 20 61 52 93 90 76 46 19 

56 47 55 98 22 69 9 15 34 94 16 

57 90 22 16 34 81 44 3 24 96 70 

58 2 85 2 58 26 94 48 0 85 70 

59 49 67 32 10 28 90 72 25 28 53 

60 68 68 69 7 11 31 17 39 82 85 

61 13 54 32 26 66 38 1 ' 7 35 16 

62 6 1 89 99 21 48 6 9 67 85 

63 94 23 75 40 33 86 87 76 24 98 

(continued) 
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69 
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77 

78 

79 
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81 
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83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 
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33 98 80 13 84 70 85 93 74 22 

14 63 52 94 56 5 40 55 50 17 

47 34 47 47 95 45 38 82 85 20 

84 77 74 27 5 17 57 75 63 2 

90 48 12 51 55 77 48 10 55 21 

26 100 6 31 89 0 31 91 5 23 

79 63 76 72 18 67 87 47 90 93 

66 81 97 81 11 38 7 37 93 64 

28 84 86 10 69 25 66 93 21 57 

33 19 18 37 96 73 95 91 24 24 

24 31 5 6 37 63 93 42 5 97 

8 91 48 79 2 40 6 56 57 60 

78 45 43 77 77 99 98 40 14 82 

72 20 15 22 30 82 77 51 87 61 

98 48 25 14 0 12 63 67 12 77 

60 62 46 12 59 99 5 88 74 89 

20 77 87 83 12 74 29 12 16 99 

7 40 18 32 85 37 73 42 49 49 

46 93 58 96 29 73 6 71 8 46 

78 0 78 24 34 73 95 11 44 36 

7 67 29 27 12 90 60 97 15 94 

62 28 11 61 0 91 49 32 82 28 

14 46 52 52 36 21 13 70 24 76 

26 94 34 57 81 28 49 74 68 50 

15 11 82 35 77 9 28 11 32 30 

24 71 92 75 70 60 80 88 21 11 

18 25 7 100 80 84 97 84 18 53 

34 91 25 98 77 14 95 100 84 19 

98 80 72 72 71 66 13 33 24 12 

22 83 2 33 32 91 78 53 45 63 

(continued) 
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[1 Table of Random Numbers (continued) 

94 41 39 35 37 66 52 80 1 33 94 

95 30 54 73 21 43 68 65 83 26 90 

96 65 100 85 12 69 3 72 55 43 5 

97 57 69 37 7 62 65 36 9 57 73 

98 44 51 38 59 85 91 51 79 14 26 

99 39 76 88 46 46 65 72 62 92 67 

100 84 60 42 55 48 99 44 66 77 27 

MEAN VARIANCE ST. DEV. (S.D.) 

1 51.8400 895.8144 29.9302 
2 46.2000 809.3200 28.4486 
3 47.6900 740.6539 27.2150 
4 51.8300 872.7611 29.5425 
5 53.2100 877.5659 29.6237 
6 48.8700 903.9131 30.0651 
7 49.6400 778.8704 27.9082 
8 51.3700 889.7331 29.8284 
9 45.0700 771.7251 27.7799 

10 49.2800 872.3016 29.5348 
11 48.8700 777.5731 27.8850 
12 53.0800 860.2136 29.3294 
13 56.5100 773.0099 27.8031 
14 47.9900 1110.2299 33.3201 
15 49.3700 913.6531 30.2267 
16 49.0200 714.0396 26.7215 
17 45.6800 842.0776 29.0186 
18 47.0400 853.3384 29.2120 
19 53.5100 977.2499 31.2610 
20 52.7400 853.4924 29.2146 
21 50.0600 1001.1564 31.6411 
22 53.9500 907.7475 30.1288 
23 53.6100 737.3779 27.1547 
24 49.3100 807.4139 28.4150 
25 49.1600 673.9544 25.9606 
26 50.2200 855.3316 29.2461 
27 58.3600 877.1904 ^29.6174 
28 49.5700 709.7051 26.6403 
29 55.4400 868.3664 29.4681 
30 49.4300 791.3851 28.1316 
31 48.5200 847.9296 29.1192 

(continued) 
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MEAN VARIANCE ST. DEV. (S.D.) 

32 52.9400 802.3564 28.3259 

33 46.7900 784.6259 28.0112 

34 48.3300 881.4611 29.6894 

35 47.2900 759.3059 27.5555 

36 55.5100 854.5499 29.2327 

37 52.3900 907.8379 30.1303 

38 49.9500 851.3275 29.1775 

39 46.0000 817.7800 28.5969 

40 47.6500 815.1475 28.5508 

U Table B Normal Curve Table (Area between Z ■ = 0 and Z) 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 

0.0 0.0001 0.0040 0.0080 0.0120 0.0160 0.0200 0.0240 0.0280 0.0319 

0.1 0.0399 0.0438 0.0478 0.0518 0.0557 0.0597 0.0636 0.0675 0.0715 

0.2 0.0793 0.0832 0.0871 0.0910 0.0949 0.0988 0.1026 0.1065 0.1103 

0.3 0.1180 0.1218 0.1256 0.1293 0.1331 0.1369 0.1406 0.1444 0.1481 

0.4 0.1555 0.1591 0.1628 0.1664 0.1701 0.1737 0.1773 0.1809 0.1844 

0.5 0.1915 0.1950 0.1985 0.2020 0.2054 0.2089 0.2123 0.2157 0.2191 

0.6 0.2258 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 

0.7 0.2581 0.2612 0.2643 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 

0.8 0.2882 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3314 0.3339 0.3364 

1.0 0.3413 0.3437 0.3461 0.3484 0.3508 0.3531 0.3554 0.3576 0.3599 

1.1 0.3643 0.3664 0.3686 0.3707 0.3728 0.3748 0.3769 0.3789 0.3809 

1.2 0.3850 0.3869 0.3888 0.3907 0.3926 0.3944 0.3962 0.3980 0.3998 

1.3 0.4032 0.4049 0.4066 0.4083 0.4099 0.4115 0.4131 0.4147 0.4162 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4278 0.4292 0.4305 

1.5 0.4332 0.4344 0.4357 0.4369 0.4382 0.4394 0.4406 0.4417 0.4429 

1.6 0.4451 0.4462 0.4473 0.4484 0.4494 0.4504 0.4515 0.4524 0.4534 

1.7 0.4553 0.4563 0.4572 0.4581 0.4590 0.4598 0.4607 0.4615 0.4623 

1.8 0.4639 0.4647 0.4655 0.4662 0.4670 0.4677 0.4684 0.4691 0.4698 

1.9 0.4711 0.4718 0.4724 0.4731 0.4737 0.4743 0.4749 0.4754 0.4760 

2.0 0.4771 0.4776 0.4782 0.4787 0.4792 0.4797 0.4802 0.4806 0.4811 

2.1 0.4820 0.4824 0.4829 0.4833 0.4837 0.4841 0.4845 0.4849 0.4852 

2.2 0.4860 0.4863 0.4867 0.4870 0.4873 0.4877 0.4880 0.4883 0.4886 

2.3 0.4892 0.4895 0.4897 0.4900 0.4903 0.4905 0.4908 0.4910 0.4913 

2.4 0.4917 0.4919 0.4922 0.4924 0.4926 0.4928 0.4930 0.4932 0.4934 

2.5 0.4937 0.4939 0.4941 0.4943 0.4944 0.4946 0.4947 0.4949 0.4950 

2.6 0.4953 0.4955 0.4956 0.4957 0.4958 0.4960 0.4961 0.4962 0.4963 

0.09 

0.0359 

0.0754 

0.1141 

0.1518 

0.1880 

0.2224 

0.2549 

0.2852 

0.3133 

0.3389 

0.3621 

0.3829 

0.4015 

0.4177 

0.4319 

0.4440 

0.4544 

0.4632 

0.4705 

0.4766 

0.4816 

0.4856 

0.4889 

0.4915 

0.4936 

0.4952 

0.4964 

(continued) 
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d Table B (continued.) 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

2.7 0.4965 0.4966 0.4968 0.4969 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 
2.8 0.4973 0.4974 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 
2.9 0.4980 0.4981 0.4981 0.4982 0.4982 0.4983 0.4983 0.4984 0.4984 0.4985 

3.0 0.4985 0.4986 0.4986 0.4987 0.4987 0.4988 0.4988 0.4988 0.4989 0.4989 
3.1 0.4990 0.4990 0.4990 0.4991 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 
3.2 0.4993 0.4993 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 
3.3 0.4995 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 
3.4 0.4996 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 

[si Table C t-distribution 

Probability 

Degrees of 
Freedom 

0.50 
0.25 

0.10 
0.05 

0.05 
0.025 

0.02 
0.015 

0.01 
0.00 

two-tailed 

one-tailed 

1 1.000 6.34 12.71 31.82 63.66 
2 0.816 2.92 4.30 6.96 9.92 
3 .765 2.35 3.18 4.54 5.84 
4 .741 2.13 2.78 3.75 4.60 
5 .727 2.02 2.57 3.36 4.03 
6 .718 1.94 2.45 3.14 3.71 
7 .711 1.90 2.36 3.00 3.50 
8 .706 1.86 2.31 2.90 3.36 
9 .703 1.83 2.26 2.82 3.25 

10 .700 1.81 2.23 2.76 3.17 
11 .697 1.80 2.20 2.72 3.11 
12 .695 1.78 2.18 2.68 3.06 
13 .694 1.77 2.16 2.65 3.01 
14 .692 1.76 2.14 2.62 2.98 
15 .691 1.75 2.13 2.60 2.95 
16 .690 1.75 2.12 2.58 2.92 
17 .689 1.74 2.11 2.57 2.90 
18 .688 1.73 2.10 2.55 2.88 
19 .688 1.73 2.09 2.54 2.86 
20 .687 1.72 2.09 2.53 2.84 
21 .686 1.72 2.08 2.52 2.83 
22 .686 1.72 2.07 2.51 2.82 
23 .685 1.71 2.07 2.50 2.81 

(continued) 
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HD Table C (continued) 

Degrees of 
Freedom 

0.50 
0.25 

0.10 
0.05 

Probability 

0.05 
0.025 

0.02 
0.015 

0.01 
0.00 

two-tailed 

one-tailed 

24 .685 1.71 2.06 2.49 2.80 

25 .684 1.71 2.06 2.48 2.79 

30 .683 1.70 2.04 2.46 2.75 

35 .682 1.69 2.03 2.46 2.72 

40 .681 1.68 2.02 2.42 2.71 

60 .678 1.67 2.00 2.39 2.69 

120 .676 1.66 1.98 2.36 2.62 

inf .674 1.645 1.96 2.33 2.575 

HD TABLE D Chi-square distribution upper tail 

df/a 0.100 0.050 0.025 0.010 0.005 0.001 

1 2.71 3.84 5.02 6.63 7.88 10.8 

2 4.61 5.99 7.38 9.21 10.6 13.8 

3 6.25 7.81 9.35 11.3 12.8 16.3 

4 7.78 9.49 11.1 13.3 14.9 18.5 

5 9.24 11.1 12.8 15.1 16.7 20.5 

6 10.6 12.6 14.4 16.8 18.5 22.5 

7 12.0 14.1 16.0 18.5 20.3 24.3 

8 13.4 15.5 17.5 20.1 22.0 26.1 

9 14.7 16.9 19.0 21.7 23.6 27.9 

10 16.0 18.3 20.5 23.2 25.2 29.6 

11 17.3 19.7 21.9 24.7 26.8 31.3 

12 18.5 21.0 23.3 26.2 28.3 32.9 

13 19.8 22.4 24.7 27.7 29.8 34.5 

14 21.1 23.7 26.1 29.1 31.3 36.1 

15 22.3 25.0 27.5 30.6 32.8 37.7 

16 23.5 26.3 28.8 32.0 34.3 39.3 

17 24.8 27.6 30.2 33.4 35.7 40.8 

18 26.0 28.9 31.5 34.8 37.2 42.3 

19 27.2 30.1 32.9 36.2 38.6 43.8 

20 28.4 31.4 34.2 37.6 40.0 45.3 

21 29.6 32.7 35.5 38.9 41.4 46.8 

22 30.8 33.9 36.8 40.3 42.8 48.3 

23 32.0 35.2 38.1 41.6 44.2 49.7 

(continued) 
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fn Table D (continued) 

df/a 0.100 0.050 0.025 0.010 0.005 0.001 

24 55.2 36.4 39.4 43.0 45.6 51.2 

25 34.4 37.7 40.6 44.3 46.9 52.6 

30 40.3 43.8 47.0 50.9 53.7 59.7 

35 46.1 49.8 53.2 57.3 60.3 66.6 

40 51.8 55.8 59.3 63.7 66.8 73.4 

60 74.4 74.4 83.3 88.4 92.0 99.6 

80 96.6 101.9 106.6 112.3 116.3 124.8 

100 118.5 124.3 129.6 135.8 140.2 149.4 

[MI Table E Critical Values of F (0.05 level in medium type, 0.01 level in 
boldface type)* 

Degrees of Freedom, (Numerator) 

1 2 3 4 5 6 7 00
 

9 10 

Degrees 1 161.00 200.00 216.00 225.00 230.00 234.00 237.00 239.00 241.00 242.00 
of Freedom 4052.0 4999.0 5403.0 5625.0 5764.0 5859.0 5928.0 5981.0 6022.0 i 6056.0 

(Denominator) 2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 
98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 
21.20 18.00 16.69 15.98 15.52 15.21 14.91 14.80 14.66 14.54 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.15 10.05 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 
33.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 
12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 
11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 ■ 5.82 

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 
10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 

« (continued) 
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[b] TABLE E (continued) 

Degrees of Freedom (Numerator) 

1 2 3 4 5 6 7 8 9 10 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 

10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 

9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 

12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 

9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 

13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 

9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 

14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 

8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 

8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 

8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 

17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 

8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 

8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 

19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 

8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 

20 4.35 3.49 3.10 2.87 2.72 2.60 2.52 2.45 2.40 2.35 

8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 

22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 

7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 

23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 232.00 2.28 

7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 

25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 

7.77 5.57 4.61 4.18 3.86 3.63 3.46 3.32 3.21 3.13 

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 

7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.27 3.09 

28 4.20 3.34 2.95 2.72 2.56 2.44 2.36 2.29 2.24 2.29 

7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.12 3.03 

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 

7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 

(continued) 
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fBl Table E (continued.) 

Degrees of Freedom (Numerator) 

1 2 3 4 5 6 7 8 9 10 

30 4.27 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 

7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 

34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.27 2.12 

7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 

38 4.20 3.25 2.85 2.62 2.46 2.35 2.26 2.29 2.14 2.09 

7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 

40 4.08 3.23 2.84 2.62 2.45 2.34 2.25 2.28 2.22 2.07 

7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 

7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 

7.17 5.06 4.20 3.72 3.41 3.11 3.02 2.83 2.78 2.70 

60 4.00 3.15 2.76 2.52 2.37 2.25 2.57 2.10 2.04 1.99 

7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 

7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 

6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 5.97 5.92 
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 
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278-279, 324-325,424 

Coefficient of determination, 774 

Coefficient of multiple correlation, 

756 

Coercion, freedom from, 445 

Cognitive object, 27, 602 

Coin-toss probabilities, 138-139, 

233,291-292 

Common factor variance, 683, 854 

Common sense, 4-6 

Communalities, 830, 835-836, 856 

Comparative Fit Index (CFI), 874, 

881, 885 

Compound events, 143-145 

Compromise designs, 536-549 

Computer programs 

ANOVA, 331-340 

BASIC programs, 171 

correlated design ANOVA, 

406-409 

correlated group design, 526-527 

SI-1 



SI-2 Subject Index 

covariance structure analysis, 850 

factor analysis, 835, 839 

factorial analysis of variance, 

377-384 

Friedman test, 430 

item analysis, 661 

Kruskal-Wallis test, 425-429 

power analyses, 294-295 

rotational methods, 843 

statistical programs, 122-128, 608, 

880 

suppressor variable detection, 779 

See also specific compute?- programs 

Comrey Personality Scales (CPS), 

676, 677-678, 718, 846-847, 
886 

Concepts, 4n, 5, 40 

Concordance, coefficient of, 423-424 

Concurrent validity, 668-669, 676 

Conditional probability, 150-158 

Conditional statement, 12n 

Confidence intervals, 233 

Confidentiality, 445-446 

Confirmatory factor analysis (CFA), 

849-854, 864, 866 

Constitutive definition, 42, 630, 854 

Construct(s), 4n, 40 

constructive and operational 

definitions, 41-46, 55-59 

hypothetical, 55 

in measurement, 630 

as nonobservable, 54-55 

Construct investigation, 854 

Construct of objects, 629-630 

Construct validation, 670-671, 672, 

676-678,712,854 

Content analysis, 607 

Content validation, 667-668 

Content validity, 667-668 

Contingency analysis, 222 

Continuous data interpretation, 

269-272 

Continuous measure analysis, 194, 
196n 

Continuous measures, 193-194, 

240-241,416-417 

Continuous variables, 52-54, 

193-194,224 

Contrasts coding, 794 

Control, 5, 12, 473, 559 

Control group, 486-489 

Control variable, 710 

Convergence, 671-674 

Cooperativeness, 732 

Corrections for attenuation, 684-685 

Corrections for continuity, 235 

Correlated groups, 387-409 

fictitious examples, 389-397 

in research design, 511-525 

research examples, 403-406 

SPSS use, 406-409 

variance extraction by subtraction, 

397-403 

Correlated groups design, 511-525 

factorial, 520-523 

general paradigm, 512-513 

multigroup, 519 

research examples, 515-519 

two group experimental group- 

control, 514-515 

units, 513 

Correlation 

analysis of, 722 

between groups, 387-409 

canonical, 209 

variance analysis and, 322-327, 

390-393 

Correlation coefficient, 92-94, 193, 

278-279, 324-325,424,756, 
756 

Correlation matrix (R matrix), 

827-829,836, 839, 850 

Correlation ratio, 325, 770 

Correspondence, 87-88, 625 

Covariance, 119-122 

analysis of, 523-525, 796-799 

in coefficients of correlation, 94 

importance in research, 121-122 

structures, 122, 210, 211 

See also Covariance structure 

analysis 

Covariance structure analysis, 

863-887 

factor analysis versus, 871-872 

overview, 884-887 

research studies, 880-884 

using EQS, 864, 865-868, 869, 

872-874, 876-880 

Covariate variable, 523, 796 

Cramer’s V, 235-236 

Creativity measurements, 43 

Criterion, 801 

Criterion measures, 109 

Criterion-related validity, 668-669 

Critical incidents technique, 720 

Cronbach’s alpha formula, 656 

Cross partition, 71-72, 221, 482 

Cross product, 120 

Crossbreaks, 72, 222 

Cross-correlations, 871 

Cross-dressing studies, 609 

Crosstabs, 72, 221 

construction, 225-227 

defined, 224 

ordered pairs and, 243-246 

purpose, 224-225 

relations and, 243 -246 

simple, 225-227 

SPSS and,249-253 

types, 236-241 

Crystallized intelligence, 847 

Cumulative scale, 712, 714-715 

Data 

defined, 192 

ordinal, 224 

terminology, 223-224 

Data analysis, 217, 792-795 

Data collection, 606-607, 691-692. 

See also Observation methods 

Debriefing, 444-445 

Deception, scientific, 439, 441-442, 

444, 590 

Decision rule, 295 

Deductive reasoning, 15-17 

Definitions 

behavioral, 41-42 

constitutive, 42, 854 

observational, 41-46 

in problems and hypotheses, 30 

symbolism and, 467-468 

Democracy measurement, 678-679 

Dependent variables, 46-51, 

458-459, 801 

Depth interview, 694 

Design paradigm, 502 

Deviation sum-of-squares formula, 
766 

Dice toss probabilities, 139-141 

Dichotomies, 41, 53, 794-795 

Difference(s) 

absolute, 277-278 

analysis of, 204-205 

individual, 51 

relative, 277-278 

statistically significant, 312, , 
315-317 

Difference scores, 495-499 

Different methods analysis, 616 

Differential effect, 351 

Differential prediction, 673 



Subject Index SI-3 

Differential validity, 673 

Directed graph, 746-747 

Discourse, levels of, 68, 74-77, 198 

Discriminability, 671-674 

Discriminant analysis, 209, 799-800, 

808-810 

Discrimination studies, 451-455 

Disjoint subset, 71, 482 

Disordinal interaction, 362-363 

Distribution, 199-200, 424 

Distribution-free statistical test, 415 

Domain, 84, 87 

Downwinders, 439 

Dummy coding, 793-794 

Dummy variables, 54, 789 

Ecological representativeness, 477 

Economical Multifactor Designs, 548 

Educational measurements, 685 

Educational research, 562-563, 

610-613, 740-741 

Effects coding, 793-794 

Eigenvalues, 835, 839 

Eigenvectors, 839 

Empty set, 68 

Enumeration, 630-632 

Environmental Protection Agency, 

780 

EQS, 845, 850, 851, 853, 864, 

865-868, 869, 872-874, 

876-880, 884-885 

Equal interval scales, 634-635, 

637-638 

Equal-appearing interval scales, 712, 

713-714, 715 

Error(s) 

reliability and, 648 

rounding, 763 

theory, 270 

Error of central tendency, 739 

Error of leniency, 739 

Error of measurement, 642 - 643 

Error of severity, 739 

Error variance, 107, 110-117, 

462-463, 643, 681 

Ethical Principles of Psychologists and 

Code of Conduct (APA), 443 

Ethics 

codes of, 15 

of practice, 43 8 

See also Research ethics 

Event sampling, 734-735, 736 

Events, 138, 143-154 

Exhaustive subset, 71, 482, 630 

Exhaustiveness, 145-150, 196-197 

Experiment, defined, 466 

Experimental design, 466, 484-485 

Experimental group, 468 

Experimental hypotheses, 855 

Experimental mortality, 476 

Experimental variance, 107-110, 459 

Experimentation, 17-19 

Exploratory data analysis, 217 

Exploratory factor analysis (EFA), 

849, 851 

Exploratory field studies, 586 

External validity, 476-477 

Extraneous variables, 460-462, 

492-493 

F (authoritarianism) scale, 829 

Face validity, 668 

Factor(s), 210 

bipolar, 840-844 

defined, 826, 856 

extraction and rotation, 834-835, 

839-844 

graphical representation, 

833-834 

Factor analysis, 122, 210, 677, 679, 

825-857 

basic equation, 830-831 

confirmatory, 849-854, 864, 866 

of covariance structures, 871-872 

history, 826-827 

hypothetical example, 827-829 

in objective testing, 722, 723 

research examples, 846-849 

scientific research and, 854-857 

second-order, 834, 844-845 

Factor extraction, 834-835 

Factor loadings, 829-831, 833-834 

Factor matrices, 829-831 

Factor pattern matrix, 851 

Factor scores, 845-846 

Factor theory, 684, 831-833 

Factor variance, 680-681 

Factored Homogeneous Item 

Dimension (FHID), 846-847 

Factorial analysis of variance, 

345-384, 795-796 

advantages, 371-372 

computer analysis, 377-384 

control, 372-374 

described, 350-351 

interaction in, 352-358 

problems and characteristics, 

352-359 

research examples, 346-349, 

374-377 

three-variable, 368-370 

Factorial correlated group design, 

520-523 

Factorial design, 345, 346, 504-509 

advantages, 371-372 

control problems, 372-374 

defined, 504 

research examples, 505-510 

with more than two variables, 505 

Fear-then-relief method, 503-504 

Field experiments, 577-578, 

581-585 

Field studies, 578, 585-588 

File drawer problem, 617 

Fixed-alternative items, 695 

Flow plan, 604-605 

Fluid intelligence, 847-848 

Focus group, 700-702 

Follow-up questionnaire, 603 

Forced-choice scales, 716, 719-721 

F-ratio, 314-315, 319-320 

Fraud, scientific, 438, 439, 441 -442 

Freedom, degrees of, 231, 309, 319 

Frequencies, 193-194 

Frequency analysis, 194, 195, 196n, 

221-253 

calculation of percentages, 

227-229 

crosstabulation, 224-227, 243-253 

data and variable terminology, 

223-224 

multivariate, 247-248 

specification, 241-243 

Frequency data, 268-272 

Frequency distribution matching 

method, 491-492 

Frequency distributions, 199-200 

Frequency probability, 134-135 

Friedman test, 420-422 

F-test, 328, 416, 771 

Function, 84-85 

Funnel, 696 

General linear model, 307 

General test, 710 

Generality, 13, 733-734 

Generalizability theory, 474-475, 

476, 645, 730 

Generalizations, 285-286, 595 



SI-4 Subject Index 

Global Assessment Scale (GAS), 610 

Goodness-of-fit, 813-814, 853, 

874-875, 885 

Goodness-of-Fit Index (GFI), 874 

Graphic rating scale, 738 

Graphical data analysis, 594 

Graphical transformation, 594 

Graphs, 200-202 

correlation and, 92-94 

defined, 200 

directed, 746-747 

of interactions, 363-365 

relations and, 88 

Group interview, 700-702 

Group polarization effect, 702 

Guttman formula, 655 

Guttman scale, 714-715 

GWBASIC, 171 

Halo effect, 738 

Hawthorne study, 444 

Heaven’s Gate cult, 589 

Higher order terms, 813 

Histogram, 95 

History, 470, 514 

Holistic experimental paradigm, 

593-595 

Homogeneity of variance, 416 

Horn-Cattell theory of intelligence, 

852 

Hypothesis 

defined, 15, 26 

generality and specificity, 31-32 

importance and power, 27-28, 

33-34 

multivariable nature, 32-33 

null, 280-281, 291 

statistical, 279-281 

substantive, 279-281 

values and, 30 

virtues, 28-29 

Hypothesis testing, 279-281 

alternative, 566-567 

criteria, 7, 17-19 

experimental, 855-856 

exploratory field studies, 586 

factor analysis and, 855 

steps, 295-299 

substantive and null, 279-281 

Identification problem, 885 

Ill-conditioned matrix, 806 

ILOG, 816 

Impression-management theory, 

577 

Independence, 145-150, 197, 

417-418, 716 

Independent variables, 46-51, 

458-459, 473-474, 801 

Index of Political Democracy, 

678-679 

Indicants of objects, 629-630 

Indicators, 213-214 

Indices, 211-213 

Individual cost theory, 583 

Individual differences, 51, 519 

Inductive reasoning, 17 

Inference 

incorrect, 729 

in observation, 708 

observer, 732-733 

statistical, 259-260, 290-295 

Inflation bias, 781-782 

Informed consent, 444 

Instrumental conditioning, 576 

Instrumentation, 476, 540 

Intelligence tests, 709-710 

Intelligence theories, 826-827, 

847-849, 851-854 

Interaction, 201, 347 

causes, 365-367 

defined, 352 

disordinal, 362-363 

examples, 359-362 

graphs, 363-364 

interpretation and, 367-368 

ordinal, 363 

Intercept constant, 760 

Internal consistency, 654 

Internal validity, 475-476 

Interpersonalism theory, 193 

Interpretation 

adequacy of, 215 - 216 

of data using normal probability 

curve, 268-272 

defined, 192 

interaction and, 367-368 

of negative and inconclusive results, 

216-217 

principles, 191-219 

problem of proof, 218-219 

of research data, 214-219 

Intersection of sets, 67 

Interval measurement, 634-635, 

637-638 

Intervening variables, 5 5 * 

Interview(s), 691-692 

depth, 694 

described, 693-694 

focus group, 700-702 

personal, 601-603 

question writing criteria, 697-698 

as scientific tool, 693 

self-administered, 699 

value, 699 

Interview schedules, 692, 694-697 

Interviewer's Manual, 693 

Intuition, method of, 7 

Ipsative measures, 721-722 

Isomorphism, 627-628 

Item analysis, 659-662, 679 

Item discrimination index, 660-661 

Item Response Theory (IRT), 661 

Item-characteristic curve, 661 

Item-to-total-score correlation, 660 

Iterative proportional fitting, 812 

Janis-Field Feelings of Inadequacy 

Self-esteem Scale, 58 

Joint action, 356 

Kappa index, 668 

Kaufman Adult Intelligence Test 

(KAIT), 852 

Kaufman Assessment Battery for 

Children (K-ABC), 854 

^-dimensional tables, 240-241 

Kendall’s coefficient of concordance, 

423-424 

Keynesians, 135 

Knowing, methods of, 6-8 

Known group method, 711 

Kruskal-Wallis test, 418-420, 

425-429 

Kuder-Richardson formulas, 654, 

655-657 

Kumar-Beyerlein Scale, 58 

Laboratory experiments, 576-577, 

579-581, 583 

Large numbers, law of, 264-265 

Latent variables, 54-55, 629, 

864-868, 876-880 

Latent-trait theory, 661 

Law of averages, 146 

Least squares, principle of, 764 

Levels of discourse, 68, 74-77, 198 



Subject Index SI-5 

Levene’s Test for Equality of 

Variances, 336 

Likert-type scale, 712 

Linear discriminant analysis, 800 

LISREL, 845, 850, 851, 853, 863, 

864, 865, 869-870, 874, 880, 

884-887. See also Covariance 

structure analysis 

Local history effect, 541 

Logistic regression, 808 - 811 

Log-linear analysis, 811-817 

Log-linear models analysis, 210 

Loneliness Deprivation Scale, 58 

L-test, 522 

Mail questionnaire, 603, 699 

MANOVA, 802-803 

Mapping, 87-88, 625 

Marginal totals, 815 

Matched-by-correlated criterion 

design, 490 

Matching, 389, 461-462 

by equating participants, 490-491 

frequency distribution method, 

491-492 

by holding variables constant, 492 

participants as control 493 

randomization versus, 489-493 

by using nuisance variable, 492 -493 

Matching Familiar Figures Test, 780 

Matrix, 512, 743-747, 874 

Maturation, 470, 514 

Maxmincon principle, 458, 512-513, 

659 

Mean(s), 104 

analysis of differences, 204 

in binomial statistics, 260-262 

calculation, 104-106 

difference between, 276-278 

sample, 271, 282 

significant differences, 312-313 

standard error of, 107n, 270-272, 

282,314, 657-659 

standard variance of, 107, 107n 

as statistical measure, 202-203 

Mean square, 105 

Measure(s) 

baseline, 550, 553-554 

ipsative, 721-722 

normative, 721-722 

Measurement, 623-638 

adequacy, 215-216 

central tendency, 202-203 

classification and enumeration, 

630-632 

comparisons, 635-638 

continuous, 224, 240-241, 

416-417 

criterion, 109 

defined, 223,623-627 

error of, 642-643 

of indicates of objects, 629-630 

interval scales, 634-635 

levels, 630-635 

nominal, 632, 635 

ordinal, 632-634 

ratio scales, 635 

reactive, 47 0 

of relations, 203-204 

reality isomorphism and, 627-628 

scaling, 630-635 

of variables, 43, 202-203, 223-224 

Median, 202-203 

Meta-analysis, 614-618 

Metaphysical explanations, 6 

Method of authority, 6-7 

Methods of knowing, 6-8 

Milgrim study, 503 

Mirrors for Behavior, 731 

Mixed factorial ANOVA, 400 

Mode, 202-203 

Molar approach, 732 

Monte Carlo methods, 283-290 

Moral outrage theory, 583 

Multigroup correlated groups design, 

519 

Multimethod research, 592, 616 

Multiple Affect Adjective Checklist 

(MAACL), 883 

Multiple baseline design, 553-554 

Multiple classification analysis 

(MCA), 809 

Multiple comparison tests, 328 

Multiple correlation coefficient, 7 68 

Multiple criteria, 670 

Multiple linear regression, 761-768 

Multiple predictors, 670 

Multiple regression, 100-101, 209 

Multiple regression analysis, 755-783 

analytical and interpretive 

problems, 777-780 

coding, 792-795 

described, 755 

multiple correlation coefficient, 

768-771 

multiple linear, 761-768 

one-way ANOVA and, 788-792 

research examples, 755-757, 

780-782 

scientific research and, 782-783 

simple, 757-761 

statistical significance tests, 

771-773 

statistics interpretation, 773-777 

Multiple time series design, 546 

Multitrait-multimethod analysis, 

674-676 

Multivariate analysis, 208-211 

behavioral research and, 817-818 

of covariance structures, 863-887 

factor analysis, 825-857 

forms, 209-211 

of frequency data, 247-248 

multiple regression, 755-783, 

787-792 

usefulness, 208-209 

of variance, 210, 802-803 

Multivariate analysis of variance 

(MANOVA), 802-803 

Multivariate Nominal Scale Analysis 

(MNA), 809 

Multivariate relations, 98-101 

Multiway contingency tables, 

811-817 

Mutual exclusiveness, 145-150, 197 

Mutually exclusive subset, 630 

National Council on Measurements 

Used in Education, 666 

National Opinion Research Center 

(NORC), 692 

Negative effect, 617 

Nested designs, 512, 582 

Nominal measurement, 632, 635-636 

Nominal variables, 223, 794-795 

Nonequivalent control group design, 

536-537, 543 

Nonexperimental research, 466-467, 

557- 571 

defined, 558 

evaluation, 568-569 

experimental research versus, 

558- 560 

large scale, 561-563 

limitations, 568-569 

self-selection and, 560-561 

smaller scale, 564-565 

testing alternative hypothesis, 

566-567 

value, 569 
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Nonfrequency probability, 134-135 

Nonobservables, 54-55 

Nonparametric analysis of variance, 

413-414 

coefficients of concordance, 

423-424 

data properties, 424-425 

methods, 418-430 

one-way, 418-420 

SPSS use, 425-430 

two-way, 420-422 

Nonparametric statistics, 414-418 

Nonprobability samples, 178-179 

Normal equations, 764 

Normal probability curve 

continuous data interpretation, 

269-272 

frequency data interpretation, 

268-269 

standard deviation and, 265-268 

Normality, assumption of, 415 

Normative measures, 721-722 

No-treatment control group design, 

537-543 

Null hypothesis, 26, 280-281, 291 

Null set, 68 

Number, defined, 625 

Numeral, defined, 625 

Numerical rating scale, 737 

Objective scales, 707-723 

choice and construction, 723 

defined, 709 

terms and items, 716-722 

types of measures, 709-715 

Objective tests, 707-723 

choice and construction, 723 

terms and items, 716 

types, 709-712 

Objectivity, 7-8, 708-709 

Observables, 54-55 

Observation 

behavioral. See Behavioral 

observation 

concepts and, 39, 46 

in scientific method, 12,29 

Observation methods 

objective tests and schedules, 

707-723 

rating scales, 736-739 

of sociometry, 742-749 

Observational definition, 41-46 

Observer, 728-729 

Observer inference, 732-733 

Odds ratio, 246-247, 809 

Omnibus tests, 709 

One group repeated trials design, 

513-514 

One-dimensional tables, 236-237 

One-tailed test, 299 

One-way analysis of variance 

(ANOVA), 308, 317-320, 

336-340, 400,418-420, 

788-792 

Open-ended items, 695-696 

Operant conditioning, 576, 588 

Operationalism, 44, 59 

Ordered pairs, 82-85, 243-246 

Ordered triplets, 137 

Ordinal interactions, 363 

Ordinal measurement, 632-634, 

636-638 

Ordinary-least-squares (OLS), 

806-808 

Organismic variables, 51 

Orthogonal coding, 794 

Orthogonal coefficients, 329-330 

Orthogonal rotation, 841, 843-844 

Otis intelligence tests, 829 

P matrix, 851 

Paired comparisons, 719-721 

Panel, 601, 603 

Paradigms, 450, 484, 605 

Parameters, 851 

Parametric statistics, 414-418 

Part correlations, 776 

Partitioning, 71-73, 197, 482, 631, 

795 

Path analysis, 210, 799, 803-805 

Path diagrams, 98-99, 853 

Pearson Chi-Square, 814 

Peer relations, 748-749 

Peer review, 14 

Percentage, defined, 213 

Periodicity, 424 

Permutation tests, 181 

Personal interviews, 601-603 

Personal Preference Schedule, 719 

Personality measures, 667, 

711-712 

Placebo condition, 551 

Planned comparisons, 328-332 

Polychotomous logistic regression, 
809 

Polygraph, 550 > 

Polytomy, 41, 54 

Population variance, 106-107 

Post hoc tests, 328, 395 

Power analysis, 294-295, 453 

Power efficiency index, 294 

Precision control matching, 490 

Prediction, 12, 669 

Predictive validity, 668-669 

Predictors, 801 

Pretesting, 477, 493-494 

Principal factor method, 827, 835, 

836-839 

Probability, 133-158 

a priori versus a posteriori, 

134-135 

calculations, 135-138 

coin-toss, 138-139 

compound event, 143-145 

conditional, 150-158 

defined, 134-135 

dice toss, 139-141 

exhaustiveness and, 145-150 

fundamental properties, 142 

independence and, 145-150 

mutual exclusiveness and, 145-150 

research interpretation and, 

218-219 

theory, 141-143 

Probability samples, 178, 179 

Probing, 695, 696 

Problem(s), 24-25 

criteria, 25 

defined, 24 

generality and specificity, 31-32 

importance, 27-28 

multivariate, 32-33 

values and, 30 

virtues, 28-29 

Problem statements, 24, 25, 30 

Problem-solving, 11 

Procrustean solutions, 849 

Profile, 207 

Profile analysis, 207-208 

Proof, 218-219 

Properties of objects, 629-630 

Proportion, defined, 213 

Proportional allocation procedures 

(PAP), 180 

Psychosocial Adjustments to Illness 

Scale (PAIS), 883 

Publication Manual of the American 

Psychological Association (APA), 
443 

Purposive sampling, 179 
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Qualitative research, 588-593 

Qualitative variables, 41, 53, 223 

Quantitative research, 590, 592-593 

Quantitative variables, 53, 193-195 

Quasi-experimental designs, 536-549 

Questionnaire, 601, 603-604, 692 

QUICKBASIC, 171 

Quota sampling, 178-179, 606 

Radiation poisoning, 439-440 

Random assignment, 170, 197 

Random sampling, 164-169, 272, 

285,296 

Random variance, 643 

Randomization, 169-174 

extraneous variables and, 460 

matching versus, 489-490 

principle, 170-171 

in research design, 474 

Randomization tests, 181 

Randomized block, 400 

Randomized group design, 503-511 

Randomized subjects design, 

502-504, 510-511 

Randomness, 110, 133, 167-169 

Range, 84, 87, 203 

Rank order, 424, 645, 718-719 

Rating scales, 736-739 

Ratio, defined, 212-213 

Ratio scale, 635 

Reality isomorphism, 627-628 

Reasoning, 15-17 

Reduced model, 813 

Reference axes, 833 

Referent, 602, 712 

Referents-I (REF-I), 674 

Regressed gain scores, 496 

Regression 

logistic, 808-811 

multivariate relations and, 100-101 

ridge, 805-808 

Regression analysis, 210, 865-866 

Regression coefficient, 760, 773, 

774-775 

Regression effect, 470-472 

Regression line, 84 

Regression weights, 777-780 

Reinforcement studies, 456-459 

Relation(s), 85-101 

crosstabs and, 243—253 

defined, 482 

determining, 85-87 

graphs, 88, 92-94 

mapping, 87-88 

measures, 203-204 

multivariate, 98-101 

as ordered pair set, 82-85 

research examples, 95-98 

strength, 322-327 

tables, 88-92 

unhypothesized, 216-218 

Relative differences, 277-278 

Reliability, 641 -663 

computational examples, 648-652 

defined, 642 -645 

improvement of, 659-662 

half-split, 654 

of means and individual measures, 

657-659 

test-retest, 653 

theory, 645-648 

validity and, 680-689, 729-730 

value, 662 

Reliability coefficient, 652-657 

Reliability index, 653 

Replication, 365-366, 570, 616 

Representative sample, 165 

Representativeness, 164-167, 

476-477, 667 

Research 

animal, 446 - 447 

compromise, 536-549 

defined, 14-15, 438 

determining relations in, 85-87 

ethical guidelines, 442 - 446 

field experiments, 581-585 

field studies, 585-588 

laboratory experiments, 576-581 

nonexperimental, 466-467, 

557-571 

qualitative, 588-593 

quasi-experimental, 536-549 

replication, 570, 616 

single subject, 550-553 

survey, 599-618 

unethical, 439-442 

Research design 

adequacy of, 215-216 

ANOVA and, 484-485 

biases, 443 

conceptual foundations, 482-484 

control-group, 486-489 

correlated groups, 387-409, 

511-525 

criteria, 472-478 

defined, 449-450, 482 

difference scores, 495-499 

error variance minimization, 

462-463 

experimental, 466-467, 484-485 

experimental variance maximiza¬ 

tion, 459 

extraneous variables control, 

460-462 

faulty or inadequate, 468-472 

matching, 489-493 

nonexperimental, 466-467, 

557-571 

purposes, 449-455 

randomization, 489-490, 503-511 

symbolism and definitions, 

467-468 

as variance control, 455-459 

Research design applications, 

503-527 

analysis and, 525-536 

factorial, 504-510 

one group repeated trials design, 

513-514 

randomized subjects, 502-504 

Research ethics, 437-447 

animal research, 446-447 

demands for, 439-442 

guidelines, 442-446 

laws and regulations, 441 -442 

single-subject studies and, 549 

Residual matrix, 874 

Residual variance, 400 

Residualized scores, 496 

Residuals, 761 

Response bias scale, 716 

Response set, 713, 716 

Response variable, 51 

Ridge regression, 805-808 

Rounding errors, 763 

Rule, defined, 625 

Rulon formula, 655 

Sample(s), 163-164 

flow plan, 605 

kinds of, 178-182 

nonprobability, 178 

probability, 178 

quota, 606 

representative, 165-166 

self-selection into, 561 

self-weighted, 180 

Sample mean, 282 

Sample points, 138 

Sample size, 175-182, 295-299 
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Sample space, 135-138, 165 
Sample variances, 106-107 
Sampling, 163-167 

accidental, 179 
area, 180, 605 
behavioral, 734-736 
cluster, 180-181 
defined, 164 
event, 734-735, 736 
purposive, 179 
quota, 178-179 
stratified, 179-180 
systematic, 181 
time, 735-736 
two-stage, 180-181 
with replacement, 165 
without replacement, 165 

Sampling adequacy, 667 
Sampling error, 282-283 
Sampling plan, 605 
Saturated model, 813, 867 
Scale(s) 

comparisons, 635-638 
defined, 696, 709 
interval, 634-635 
rating, 736-739 
ratio, 625 

Scale item, 696 
Scheffe test, 328, 329, 395 
Schema and learning studies, 

506-510 
Science 

aims, 11-13 
common sense and, 4-6 
dynamic view, 9 
functions, 8-11 
heuristic view, 9 
predictive view, 1 
static view, 8-92 
stereotypes, 8 

Scientific approach, 7-8, 15-19 
Scientific fraud, 438, 439-442 
Scientific language, 3 -4 
Scientific research 

defined, 14-15 
multiple regression analysis and, 

782-783 
See also Research 

Second-order factor analysis, 
844-845 

Selection, in research design, 476, 
538-539 

Selection ratio, 670 
Selective attention studies, 518-519 

Self-assessment examinations, 
781-782 

Self-correction, 7 
Self-efficacy theory, 730 
Self-selection, 560-561 
Sensitization, 514 
Set(s), 65-77 

complement, 68 
defined, 66 
diagrams, 69-70 
empty, 68 
level of discourse, 74-77 
operations, 67, 70-71 
ordered pair, 82-85 
response, 713, 716 
subsets, 66-67 
universal, 68, 75 

Set negation, 68-69 
Set operations, 67 
Set theory, 65, 75 
Shrinkage formula, 771 
Simple regression analysis, 757-761 
Simple structure, 827, 839 
Single subject experimental designs, 

546-553 
Slope formula, 759-760, 774 
Social Anxiety Scale for Adolescents, 

748 
Social Attitudes Scale, 674 
Social Conformity versus 

Rebelliousness Scale, 678 
Social indicators, 213-214 
Social Interest Scale, 720 
Social Skills Rating Scale, 58, 836 
Sociograms, 742, 746-747 
Sociometric analysis, 743-747 
Sociometric prestige, 747 
Sociometry, 727-728, 742-749 

analysis, 743-747 
choice, 742-743, 744 
indices, 743, 746-747, 748 
matrices, 743-747 
research uses, 746-749 
social status and, 748-749 
stereotypes and, 748 

Spanier Syadic Adjustment Scale, 883 
Spearman-Brown Prophecy formula, 

654-655,657 
Specially constructed test, 710 
Specific variance, 681 
Specification, 241-243, 813-814 
Split-half reliability, 654 
Split-plot ANOVA, 400 
SPSS-WIN, 123-128 

Squared multiple correlation (SMC), 
774,836 

Squared semipartial correlations, 776 
Standard deviation, 106, 203 

normal probability curve and, 
265-268 

in probability theory, 262-264 
in variance analysis, 318-319 

Standard error 
defined, 275, 282-283 
of differences between means, 

276-277,287-290 
of measurement, 657-659 
of the mean, 107n, 265, 270-272, 

282, 314, 657-659 
in hypotheses-testing, 291-295 

Standard partial regression coeffi¬ 
cients, 777 

Standard variance of measurement, 
657 

Standard variance of the mean, 107, 
107n 

Standardized interview, 693-694 
Standardized test, 659, 710 
Stanford-Binet Intelligence Test, 

829 
Statistical analysis, 198-211 
Statistical Analysis System (SAS), 779 
Statistical control 462 
Statistical hypothesis, 279-281 
Statistical independence, 417-418 
Statistical inference, 259-260, 

290-295 
Statistical Package for the Social 

Sciences (SPSS), 122-128, 779, 
863 

correlated design ANOVA, 
406-409 

crosstabulations, 248-253 
factorial analysis of variance, 

377-384 
Friedman test, 430 
Kruskal-Wallis test, 425-429 
one-way ANOVA, 336-340 
sample function, 175-176 
t-test, 331-336 

Statistical regression, 541 
Statistical significance, 222 

challenge to, 594 
chi-square test, 229-232 
levels, 232-236 
tests, 771-773 

Statistically significant difference, 
312,315-317 
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Statistics 
basic approach, 257-258 
binomial, 260-262 
defined, 258 
law of large numbers, 264-265 
nonparametric, 414-418 
normal probability curve, 265-272 
parametric, 414-418 
purposes, 258-260 
standard deviation, 265-268 
variance, 262-264 

Status survey, 599 
Stem-and-leaf diagram, 217-218 
Stereotypes, 5, 8, 748 
Stimulus variable, 51 
Strata, 178 
Stratified sampling, 179-180 
Stroop effect, 518, 617 
Structural equation modeling (SEM), 

863, 883 
Structure 

ANOVA, 112,210,211 
research, 449-450 

Studentized range test, 422 
Subject-characteristic variables, 51 
Subj ects-by-treatment-by-treatment 

ANOVA, 400, 402 
Subsets, 66-67, 631-632 
Sum-of-squares 

in calculation of the means, 105 
between all groups, 355, 356 
residual, 767 
invariance analysis, 309-312, 

317-318 
within-groups, 355 

Summated rating scales, 712, 713, 715 
Suppressor variable, 779-780 
Survey(s), 601 -604 

interview, 601-603 
mail questionnaire, 603 
panel, 603 
status, 599 
telephone, 603 

Survey research, 599-618 
advantages and disadvantages, 

613-168 
applications to education, 610-613 
checking data reliability, 607-608 
cross-sectional or longitudinal, 606 
data collection, 606-607, 691-692 
meta-analysis, 614-618 
methodology, 604-608 
sample studies, 608-610 
types, 601-604 

Symbol, 41, 625 
Symbolism in research design, 

467-468 
Systematic sampling, 181 
Systematic variance, 107, 111-114, 

462,642-643 

t ratio, 312-313, 331-336 
Tables, 88-92 

^-dimensional, 240-241 
one-dimensional, 236-237 
three-dimensional, 240-241 
two-dimensional, 237-240 

Tabulation, 607 
Taylor-Russell Table, 670 
Tchebysheff’s Theorem, 264, 268 
Telephone surveys, 601, 603, 604 
Tenacity, method of, 6 
Test(s) 

achievement, 710-711 
anxiety, 567 
aptitude, 709-710 
defined, 709 
general, 710 
intelligence, 709-710 
specially constructed, 710 
standardized, 710 
statistical significance, 771-773 

Test theory, 645, 864-868 
Test-retest reliability, 653 
Tetrad, 720-721 
Theory 

defined, 8 
hypothesis and, 28-29 
role and importance, 10, 11-13, 18 

Three-dimensional tables, 240-241 
Three-variable factorial analysis, 

368-370 
Thurstone factorial study of intelli¬ 

gence, 847 
Time designs, 544-545 
Time sampling, 735-736, 739-740 
Tolerance of nonconformity, 697 
Total variance, 113, 114-117, 

308-309 
Trait, 711, 712 
Trait rating, 736 
Transpose, 828 
Tree diagram, 136-137 
True dichotomies, 240-241 
Truncated principal components, 

836 
T-test, 331-336,416, 424, 771 

Tuskegee study, 440 
Two group experimental group- 

control, 514-515 
Two-dimensional tables, 237-241 
Two-stage cluster sampling, 180-181 
Two-tailed test, 299 
Two-way analysis of variance 

(ANOVA), 396, 400, 420-422 
Two-way within-subjects ANOVA, 

400, 402 
Type I and Type II decision errors, 

292-294,296-299 

UCLA Loneliness Scale, 58 
Unanticipated findings, 216-218 
Unethical research, 439-442 
Unhypothesized relations, 216-218 
Union of sets, 67 
Unit differences, 519 
Units, 513, 519, 731-732 
Universal set, 68 
Universe of discourse, 198 
Unmeasured variables, 865 
Unsaturated model, 813 
Unstandardized interview, 694 

Validity, 665-685 
concurrent, 668-669 
construct, 670-671, 854 
content, 667-668 
convergence and, 671-674 
criterion-related, 668-669 
differential, 673 
discriminability and, 671-674 
external, 476-477 
face, 668 
factor analysis, 679 
internal, 475-476 
item analysis, 679 
multiple predictors and criteria, 

670 
multitrait-multimethod analysis, 

674-676 
personality measure, 711 
predictive, 668-669 
reliability and, 680-689, 

729-730 
research examples, 676-678 
types, 666-667 
variance definition, 680-684 

Validity coefficient, 67 0 
Value scales, 715 
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Variability measures, 202-203 

Variable(s), 40-41 

active, 51-52, 108 

attribute, 51-52 

binary, 41 

categorical, 52-54 

constitutive and operational defini¬ 

tions, 41-46, 55-59, 630 

continuous, 52-54, 193-194, 224 

control, 710 

covariate, 523 

dichotomous, 41, 794-795 

differential effect, 351 

dummy, 54, 789 

independent and dependent, 

46-51,473-474, 801 

interactivity, 16 

intervening, 55 

latent, 54-55, 629, 864-868, 

876-880 

manipulated, 51 

nominal, 223, 794-795 

organismic, 51 

partitioned, 73 

qualitative, 41, 53, 223 

quantitative, 53 

response, 51 

social indicators, 213-214 

stimulus, 5 

subject-characteristic, 51 

suppressor, 779-780 

terminology, 223-224 

trim, 779 

unmeasured, 865 

values, 41 

Variable representativeness, 477 

Variance(s) 

analysis. See Variance analysis 

between-groups, 107-110, 

114-117, 308, 309 

between-rows, 391, 392 

between units, 513 

calculation, 104-106 

common factor, 683, 854 

components, 118-119 

defined, 104 

error, 107, 110-117,462-463, 

643, 681 

experimental, 459 

extraction by subtraction, 

397- 403 

extraneous, 460-462, 492-493 

factor, 680-681 

factorial analysis of. See Factorial 

analysis of variance 

homogeneity, 416 

importance in research, 121 -122 

of the means, 107, 107n 

population, 106-107 

probability theory, 262-264 

random, 110, 643 

removal of systematic sources, 

398- 400 

repeated measures, 802 

residual, 400 

sampling, 106-107 

specific, 681 

systematic, 107, 462, 642-643 

total, 113, 114-117, 308-309 

units, 519 

as variability measure, 203 

within-groups, 308, 310-311 

Variance analysis, 205-207 

correlated groups, 387-409 

correlations, 322-327 

errors, 739 

factorial, 345-384, 795-796 

foundations, 307-340 

method, 313-315 

nonparameric, 418-430 

one-way, 308, 317-320, 336-340, 

400,418-420, 788-792 

paradigms, 484 

planned comparisons, 328-331 

post hoc tests, 328 

repeated measures, 802 

r-ratio approach, 312-313 

two-way, 396, 400, 402, 420-422 

using SPSS, 331-340 

Variance control, 450, 455-459, 461 

Variance ratio, 319-320 

Varimax, 843 

Venn diagrams, 75-76 

Visceral response studies, 576-577, 580 

Wechsler Adult Intelligence Scale- 

Revised (WAIS-R), 676 

Wechsler Intelligence Scale for 

Children (WISC), 780, 854 

Weight, 141 

Weight function, 141 

WISC Vocabulary Score, 780 

Withdrawal of treatment designs, 

550-552 

Within-groups variance, 308, 310-311 

Yates correction, 235 






